organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-diazo­imidazole-4,5-dicarbo­nitrile

CROSSMARK_Color_square_no_text.svg

aCBMSE, Code 6910, Naval Research Laboratory, Washington, DC 20375, USA, and bPO Box 1663 MS C920, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: philipl@lanl.gov

Edited by A. M. Chippindale, University of Reading, England (Received 4 May 2015; accepted 5 June 2015; online 17 June 2015)

In the title compound, C5N6, all the atoms are approximately coplanar. In the crystal, mol­ecules are packed with short contact distances of 2.885 (2) (between the diazo N atom connected to the ring and a cyano N atom on a neighboring mol­ecule) and 3.012 (2) Å (between the terminal diazo N atom and an N atom of a neighboring imidazole ring).

1. Related literature

For synthesis of the title compound, see: Lu & Just (2001[Lu, Y. & Just, G. (2001). Tetrahedron, 57, 1677-1687.]); Sheppard & Webster (1973[Sheppard, W. A. & Webster, O. W. (1973). J. Am. Chem. Soc. 95, 2695-2697.]). Few diazo-containing mol­ecules have been isolated, and of these, only a small number have been examined by X-ray diffraction, see: Daidone et al. (2005[Daidone, G., Maggio, B., Raimondi, M. V., Bombieri, G., Marchini, N. & Artali, R. (2005). Heterocycles, 65, 2753-2761.]); Dippold et al. (2012[Dippold, A. A., Klapötke, T. M., Martin, F. A. & Wiedbrauk, S. (2012). Eur. J. Inorg. Chem. pp. 2429-2443.]). The majority of these compounds are found as diazo­nium ions, rather than the neutral diazo species, see: Bugg et al. (1964[Bugg, C., Lawson, J. & Sass, R. L. (1964). Acta Cryst. 17, 767-768.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5N6

  • Mr = 144.11

  • Trigonal, P 32 21

  • a = 8.0746 (3) Å

  • c = 16.7315 (6) Å

  • V = 944.73 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.37 × 0.30 × 0.08 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.991

  • 9178 measured reflections

  • 1289 independent reflections

  • 1269 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.058

  • S = 1.09

  • 1289 reflections

  • 100 parameters

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and XPREP (Bruker, 2008[Bruker (2008). SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2014[Cambridge Soft (2014). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Comment top

Diazo moieties are ubiquitious in organic chemistry due to their ability to act as as outstanding leaving groups in substitution reactions. This same reactivity also leads to their instability, and most are prone to decomposition, often violently. For this reason, few diazo-containing molecules have been isolated, and of these, only a small number have been examined by X-ray diffraction [Daidone et al. (2005), Dippold et al. (2012)]. The majority of these compounds are found as diazonium ions, rather than the neutral diazo species [Bugg et al. (1964)]. In contrast, the title compound has a neutral diazo moiety on C2 and is unusual in that it contains only carbon and nitrogen.

Related literature top

For synthesis of the title compound, see: Lu & Just (2001); Sheppard & Webster (1973). For this reason, few diazo-containing molecules have been isolated, and of these, only a small number have been examined by X-ray diffraction, see: Daidone et al. (2005); Dippold et al. (2012). The majority of these compounds are found as diazonium ions, rather than the neutral diazo species, see: Bugg et al. (1964)

Experimental top

Caution! This compound can explode from slight friction, impact, or thermal shock. Although the explosion is not powerful, it is recommended that this material is only prepared in less than 5 gram quantities, handled wet, and not confined in any way.

The title compound was prepared by the literature method (Lu and Just, 2001). Crystals were obtained by slow evaporation of a dilute aqueous solution of the title compound.

Refinement top

The Flack parameter initially refined to 0.3 (5). Before the final refinement cycle, this parameter was reset to zero and the Friedel pairs merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009) and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CHEMDRAW Ultra (Cambridge Soft, 2014).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (displacement ellipsoids are drawn at the 50% probability level).
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the b axis. Close contacts are represented by dashed lines.
2-Diazoimidazole-4,5-dicarbonitrile top
Crystal data top
C5N6Dx = 1.520 Mg m3
Mr = 144.11Melting point: 413 K (expl.) K
Trigonal, P3221Mo Kα radiation, λ = 0.71073 Å
a = 8.0746 (3) ŵ = 0.11 mm1
c = 16.7315 (6) ÅT = 150 K
V = 944.73 (8) Å3Plate, purple
Z = 60.37 × 0.30 × 0.08 mm
F(000) = 432
Data collection top
Bruker SMART APEXII CCD
diffractometer
1269 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.019
ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.930, Tmax = 0.991k = 1010
9178 measured reflectionsl = 2020
1289 independent reflections
Refinement top
Refinement on F2100 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.1041P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.14 e Å3
1289 reflectionsΔρmin = 0.11 e Å3
Crystal data top
C5N6Z = 6
Mr = 144.11Mo Kα radiation
Trigonal, P3221µ = 0.11 mm1
a = 8.0746 (3) ÅT = 150 K
c = 16.7315 (6) Å0.37 × 0.30 × 0.08 mm
V = 944.73 (8) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
1289 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1269 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.991Rint = 0.019
9178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021100 parameters
wR(F2) = 0.0580 restraints
S = 1.09Δρmax = 0.14 e Å3
1289 reflectionsΔρmin = 0.11 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.61645 (16)0.00825 (16)0.93835 (6)0.0254 (3)
C20.7396 (2)0.16549 (19)0.89882 (7)0.0226 (3)
N30.91448 (16)0.28157 (17)0.92732 (6)0.0239 (3)
C40.90565 (19)0.18858 (19)0.99570 (7)0.0225 (3)
C50.72502 (19)0.02197 (19)1.00215 (7)0.0240 (3)
N60.68567 (16)0.20682 (16)0.82574 (6)0.0238 (3)
N70.6461 (2)0.23873 (19)0.76756 (7)0.0329 (3)
C81.0629 (2)0.2582 (2)1.05016 (7)0.0258 (3)
N91.18839 (19)0.3094 (2)1.09341 (7)0.0351 (3)
C100.6572 (2)0.1202 (2)1.06366 (8)0.0299 (3)
N110.6055 (2)0.2345 (2)1.11254 (8)0.0441 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0235 (6)0.0266 (6)0.0250 (5)0.0117 (5)0.0016 (4)0.0005 (5)
C20.0241 (6)0.0255 (6)0.0200 (5)0.0138 (5)0.0021 (5)0.0011 (5)
N30.0234 (6)0.0258 (6)0.0226 (5)0.0125 (5)0.0006 (4)0.0012 (4)
C40.0223 (6)0.0251 (6)0.0223 (6)0.0135 (5)0.0002 (5)0.0022 (5)
C50.0237 (6)0.0266 (6)0.0237 (6)0.0140 (6)0.0002 (4)0.0005 (5)
N60.0231 (6)0.0256 (6)0.0244 (5)0.0136 (5)0.0005 (4)0.0020 (4)
N70.0370 (7)0.0425 (8)0.0282 (6)0.0265 (6)0.0027 (5)0.0003 (5)
C80.0266 (7)0.0298 (7)0.0239 (6)0.0161 (6)0.0024 (5)0.0005 (5)
N90.0310 (7)0.0467 (8)0.0306 (6)0.0216 (6)0.0070 (5)0.0064 (5)
C100.0240 (7)0.0324 (7)0.0314 (7)0.0127 (6)0.0020 (5)0.0025 (6)
N110.0362 (7)0.0456 (8)0.0451 (8)0.0164 (7)0.0007 (6)0.0179 (6)
Geometric parameters (Å, º) top
N1—C21.3327 (18)C4—C81.4297 (18)
N1—C51.3502 (16)C5—C101.4314 (18)
C2—N31.3325 (18)N6—N71.0946 (15)
C2—N61.3936 (15)C8—N91.1415 (19)
N3—C41.3507 (17)C10—N111.144 (2)
C4—C51.4094 (18)
C2—N1—C599.75 (11)C5—C4—C8128.18 (12)
N3—C2—N1121.08 (11)N1—C5—C4109.72 (11)
N3—C2—N6119.59 (12)N1—C5—C10122.03 (12)
N1—C2—N6119.33 (12)C4—C5—C10128.23 (12)
C2—N3—C499.74 (11)N7—N6—C2178.50 (12)
N3—C4—C5109.70 (11)N9—C8—C4178.23 (16)
N3—C4—C8122.12 (13)N11—C10—C5178.82 (17)
C5—N1—C2—N30.01 (16)C2—N1—C5—C40.36 (14)
C5—N1—C2—N6178.72 (11)C2—N1—C5—C10178.37 (13)
N1—C2—N3—C40.34 (16)N3—C4—C5—N10.61 (16)
N6—C2—N3—C4179.07 (11)C8—C4—C5—N1179.57 (12)
C2—N3—C4—C50.53 (14)N3—C4—C5—C10178.02 (13)
C2—N3—C4—C8179.64 (12)C8—C4—C5—C101.8 (2)

Experimental details

Crystal data
Chemical formulaC5N6
Mr144.11
Crystal system, space groupTrigonal, P3221
Temperature (K)150
a, c (Å)8.0746 (3), 16.7315 (6)
V3)944.73 (8)
Z6
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.37 × 0.30 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.930, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
9178, 1289, 1269
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.058, 1.09
No. of reflections1289
No. of parameters100
Δρmax, Δρmin (e Å3)0.14, 0.11

Computer programs: APEX2 (Bruker, 2009), APEX2 and SAINT (Bruker, 2009), SAINT (Bruker, 2009) and XPREP (Bruker, 2008), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), CHEMDRAW Ultra (Cambridge Soft, 2014).

 

Acknowledgements

Crystallographic studies were supported in part by the Office of Naval Research (ONR) (Award No. N00014-15-WX-0-0149). The authors would like to thank the Joint Munitions Technology Development Program for funding this work. Los Alamos National Laboratory is operated by Los Alamos National Security (LANS, LLC) under contract No. DE-AC52-06 N A25396 for the US Department of Energy (LA-UR-15-23325).

References

First citationBruker (2008). SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugg, C., Lawson, J. & Sass, R. L. (1964). Acta Cryst. 17, 767–768.  CSD CrossRef IUCr Journals Google Scholar
First citationCambridge Soft (2014). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationDaidone, G., Maggio, B., Raimondi, M. V., Bombieri, G., Marchini, N. & Artali, R. (2005). Heterocycles, 65, 2753–2761.  CrossRef CAS Google Scholar
First citationDippold, A. A., Klapötke, T. M., Martin, F. A. & Wiedbrauk, S. (2012). Eur. J. Inorg. Chem. pp. 2429–2443.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLu, Y. & Just, G. (2001). Tetrahedron, 57, 1677–1687.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheppard, W. A. & Webster, O. W. (1973). J. Am. Chem. Soc. 95, 2695–2697.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds