organic compounds
H-chromen-4-yl)methyl morpholine-4-carbodithioate
of (6-bromo-2-oxo-2aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad, Karnataka 580 001, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and cDepartment of Physics, Sri D. Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com
In the title compound, C15H14BrNO3S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.034 (2) Å, and the morpholine ring adopts a chair conformation. The dihedral angle between best plane through the 2H-chromene ring system and the morpholine ring is 86.32 (9)°. Intramolecular C—H⋯S hydrogen bonds are observed. In the crystal, inversion-related C—H⋯S and C—H⋯O interactions generate R22(10) and R22(8) rings patterns, respectively. In addition, the crystal packing features π–π interactions between fused benzene rings [centroid–centroid distance = 3.7558 (12) Å].
Keywords: crystal structure; coumarins; dithiocarbamates; biological applications; hydrogen bonding; π–π interactions.
CCDC reference: 1405247
1. Related literature
For biological applications of ); Hesse & Kirsch (2002); Jung et al. (2001, 2004); Lee et al. (1998); Melagraki et al. (2009); Schönenberger & Lippert (1972). For standard bond lengths, see: Devarajegowda et al. (2013). For a related structure and the synthesis of the title compound, see: Devarajegowda et al. (2013).
and dithiocarbamates, see: D'hooghe & De Kimpe (20062. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014.
Supporting information
CCDC reference: 1405247
10.1107/S2056989015011007/bq2399sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015011007/bq2399Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015011007/bq2399Isup3.cml
All the chemicals used were of analytical reagent grade and were used directly without further purification. The title compound was synthesized according to the reported method (Devarajegowda et al., 2013). The compound is recrystallized by ethanol-chloroform mixture. Colourless needles of the title compound were grown from a mixed solution of Ethanol/Chloroform (V/V = 2/1) by slow evaporation at room temperature. Yield =72%, m.p.: 433–435 K
All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and C—H = 0.97 Å for methylene H and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. | |
Fig. 2. Crystal packing for the title compound with hydrogen bonds drawn as dashed lines. |
C15H14BrNO3S2 | F(000) = 404 |
Mr = 400.30 | Dx = 1.704 Mg m−3 |
Triclinic, P1 | Melting point: 435 K |
a = 7.0500 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.6049 (3) Å | Cell parameters from 3224 reflections |
c = 15.1376 (7) Å | θ = 2.7–26.5° |
α = 78.782 (2)° | µ = 2.91 mm−1 |
β = 88.549 (2)° | T = 296 K |
γ = 78.515 (2)° | Plate, colourless |
V = 780.07 (6) Å3 | 0.24 × 0.20 × 0.12 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 3224 independent reflections |
Radiation source: fine-focus sealed tube | 2806 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω and ϕ scans | θmax = 26.5°, θmin = 2.7° |
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) | h = −8→8 |
Tmin = 0.770, Tmax = 1.000 | k = −9→9 |
13789 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0328P)2 + 0.2957P] where P = (Fo2 + 2Fc2)/3 |
3224 reflections | (Δ/σ)max = 0.001 |
199 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
C15H14BrNO3S2 | γ = 78.515 (2)° |
Mr = 400.30 | V = 780.07 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0500 (3) Å | Mo Kα radiation |
b = 7.6049 (3) Å | µ = 2.91 mm−1 |
c = 15.1376 (7) Å | T = 296 K |
α = 78.782 (2)° | 0.24 × 0.20 × 0.12 mm |
β = 88.549 (2)° |
Bruker SMART CCD area-detector diffractometer | 3224 independent reflections |
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) | 2806 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 1.000 | Rint = 0.027 |
13789 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.26 e Å−3 |
3224 reflections | Δρmin = −0.43 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.19477 (3) | 0.33461 (3) | 0.89681 (2) | 0.05002 (9) | |
S2 | 0.70559 (7) | 0.58659 (7) | 0.62666 (3) | 0.03418 (12) | |
S3 | 1.06683 (7) | 0.72703 (8) | 0.56091 (3) | 0.03905 (13) | |
O6 | 0.5420 (2) | 0.9077 (2) | 0.29823 (10) | 0.0520 (4) | |
O4 | 0.6263 (2) | 0.94245 (19) | 0.89038 (9) | 0.0404 (3) | |
O5 | 0.8534 (3) | 1.0955 (2) | 0.84135 (14) | 0.0650 (5) | |
N7 | 0.7479 (2) | 0.7625 (2) | 0.46382 (10) | 0.0303 (3) | |
C8 | 0.3315 (3) | 0.5266 (3) | 0.89259 (13) | 0.0373 (4) | |
C9 | 0.4939 (3) | 0.5289 (3) | 0.84039 (12) | 0.0337 (4) | |
H9 | 0.5346 | 0.4379 | 0.8070 | 0.040* | |
C10 | 0.5976 (3) | 0.6687 (2) | 0.83777 (11) | 0.0299 (4) | |
C11 | 0.5313 (3) | 0.8021 (3) | 0.88881 (12) | 0.0345 (4) | |
C12 | 0.3686 (3) | 0.7987 (3) | 0.94128 (14) | 0.0441 (5) | |
H12 | 0.3272 | 0.8889 | 0.9750 | 0.053* | |
C13 | 0.2683 (3) | 0.6601 (3) | 0.94310 (14) | 0.0450 (5) | |
H13 | 0.1585 | 0.6561 | 0.9782 | 0.054* | |
C14 | 0.7717 (3) | 0.6820 (2) | 0.78610 (11) | 0.0302 (4) | |
C15 | 0.8595 (3) | 0.8222 (3) | 0.78884 (14) | 0.0381 (4) | |
H15 | 0.9729 | 0.8289 | 0.7567 | 0.046* | |
C16 | 0.7858 (3) | 0.9630 (3) | 0.83943 (15) | 0.0428 (5) | |
C17 | 0.8495 (3) | 0.5444 (3) | 0.72867 (12) | 0.0328 (4) | |
H17A | 0.8481 | 0.4223 | 0.7622 | 0.039* | |
H17B | 0.9826 | 0.5515 | 0.7133 | 0.039* | |
C18 | 0.8436 (2) | 0.7021 (2) | 0.54254 (12) | 0.0275 (4) | |
C19 | 0.5618 (3) | 0.7172 (3) | 0.44561 (14) | 0.0392 (5) | |
H19A | 0.4913 | 0.6973 | 0.5014 | 0.047* | |
H19B | 0.5848 | 0.6047 | 0.4223 | 0.047* | |
C20 | 0.4422 (3) | 0.8674 (3) | 0.37879 (14) | 0.0418 (5) | |
H20A | 0.3232 | 0.8309 | 0.3659 | 0.050* | |
H20B | 0.4081 | 0.9764 | 0.4047 | 0.050* | |
C21 | 0.7118 (3) | 0.9691 (4) | 0.31608 (16) | 0.0503 (6) | |
H21A | 0.6753 | 1.0799 | 0.3403 | 0.060* | |
H21B | 0.7785 | 0.9988 | 0.2600 | 0.060* | |
C22 | 0.8474 (3) | 0.8295 (3) | 0.38134 (13) | 0.0381 (4) | |
H22A | 0.9027 | 0.7273 | 0.3530 | 0.046* | |
H22B | 0.9525 | 0.8835 | 0.3969 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04201 (14) | 0.05131 (15) | 0.05488 (15) | −0.01752 (10) | −0.00222 (10) | 0.00309 (10) |
S2 | 0.0345 (2) | 0.0421 (3) | 0.0294 (2) | −0.0157 (2) | 0.00236 (18) | −0.00731 (19) |
S3 | 0.0262 (2) | 0.0502 (3) | 0.0414 (3) | −0.0118 (2) | −0.00145 (19) | −0.0059 (2) |
O6 | 0.0422 (8) | 0.0743 (11) | 0.0365 (8) | −0.0190 (8) | −0.0082 (6) | 0.0050 (7) |
O4 | 0.0543 (9) | 0.0348 (7) | 0.0348 (7) | −0.0096 (6) | −0.0005 (6) | −0.0120 (6) |
O5 | 0.0792 (13) | 0.0475 (10) | 0.0813 (13) | −0.0312 (9) | 0.0080 (10) | −0.0262 (9) |
N7 | 0.0259 (7) | 0.0327 (8) | 0.0322 (8) | −0.0083 (6) | 0.0005 (6) | −0.0036 (6) |
C8 | 0.0350 (10) | 0.0413 (11) | 0.0321 (10) | −0.0085 (9) | −0.0031 (8) | 0.0025 (8) |
C9 | 0.0386 (10) | 0.0339 (10) | 0.0278 (9) | −0.0064 (8) | −0.0018 (8) | −0.0047 (7) |
C10 | 0.0356 (9) | 0.0293 (9) | 0.0225 (8) | −0.0036 (7) | −0.0026 (7) | −0.0022 (7) |
C11 | 0.0438 (11) | 0.0321 (10) | 0.0260 (9) | −0.0038 (8) | −0.0029 (8) | −0.0052 (7) |
C12 | 0.0507 (12) | 0.0463 (12) | 0.0335 (10) | −0.0010 (10) | 0.0067 (9) | −0.0133 (9) |
C13 | 0.0392 (11) | 0.0562 (14) | 0.0358 (11) | −0.0049 (10) | 0.0067 (9) | −0.0052 (10) |
C14 | 0.0330 (9) | 0.0296 (9) | 0.0256 (8) | −0.0035 (7) | −0.0032 (7) | −0.0018 (7) |
C15 | 0.0382 (10) | 0.0375 (11) | 0.0395 (10) | −0.0099 (8) | 0.0014 (8) | −0.0073 (8) |
C16 | 0.0522 (13) | 0.0352 (11) | 0.0422 (11) | −0.0112 (9) | −0.0040 (10) | −0.0072 (9) |
C17 | 0.0335 (10) | 0.0327 (10) | 0.0304 (9) | −0.0033 (8) | 0.0009 (7) | −0.0054 (8) |
C18 | 0.0269 (9) | 0.0238 (8) | 0.0325 (9) | −0.0037 (7) | 0.0026 (7) | −0.0089 (7) |
C19 | 0.0309 (10) | 0.0447 (12) | 0.0419 (11) | −0.0153 (9) | −0.0047 (8) | 0.0005 (9) |
C20 | 0.0305 (10) | 0.0471 (12) | 0.0449 (11) | −0.0067 (9) | −0.0030 (8) | −0.0022 (9) |
C21 | 0.0423 (12) | 0.0611 (15) | 0.0435 (12) | −0.0203 (11) | −0.0036 (9) | 0.0103 (11) |
C22 | 0.0293 (9) | 0.0480 (12) | 0.0356 (10) | −0.0085 (9) | 0.0050 (8) | −0.0044 (9) |
Br1—C8 | 1.894 (2) | C12—C13 | 1.377 (3) |
S2—C18 | 1.7839 (18) | C12—H12 | 0.9300 |
S2—C17 | 1.8095 (19) | C13—H13 | 0.9300 |
S3—C18 | 1.6585 (18) | C14—C15 | 1.343 (3) |
O6—C20 | 1.405 (3) | C14—C17 | 1.501 (3) |
O6—C21 | 1.418 (3) | C15—C16 | 1.442 (3) |
O4—C16 | 1.365 (3) | C15—H15 | 0.9300 |
O4—C11 | 1.373 (2) | C17—H17A | 0.9700 |
O5—C16 | 1.202 (3) | C17—H17B | 0.9700 |
N7—C18 | 1.338 (2) | C19—C20 | 1.500 (3) |
N7—C19 | 1.466 (2) | C19—H19A | 0.9700 |
N7—C22 | 1.470 (2) | C19—H19B | 0.9700 |
C8—C9 | 1.376 (3) | C20—H20A | 0.9700 |
C8—C13 | 1.385 (3) | C20—H20B | 0.9700 |
C9—C10 | 1.400 (3) | C21—C22 | 1.501 (3) |
C9—H9 | 0.9300 | C21—H21A | 0.9700 |
C10—C11 | 1.394 (3) | C21—H21B | 0.9700 |
C10—C14 | 1.448 (3) | C22—H22A | 0.9700 |
C11—C12 | 1.380 (3) | C22—H22B | 0.9700 |
C18—S2—C17 | 104.28 (9) | C14—C17—S2 | 110.63 (13) |
C20—O6—C21 | 109.57 (16) | C14—C17—H17A | 109.5 |
C16—O4—C11 | 121.90 (15) | S2—C17—H17A | 109.5 |
C18—N7—C19 | 123.45 (15) | C14—C17—H17B | 109.5 |
C18—N7—C22 | 121.02 (15) | S2—C17—H17B | 109.5 |
C19—N7—C22 | 112.94 (15) | H17A—C17—H17B | 108.1 |
C9—C8—C13 | 121.3 (2) | N7—C18—S3 | 124.57 (14) |
C9—C8—Br1 | 119.16 (16) | N7—C18—S2 | 112.39 (13) |
C13—C8—Br1 | 119.54 (16) | S3—C18—S2 | 123.03 (11) |
C8—C9—C10 | 119.64 (18) | N7—C19—C20 | 111.25 (16) |
C8—C9—H9 | 120.2 | N7—C19—H19A | 109.4 |
C10—C9—H9 | 120.2 | C20—C19—H19A | 109.4 |
C11—C10—C9 | 118.19 (18) | N7—C19—H19B | 109.4 |
C11—C10—C14 | 117.86 (17) | C20—C19—H19B | 109.4 |
C9—C10—C14 | 123.94 (17) | H19A—C19—H19B | 108.0 |
O4—C11—C12 | 116.55 (18) | O6—C20—C19 | 111.60 (17) |
O4—C11—C10 | 121.57 (18) | O6—C20—H20A | 109.3 |
C12—C11—C10 | 121.87 (19) | C19—C20—H20A | 109.3 |
C13—C12—C11 | 119.2 (2) | O6—C20—H20B | 109.3 |
C13—C12—H12 | 120.4 | C19—C20—H20B | 109.3 |
C11—C12—H12 | 120.4 | H20A—C20—H20B | 108.0 |
C12—C13—C8 | 119.8 (2) | O6—C21—C22 | 112.72 (18) |
C12—C13—H13 | 120.1 | O6—C21—H21A | 109.0 |
C8—C13—H13 | 120.1 | C22—C21—H21A | 109.0 |
C15—C14—C10 | 118.75 (17) | O6—C21—H21B | 109.0 |
C15—C14—C17 | 120.61 (18) | C22—C21—H21B | 109.0 |
C10—C14—C17 | 120.62 (16) | H21A—C21—H21B | 107.8 |
C14—C15—C16 | 122.92 (19) | N7—C22—C21 | 111.57 (16) |
C14—C15—H15 | 118.5 | N7—C22—H22A | 109.3 |
C16—C15—H15 | 118.5 | C21—C22—H22A | 109.3 |
O5—C16—O4 | 117.3 (2) | N7—C22—H22B | 109.3 |
O5—C16—C15 | 125.9 (2) | C21—C22—H22B | 109.3 |
O4—C16—C15 | 116.84 (18) | H22A—C22—H22B | 108.0 |
C13—C8—C9—C10 | −0.2 (3) | C11—O4—C16—O5 | 176.05 (19) |
Br1—C8—C9—C10 | −179.11 (13) | C11—O4—C16—C15 | −4.6 (3) |
C8—C9—C10—C11 | 0.0 (3) | C14—C15—C16—O5 | −176.7 (2) |
C8—C9—C10—C14 | 179.09 (17) | C14—C15—C16—O4 | 4.1 (3) |
C16—O4—C11—C12 | −178.20 (18) | C15—C14—C17—S2 | −102.79 (18) |
C16—O4—C11—C10 | 2.7 (3) | C10—C14—C17—S2 | 75.62 (18) |
C9—C10—C11—O4 | 179.34 (16) | C18—S2—C17—C14 | 100.78 (14) |
C14—C10—C11—O4 | 0.2 (3) | C19—N7—C18—S3 | 171.30 (15) |
C9—C10—C11—C12 | 0.3 (3) | C22—N7—C18—S3 | 10.9 (3) |
C14—C10—C11—C12 | −178.90 (18) | C19—N7—C18—S2 | −7.7 (2) |
O4—C11—C12—C13 | −179.37 (18) | C22—N7—C18—S2 | −168.15 (14) |
C10—C11—C12—C13 | −0.3 (3) | C17—S2—C18—N7 | −173.01 (13) |
C11—C12—C13—C8 | 0.0 (3) | C17—S2—C18—S3 | 7.95 (14) |
C9—C8—C13—C12 | 0.2 (3) | C18—N7—C19—C20 | 150.27 (18) |
Br1—C8—C13—C12 | 179.12 (16) | C22—N7—C19—C20 | −47.9 (2) |
C11—C10—C14—C15 | −0.7 (3) | C21—O6—C20—C19 | −61.6 (2) |
C9—C10—C14—C15 | −179.84 (17) | N7—C19—C20—O6 | 56.1 (2) |
C11—C10—C14—C17 | −179.15 (16) | C20—O6—C21—C22 | 59.8 (3) |
C9—C10—C14—C17 | 1.7 (3) | C18—N7—C22—C21 | −151.82 (19) |
C10—C14—C15—C16 | −1.5 (3) | C19—N7—C22—C21 | 45.8 (2) |
C17—C14—C15—C16 | 176.98 (18) | O6—C21—C22—N7 | −51.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O5i | 0.97 | 2.53 | 3.501 (2) | 176 |
C17—H17B···S3 | 0.97 | 2.55 | 3.1633 (16) | 121 |
C19—H19A···S2 | 0.97 | 2.37 | 2.864 (2) | 111 |
C22—H22B···S3 | 0.97 | 2.61 | 3.0486 (19) | 108 |
Symmetry code: (i) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O5i | 0.97 | 2.5300 | 3.501 (2) | 176 |
C17—H17B···S3 | 0.97 | 2.5500 | 3.1633 (16) | 121 |
C19—H19A···S2 | 0.97 | 2.3700 | 2.864 (2) | 111 |
C22—H22B···S3 | 0.97 | 2.6100 | 3.0486 (19) | 108 |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for access to the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data.
References
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Devarajegowda, H. C., Kumar, K. M., Seenivasa, S., Arunkashi, H. K. & Kotresh, O. (2013). Acta Cryst. E69, o192. CSD CrossRef IUCr Journals Google Scholar
D'hooghe, M. & De Kimpe, N. (2006). Tetrahedron, 62, 513–535. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hesse, S. & Kirsch, G. (2002). Tetrahedron Lett. 43, 1213–1215. Web of Science CrossRef CAS Google Scholar
Jung, J.-C., Jung, Y.-J. & Park, O.-S. (2001). Synth. Commun. 31, 1195–1200. Web of Science CrossRef CAS Google Scholar
Jung, J.-C., Lee, J.-H., Oh, S., Lee, J.-G. & Park, O.-S. (2004). Bioorg. Med. Chem. Lett. 14, 5527–5531. Web of Science CrossRef PubMed CAS Google Scholar
Lee, B. H., Clothier, M. F., Dutton, F. E., Conder, G. A. & Johnson, S. S. (1998). Bioorg. Med. Chem. Lett. 8, 3317–3320. Web of Science CrossRef CAS PubMed Google Scholar
Melagraki, G., Afantitis, A., Igglessi-Markopoulou, O., Detsi, A., Koufaki, M., Kontogiorgis, C. & Hadjipavlou-Litina, D. J. (2009). Eur. J. Med. Chem. 44, 3020–3026. Web of Science CrossRef PubMed CAS Google Scholar
Schönenberger, H. & Lippert, P. (1972). Pharmazie, 27, 139–145. PubMed Web of Science Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, much attention has been directed towards the synthesis of substituted coumarins owing to their tremendous application in various research fields including biological science and medicinal chemistry. Substituted coumarin derivatives are components of numerous natural products like warfarin, phenprocoumon, coumatetralyl, carbochromen, bromadialone, etc. These compounds also exhibit a wide band of biological activities including antibacterial, anti-HIV (Hesse & Kirsch, 2002), antiviral (Lee et al., 1998), anticoagulant (Jung et al., 2001), antioxidant (Melagraki et al., 2009) and anticancer activities (Jung et al.,(2004). Carbon–sulfur bond formation is a fundamental approach to bring sulfur into organic compounds, and this has received much attention due to its occurrence in many molecules that are of biological and pharmaceutical importance. The antibacterial and antifungal activities of dithiocarbamates were reported to arise by the reaction with HS-groups of the physiologically important enzymes by transferring the alkyl group of the dithioester to the HS-function of the enzyme (Schönenberger & Lippert, 1972). Organic dithiocarbamates, ubiquitously found in a variety of biologically active molecules (Dhooghe & De Kimpe, 2006), are of high importance in academia as well as in industry.
In view of the various physiological activities of coumarins and dithiocarbamates, our current studies are focused on the development of new routes for the synthesis of coumarins incorporating dithiocarbamate moieties.
The asymmetric unit of (6-bromo-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi thioate is shown in Fig. 1. The 2H-chromene ring systems is nearly planar, with a maximum deviation of 0.0337 (23) Å for the atom C16 and the morpholine ring adopts a chair conformation. The dihedral angle between the 2H-chromene ring and the morpholine ring is 86.32 (9) °. In the crystal structure, intermolecular C—H···O and intramolecular C–H···S hydrogen bonds are observed (Table 1) and inversion related C—H···S and C—H···O interactions generate R2 2(10) and R2 2(8) rings pattern respectively. In addition, the crystal packing is stabilized by π–π [Cg (3)– Cg(3);C8–C13] interactions between fused benzene rings [centroid- centroid distance = 3.7558 (12)].