organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,4-di­chloro­anilinium hydrogen phthalate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 9 May 2015; accepted 28 May 2015; online 3 June 2015)

In the title salt, C6H6Cl2N+·C8H5O4, the carb­oxy­lic acid and carboxyl­ate groups of the anion form dihedral angles of 20.79 (19) and 74.76 (14)°, respectively, with the plane of the benzene ring. In the crystal, mol­ecules are assembled into a two-dimensional polymeric network parallel to (100) via N—H⋯O and O—H⋯O hydrogen bonds. In addition, within the layer, there are ππ stacking inter­actions between the benzene rings of the cation and the anion [centroid–centroid distance = 3.6794 (17) Å]. A weak C—H⋯O interaction is also observed.

1. Related literature

For related structures, see: Jagan & Sivakumar (2009[Jagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414-o418.], 2011[Jagan, R. & Sivakumar, K. (2011). Acta Cryst. C67, o373-o377.]); Kozma et al. (1994[Kozma, D., Bocskei, Z., Simon, K. & Fogassy, E. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1883-1886.]); Liang et al. (2011[Liang, Z. P. (2011). Acta Cryst. E67, o1430.]); Liu (2012[Liu, M.-L. (2012). Acta Cryst. E68, o228.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H6Cl2N+·C8H5O4

  • Mr = 328.14

  • Monoclinic, C 2/c

  • a = 29.694 (5) Å

  • b = 7.7536 (13) Å

  • c = 13.125 (2) Å

  • β = 98.673 (12)°

  • V = 2987.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.34 × 0.28 × 0.16 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.860, Tmax = 0.935

  • 11652 measured reflections

  • 3248 independent reflections

  • 1849 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.133

  • S = 1.02

  • 3248 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.82 1.77 2.583 (2) 171
N1—H1A⋯O4 0.89 1.98 2.848 (3) 164
N1—H1B⋯O3ii 0.89 1.85 2.713 (3) 163
N1—H1C⋯O3i 0.89 1.90 2.774 (3) 165
C13—H13⋯O4iii 0.93 2.54 3.328 (4) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+2, z-{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The crystal structures of 4-bromoanilinium hydrogen phthalate (Liang, 2011), (R,S)-α-phenylethylammonium hydrogen phthalate (Kozma et al., 1994), 4-chloroanilinium hydrogen phthalate (Jagan & Sivakumar, 2009), 3-hydroxyanilinium hydrogen phthalate (Jagan & Sivakumar, 2009), 2-hydroxyanilinium hydrogen phthalate (Jagan & Sivakumar, 2009), 3-Methylanilinium 2-carboxybenzoate (Liu, 2012) and 4-ethoxyanilinium 2- carboxybenzoate (Jagan & Sivakumar, 2011) have been published which are related to the title compound (I, Fig. 1). (I) is synthesized for the study of co-crystallization.

In (I) the benzene ring A (C2—C7) of the phathalate anion is planar with r.m.s. deviation of 0.0024 Å. The carboxylic B (C1/O1/O2) and carboxylate C (C8/O3/O4) groups are oriented at a dihedral angle of 20.79 (19)° and 74.76 (14)°, respectively, with the parent benzene ring A. The molecules form a two dimensional polymeric network parallel to (100) due to N—H···O and O—H···O hydrogen bonds (Table 1, Fig.2). There exist π···π interaction between Cg11···Cg21i [i = x, y, z] with centroid-centroid distance of 3.6794 (17) Å, where Cg1 and Cg2 are the centroids of the benzene rings A and E (C9—C14). The topology of two-dimensional hydrogen-bond network in the title compound is the same as in 4-chloroanilinium salt (Jagan & Sivakumar, 2009).

Related literature top

For related structures, see: Jagan & Sivakumar (2009, 2011); Kozma et al. (1994); Liang et al. (2011); Liu (2012).

Experimental top

Equimolar quantities of phathalic acid (0.831 g, 5 mmol) and 3,4-dichloroaniline (0.810 g, 5 mmol) were refluxed in 20 ml of methanol for 2 h. The solution was kept at room temperature and colorless plates appeared after two days (m.p. 422–423 K).

Refinement top

The H atoms were positioned geometrically (C–H = 0.93 Å, N–H = 0.89 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = xUeq (C, N, O), where x = 1.5 for NH3 and hydroxy and x =1.2 for aromatic H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The packing (PLATON; Spek, 2009) of two-dimensional (100) polymeric networks.
[Figure 3] Fig. 3. Hydrogen bonds within (100) layer.
3,4-Dichloroanilinium 2-carboxybenzoate top
Crystal data top
C6H6Cl2N+·C8H5O4F(000) = 1344
Mr = 328.14Dx = 1.459 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.694 (5) ÅCell parameters from 1849 reflections
b = 7.7536 (13) Åθ = 2.8–27.0°
c = 13.125 (2) ŵ = 0.45 mm1
β = 98.673 (12)°T = 296 K
V = 2987.3 (9) Å3Plate, colorless
Z = 80.34 × 0.28 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3248 independent reflections
Radiation source: fine-focus sealed tube1849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 2.8°
ω scansh = 3737
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.860, Tmax = 0.935l = 1516
11652 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0503P)2 + 2.3478P]
where P = (Fo2 + 2Fc2)/3
3248 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H6Cl2N+·C8H5O4V = 2987.3 (9) Å3
Mr = 328.14Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.694 (5) ŵ = 0.45 mm1
b = 7.7536 (13) ÅT = 296 K
c = 13.125 (2) Å0.34 × 0.28 × 0.16 mm
β = 98.673 (12)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3248 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1849 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.935Rint = 0.051
11652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
3248 reflectionsΔρmin = 0.26 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21968 (8)0.5928 (3)0.41451 (18)0.0727 (7)
O20.23502 (6)0.8002 (2)0.30759 (13)0.0427 (5)
H20.25900.74710.30960.064*
O30.21509 (6)1.1573 (2)0.37561 (12)0.0417 (5)
O40.19151 (5)1.1301 (2)0.20757 (12)0.0377 (4)
C10.20865 (9)0.7204 (4)0.3646 (2)0.0416 (7)
C20.16278 (8)0.8021 (4)0.35827 (18)0.0379 (6)
C30.15350 (8)0.9708 (4)0.32373 (16)0.0340 (6)
C40.10931 (9)1.0324 (4)0.3140 (2)0.0476 (7)
H40.10291.14430.29070.057*
C50.07466 (10)0.9285 (5)0.3386 (2)0.0575 (9)
H50.04510.97090.33160.069*
C60.08358 (10)0.7643 (5)0.3731 (2)0.0654 (10)
H60.06010.69570.39000.078*
C70.12732 (10)0.6995 (4)0.3830 (2)0.0533 (8)
H70.13320.58720.40630.064*
C80.18979 (8)1.0937 (3)0.30026 (18)0.0324 (6)
Cl10.03331 (3)0.83295 (14)0.06616 (8)0.0831 (4)
Cl20.04230 (3)0.44073 (16)0.13559 (9)0.0970 (4)
N10.20521 (7)0.8466 (3)0.07778 (14)0.0374 (5)
H1A0.20410.94660.11060.056*
H1B0.20570.86620.01110.056*
H1C0.23030.78950.10430.056*
C90.16540 (8)0.7446 (4)0.08969 (16)0.0334 (6)
C100.12353 (8)0.8247 (4)0.07404 (18)0.0396 (6)
H100.12110.94030.05510.047*
C110.08537 (9)0.7318 (4)0.0867 (2)0.0496 (8)
C120.08933 (9)0.5597 (5)0.1155 (2)0.0530 (8)
C130.13137 (10)0.4807 (4)0.1296 (2)0.0526 (8)
H130.13390.36490.14800.063*
C140.16975 (9)0.5740 (4)0.1163 (2)0.0440 (7)
H140.19820.52140.12530.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0725 (15)0.0638 (16)0.0883 (17)0.0207 (12)0.0337 (12)0.0404 (14)
O20.0415 (10)0.0463 (12)0.0432 (10)0.0097 (9)0.0159 (9)0.0077 (9)
O30.0421 (10)0.0544 (13)0.0293 (9)0.0072 (9)0.0077 (8)0.0073 (9)
O40.0425 (10)0.0423 (12)0.0297 (9)0.0029 (8)0.0099 (7)0.0012 (8)
C10.0494 (16)0.0422 (18)0.0352 (14)0.0016 (14)0.0130 (12)0.0024 (13)
C20.0431 (15)0.0443 (17)0.0289 (13)0.0027 (13)0.0134 (11)0.0022 (12)
C30.0350 (13)0.0466 (18)0.0215 (12)0.0019 (12)0.0081 (10)0.0032 (11)
C40.0389 (15)0.060 (2)0.0461 (16)0.0032 (14)0.0129 (12)0.0022 (14)
C50.0377 (16)0.079 (3)0.0589 (19)0.0002 (16)0.0161 (14)0.0029 (18)
C60.0465 (18)0.087 (3)0.067 (2)0.0160 (19)0.0239 (15)0.001 (2)
C70.0604 (19)0.054 (2)0.0493 (17)0.0114 (16)0.0211 (14)0.0061 (15)
C80.0333 (13)0.0358 (15)0.0297 (13)0.0046 (11)0.0103 (10)0.0041 (11)
Cl10.0388 (4)0.1064 (9)0.1041 (7)0.0154 (5)0.0106 (4)0.0168 (6)
Cl20.0625 (6)0.1052 (9)0.1236 (9)0.0304 (6)0.0149 (5)0.0246 (7)
N10.0389 (12)0.0462 (15)0.0275 (10)0.0019 (10)0.0061 (9)0.0017 (10)
C90.0376 (14)0.0429 (17)0.0205 (11)0.0011 (12)0.0069 (10)0.0035 (11)
C100.0409 (15)0.0439 (18)0.0344 (13)0.0058 (13)0.0074 (11)0.0020 (12)
C110.0374 (15)0.067 (2)0.0450 (16)0.0050 (15)0.0073 (12)0.0014 (15)
C120.0451 (17)0.065 (2)0.0493 (17)0.0126 (16)0.0076 (13)0.0005 (16)
C130.060 (2)0.0458 (19)0.0521 (17)0.0053 (16)0.0104 (14)0.0020 (15)
C140.0440 (16)0.0467 (19)0.0412 (15)0.0064 (14)0.0057 (12)0.0002 (13)
Geometric parameters (Å, º) top
O1—C11.204 (3)C7—H70.9300
O2—C11.316 (3)Cl1—C111.718 (3)
O2—H20.8200Cl2—C121.726 (3)
O3—C81.250 (3)N1—C91.450 (3)
O4—C81.257 (3)N1—H1A0.8900
C1—C21.493 (4)N1—H1B0.8900
C2—C71.396 (4)N1—H1C0.8900
C2—C31.398 (4)C9—C141.369 (4)
C3—C41.384 (3)C9—C101.377 (3)
C3—C81.505 (3)C10—C111.374 (4)
C4—C51.383 (4)C10—H100.9300
C4—H40.9300C11—C121.388 (5)
C5—C61.364 (5)C12—C131.378 (4)
C5—H50.9300C13—C141.383 (4)
C6—C71.380 (4)C13—H130.9300
C6—H60.9300C14—H140.9300
C1—O2—H2109.5C9—N1—H1A109.5
O1—C1—O2124.0 (3)C9—N1—H1B109.5
O1—C1—C2123.3 (2)H1A—N1—H1B109.5
O2—C1—C2112.6 (2)C9—N1—H1C109.5
C7—C2—C3119.3 (3)H1A—N1—H1C109.5
C7—C2—C1117.3 (3)H1B—N1—H1C109.5
C3—C2—C1123.2 (2)C14—C9—C10121.5 (2)
C4—C3—C2119.4 (2)C14—C9—N1120.5 (2)
C4—C3—C8117.4 (3)C10—C9—N1118.1 (2)
C2—C3—C8123.1 (2)C11—C10—C9119.2 (3)
C5—C4—C3120.4 (3)C11—C10—H10120.4
C5—C4—H4119.8C9—C10—H10120.4
C3—C4—H4119.8C10—C11—C12120.0 (3)
C6—C5—C4120.5 (3)C10—C11—Cl1118.7 (3)
C6—C5—H5119.8C12—C11—Cl1121.3 (2)
C4—C5—H5119.8C13—C12—C11120.1 (3)
C5—C6—C7120.3 (3)C13—C12—Cl2118.7 (3)
C5—C6—H6119.9C11—C12—Cl2121.2 (2)
C7—C6—H6119.9C12—C13—C14119.9 (3)
C6—C7—C2120.2 (3)C12—C13—H13120.1
C6—C7—H7119.9C14—C13—H13120.1
C2—C7—H7119.9C9—C14—C13119.3 (3)
O3—C8—O4124.7 (2)C9—C14—H14120.3
O3—C8—C3116.8 (2)C13—C14—H14120.3
O4—C8—C3118.4 (2)
O1—C1—C2—C720.8 (4)C2—C3—C8—O374.5 (3)
O2—C1—C2—C7157.5 (2)C4—C3—C8—O474.4 (3)
O1—C1—C2—C3162.9 (3)C2—C3—C8—O4108.1 (3)
O2—C1—C2—C318.9 (4)C14—C9—C10—C110.8 (4)
C7—C2—C3—C40.5 (4)N1—C9—C10—C11178.8 (2)
C1—C2—C3—C4175.8 (2)C9—C10—C11—C120.4 (4)
C7—C2—C3—C8176.9 (2)C9—C10—C11—Cl1179.63 (18)
C1—C2—C3—C86.8 (4)C10—C11—C12—C131.3 (4)
C2—C3—C4—C50.3 (4)Cl1—C11—C12—C13178.8 (2)
C8—C3—C4—C5177.2 (2)C10—C11—C12—Cl2178.2 (2)
C3—C4—C5—C60.2 (4)Cl1—C11—C12—Cl21.8 (4)
C4—C5—C6—C70.5 (5)C11—C12—C13—C140.9 (4)
C5—C6—C7—C20.3 (5)Cl2—C12—C13—C14178.6 (2)
C3—C2—C7—C60.2 (4)C10—C9—C14—C131.2 (4)
C1—C2—C7—C6176.3 (3)N1—C9—C14—C13178.5 (2)
C4—C3—C8—O3102.9 (3)C12—C13—C14—C90.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.821.772.583 (2)171
N1—H1A···O40.891.982.848 (3)164
N1—H1B···O3ii0.891.852.713 (3)163
N1—H1C···O3i0.891.902.774 (3)165
C13—H13···O4iii0.932.543.328 (4)143
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+2, z1/2; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.821.772.583 (2)170.8
N1—H1A···O40.891.982.848 (3)163.8
N1—H1B···O3ii0.891.852.713 (3)162.7
N1—H1C···O3i0.891.902.774 (3)165.1
C13—H13···O4iii0.932.543.328 (4)142.9
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+2, z1/2; (iii) x, y1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414–o418.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJagan, R. & Sivakumar, K. (2011). Acta Cryst. C67, o373–o377.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKozma, D., Bocskei, Z., Simon, K. & Fogassy, E. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1883–1886.  CSD CrossRef Web of Science Google Scholar
First citationLiang, Z. P. (2011). Acta Cryst. E67, o1430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2012). Acta Cryst. E68, o228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds