research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 844-846

Crystal structure of cis-2-(2-carb­­oxy­cyclo­prop­yl)glycine (CCG-III) monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA
*Correspondence e-mail: william.donaldson@marquette.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 April 2015; accepted 14 June 2015; online 24 June 2015)

The title compound, C6H9NO4·H2O [systematic name: (αR,1R,2S)-rel-α-amino-2-carb­oxy­cyclo­propane­acetic acid monohydrate], crystallizes with two organic mol­ecules and two water mol­ecules in the asymmetric unit. The space group is P21 and the organic mol­ecules are enanti­omers, thus this is an example of a `false conglomerate' with two mol­ecules of opposite handedness in the asymmetric unit (r.m.s. overlay fit = 0.056 Å for one mol­ecule and its inverted partner). Each mol­ecule exists as a zwitterion, with proton transfer from the amino acid carb­oxy­lic acid group to the amine group. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating (100) sheets. Conformationally restricted glutamate analogs are of inter­est due to their selective activation of different glutamate receptors, and the naturally occurring (+)-CCG-III is an inhibitor of glutamate uptake and the key geometrical parameters are discussed.

1. Chemical context

2-(2′-Carb­oxy­cyclo­prop­yl)glycines CCG-I, CCG-III and CCG-IV (Fig. 1[link]) are naturally occuring conformationally restricted analogs of glutamate isolated from Aesculus parviflora, Blighia sapida (Fowden, et al., 1969[Fowden, L., Smith, A., Millington, D. S. & Sheppard, R. C. (1969). Phytochemistry, 8, 437-443.]), Ephedra foeminea (Caveney & Starratt, 1994[Caveney, S. & Starratt, A. (1994). Nature, 372, 509.]), and Ephedra altissima (Starratt & Caveney, 1995[Starratt, A. N. & Caveney, S. (1995). Phytochemistry, 40, 479-481.]). While not naturally occurring, both enanti­omers of CCG-II (Fig. 1[link]) have been prepared in the laboratory (Shimamoto, et al., 1991[Shimamoto, K., Ishida, M., Shinozaki, H. & Ohfune, Y. (1991). J. Org. Chem. 56, 4167-4176.]) and all of the diastereomeric CCGs are useful tools for investigating the mechanism of glutamate function. The crystal structure of the title hydrate, (±)-CCG-III·H2O, is now reported.

[Scheme 1]
[Figure 1]
Figure 1
Structures of the diastereomers of 2-(2′-carb­oxy­cyclo­prop­yl)glycine.

2. Structural commentary

The racemic title compound (Fig. 2[link]) crystallizes as a `false conglomerate' with two mol­ecules of opposite handedness in the asymmetric unit. Each of mol­ecules of 2-(2′-carb­oxy­cyclo­prop­yl)glycine has a mol­ecule of water hydrogen bonded to the glycine carboxyl­ate group. It has been estimated that only 1% of organic compounds are false conglomerates (Bishop & Scudder, 2009[Bishop, R. & Scudder, M. L. (2009). Cryst. Growth Des. 9, 2890-2894.]).

[Figure 2]
Figure 2
The asymmetic unit of the title compound, showing 50% displacement ellipsoids.

The torsion angles O3—C6—C2—X = −4.3° and O3A—C6A—C2AX = −11.1° (where X is the midpoint of the distal cyclo­propane bond) indicate that the carb­oxy­lic acid attached to the cyclpropane ring adopts a bis­ected conform­ation (Allen, 1980[Allen, F. H. (1980). Acta Cryst. B36, 81-96.]). The cyclo­propane C—C bonds proximal to the C2 carb­oxy­lic group are roughly equal [C1—C2 = 1.532 (3); C2—C3 = 1.512 (3); C1A—C2A = 1.520 (3); C2A—C3A = 1.516 (2) Å] and are longer than the cyclo­propane bonds distal to the C2 carb­oxy­lic acid [C1—C3 = 1.489 (2); C1A—C3A = 1.484 (2) Å]. These distances and torsion angles are consistent with other cyclo­propane carb­oxy­lic acids (Allen, 1980[Allen, F. H. (1980). Acta Cryst. B36, 81-96.]).

Conformationally restricted glutamic acid analogs can be classified into one of four categories, which are characterized by the distances between the nitro­gen atom of the amino group and the γ-carboxyl­ate carbon atom (d1), between the α- and γ-carboxyl­ate carbon atoms (d2), and their sum (d1 + d2). The classifications `folded', `semi-folded', `semi-extended', and `extended' are defined by (d1 + d2) ≤ 7.5 Å, 7.5 Å ≤ (d1 + d2) ≤ 8.0 Å, 8.0 Å ≤ (d1 + d2) ≤ 8.5 Å, and (d1 + d2) ≥ 8.5 Å, respectively (Pellicciari, et al., 2002[Pellicciari, R., Marinozzi, M., Camaioni, E., del Carmen Nùnez, M., Costantino, G., Gasparini, F., Giorgi, G., Macchiarulo, A. & Subramanian, N. (2002). J. Org. Chem. 67, 5497-5507.]). The two enanti­omeric moleclules in the crystal structure evidence the following distances/sums: d1, 3.65 and 3.71 Å; d2, 4.59 and 4.59 Å; (d1 + d2), 8.24 and 8.30 Å, respectively. From these values, these conformers of CCG-III can be considered to be in the `semi-extended' class.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to (100); Table 1[link] and Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3Ai 0.94 (2) 2.03 (2) 2.9444 (18) 162.1 (17)
N1—H1B⋯O2Aii 0.86 (2) 2.39 (2) 2.9454 (18) 123.1 (16)
N1—H1C⋯O1WAi 0.98 (3) 1.83 (3) 2.795 (2) 167 (2)
O4—H4⋯O1iii 0.81 (3) 1.79 (3) 2.5851 (18) 166 (3)
O1W—H1WA⋯O2Aiv 0.82 (3) 2.01 (3) 2.8072 (19) 166 (2)
O1W—H1WB⋯O1 0.86 (2) 1.90 (2) 2.7449 (16) 169 (2)
N1A—H1AA⋯O3v 0.90 (2) 2.01 (2) 2.9087 (18) 173 (2)
N1A—H1AB⋯O3Avi 0.87 (2) 2.38 (2) 3.1151 (19) 141.7 (17)
N1A—H1AC⋯O1Wv 0.93 (2) 1.87 (2) 2.785 (2) 165.6 (18)
O4A—H4AA⋯O1Avii 0.98 (3) 1.60 (3) 2.5672 (16) 168 (2)
O1WA—H1WC⋯O2viii 0.83 (3) 2.07 (3) 2.8628 (19) 158 (2)
O1WA—H1WD⋯O1A 0.81 (2) 1.98 (3) 2.7717 (17) 166 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) x-1, y-1, z-1; (iii) x, y+1, z; (iv) [-x+1, y-{\script{3\over 2}}, -z+1]; (v) [-x+1, y+{\script{1\over 2}}, -z+1]; (vi) [-x+2, y+{\script{1\over 2}}, -z+1]; (vii) x, y-1, z; (viii) [-x+1, y+{\script{3\over 2}}, -z].
[Figure 3]
Figure 3
The packing for the title compound viewed approximately down [100], with hydrogen bonds shown as dashed lines.

4. Synthesis and crystallization

The racemic title compound was prepared according to the literature procedure (Wallock & Donaldson, 2004[Wallock, N. J. & Donaldson, W. A. (2004). J. Org. Chem. 69, 2997-3007.]). A sample for X-ray diffraction analysis was recrystallized from water.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H9NO4·H2O
Mr 177.16
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.9688 (8), 8.0063 (8), 10.9628 (10)
β (°) 106.015 (4)
V3) 756.65 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.18
Crystal size (mm) 0.37 × 0.32 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD detector
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madision, Wisconsin, USA.])
Tmin, Tmax 0.669, 0.891
No. of measured, independent and observed [I > 2σ(I)] reflections 6086, 2164, 2154
Rint 0.018
θmax (°) 61.0
(sin θ/λ)max−1) 0.567
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.06
No. of reflections 2164
No. of parameters 305
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 836 Friedel pairs
Absolute structure parameter 0.57 (15)
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madision, Wisconsin, USA.]), SHELXTL and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

2-(2'-Carb­oxy­cyclo­propyl)­glycines CCG-I, CCG-III and CCG-IV (Fig. 1) are naturally occuring conformationally restricted analogs of glutamate isolated from Aesculus parviflora, Blighia sapida (Fowden, et al., 1969), Ephedra foeminea (Caveney & Starratt, 1994), and Ephedra altissima (Starratt & Caveney, 1995). While not naturally occurring, both enanti­omers of CCG-II (Fig. 1) have been prepared in the laboratory (Shimamoto, et al., 1991) and all of the diastereomeric CCGs are useful tools for investigating the mechanism of glutamate function. The crystal structure of the title hydrate, (±)-CCG-III·H2O, is now reported.

Structural commentary top

The racemic title compound crystallizes as a `false conglomerate' with two molecules of opposite handedness in the asymmetric unit. Each of molecules of 2-(2'-carb­oxy­cyclo­propyl)­glycine has a molecule of water hydrogen bonded to the glycine carboxyl­ate group. It has been estimated that only 1% of organic compounds are false conglomerates (Bishop & Scudder, 2009).

The torsion angles t, O3—C6—C2—X = –4.3° and O3A—C6A—C2AX = –11.1° (where X is the midpoint of the distal cyclo­propane bond) indicate that the carb­oxy­lic acid attached to the cyclpropane ring adopts a bis­ected conformation (Allen, 1980). The cyclo­propane C—C bonds proximal to the C2 carb­oxy­lic group are roughly equal [C1—C2 = 1.532 (3); C2—C3 = 1.512 (3); C1A—C2A = 1.520 (3); C2A—C3A = 1.516 (2) Å] and are longer than the cyclo­propane bonds distal to the C2 carb­oxy­lic acid [C1—C3 = 1.489 (2); C1A—C3A = 1.484 (2) Å]. These distances and torsion angles are consistent with other cyclo­propane carb­oxy­lic acids (Allen, 1980).

Conformationally restricted glutamic acid analogs can be classified into one of four categories, which are characterized by the distances between the nitro­gen atom of the amino group and the γ-carboxyl­ate carbon atom (d1), between the α- and γ-carboxyl­ate carbon atoms (d2), and their sum (d1 + d2). The classifications `folded', `semi-folded', `semi-extended', and `extended' are defined by (d1 + d2) 7.5 Å, 7.5 Å (d1 + d2) 8.0 Å, 8.0 Å (d1 + d2) 8.5 Å, and (d1 + d2) 8.5 Å, respectively (Pellicciari, et al., 2002). The two enanti­omeric moleclules in the crystal structure evidence the following distances/sums: d1, 3.65 and 3.71 Å; d2, 4.59 and 4.59 Å; (d1 + d2), 8.24 and 8.30 Å, respectively. From these values, these conformers of CCG-III can be considered to be in the `semi-extended' class.

Supra­molecular features top

In the crystal, the molecules are linked by N—H···O and O—H···O hydrogen bonds, generating a three-dimensional network (Table 1 and Fig. 2).

Synthesis and crystallization top

The racemic title compound was prepared according to the literature procedure (Wallock & Donaldson, 2004). A sample for X-ray diffraction analysis was recrystallized from water.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Related literature top

For related structures, see: Avery et al. (2008); Monn et al. (2013, 2015); Panjouhesh (2003); Pellicciari (2002, 2007); Risgaard (2013).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structures of the diastereomers of 2-(2'-carboxycyclopropyl)glycine.
[Figure 2] Fig. 2. The asymmetic unit of the title compound, showing 50% displacement ellipsoids.
[Figure 3] Fig. 3. The packing for the title compound viewed approximately down [100], with hydrogen bonds shown as dashed lines.
(αR,1R,2S)-rel-α-Amino-2-carboxycyclopropaneacetic acid monohydrate top
Crystal data top
C6H9NO4·H2OF(000) = 376
Mr = 177.16Dx = 1.555 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 8.9688 (8) ÅCell parameters from 5577 reflections
b = 8.0063 (8) Åθ = 4–61°
c = 10.9628 (10) ŵ = 1.18 mm1
β = 106.015 (4)°T = 100 K
V = 756.65 (12) Å3Plate, colorless
Z = 40.37 × 0.32 × 0.10 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
2164 independent reflections
Radiation source: fine-focus sealed tube2154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 61.0°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 109
Tmin = 0.669, Tmax = 0.891k = 89
6086 measured reflectionsl = 012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021All H-atom parameters refined
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.0652P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2164 reflectionsΔρmax = 0.15 e Å3
305 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 836 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.57 (15)
Crystal data top
C6H9NO4·H2OV = 756.65 (12) Å3
Mr = 177.16Z = 4
Monoclinic, P21Cu Kα radiation
a = 8.9688 (8) ŵ = 1.18 mm1
b = 8.0063 (8) ÅT = 100 K
c = 10.9628 (10) Å0.37 × 0.32 × 0.10 mm
β = 106.015 (4)°
Data collection top
Bruker APEXII CCD detector
diffractometer
2164 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2154 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.891Rint = 0.018
6086 measured reflectionsθmax = 61.0°
Refinement top
R[F2 > 2σ(F2)] = 0.021All H-atom parameters refined
wR(F2) = 0.055Δρmax = 0.15 e Å3
S = 1.06Δρmin = 0.16 e Å3
2164 reflectionsAbsolute structure: Flack (1983), 836 Friedel pairs
305 parametersAbsolute structure parameter: 0.57 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16905 (12)0.14281 (15)0.09397 (9)0.0171 (3)
O20.16680 (12)0.14746 (15)0.11118 (10)0.0182 (3)
O30.17732 (12)0.43933 (15)0.13921 (10)0.0179 (3)
O40.36153 (14)0.61213 (15)0.11160 (11)0.0187 (3)
N10.10810 (17)0.18398 (19)0.14010 (12)0.0163 (3)
C10.34487 (17)0.1610 (2)0.03879 (15)0.0167 (3)
C20.40767 (18)0.3278 (2)0.10039 (15)0.0169 (3)
C30.42184 (19)0.1692 (3)0.17765 (16)0.0203 (4)
C40.17508 (18)0.1174 (2)0.00932 (14)0.0147 (4)
C50.16579 (16)0.0746 (2)0.01143 (14)0.0143 (4)
C60.30359 (18)0.4620 (2)0.11880 (14)0.0139 (4)
H1A0.150 (2)0.128 (3)0.1987 (17)0.020 (5)*
H1B0.010 (3)0.166 (3)0.1641 (18)0.029 (5)*
H1C0.131 (3)0.303 (4)0.143 (2)0.050 (7)*
H40.297 (3)0.681 (4)0.115 (2)0.044 (7)*
H10.407 (2)0.114 (2)0.0118 (16)0.020 (5)*
H20.499 (2)0.364 (2)0.0793 (15)0.017 (4)*
H3A0.522 (2)0.127 (3)0.2107 (17)0.020 (4)*
H3B0.354 (2)0.154 (3)0.2312 (15)0.017 (4)*
H4A0.1176 (17)0.159 (3)0.0430 (14)0.006 (4)*
O1W0.15198 (15)0.01307 (17)0.32148 (12)0.0218 (3)
H1WA0.152 (3)0.106 (3)0.352 (2)0.038 (7)*
H1WB0.149 (2)0.042 (3)0.246 (2)0.034 (6)*
O1A0.81679 (12)1.13479 (15)0.40666 (10)0.0161 (3)
O2A0.86473 (13)1.14792 (16)0.61824 (10)0.0175 (3)
O3A0.80378 (12)0.55765 (16)0.36274 (10)0.0177 (3)
O4A0.63822 (12)0.38208 (15)0.41642 (10)0.0162 (3)
N1A0.92671 (16)0.8177 (2)0.64801 (12)0.0142 (3)
C1A0.66918 (17)0.8314 (2)0.49476 (14)0.0144 (4)
C2A0.59847 (17)0.6653 (2)0.44103 (14)0.0156 (3)
C3A0.56440 (18)0.8249 (2)0.36381 (16)0.0173 (4)
C4A0.83802 (17)0.8786 (2)0.51986 (14)0.0133 (4)
C5A0.84454 (16)1.0708 (2)0.51702 (14)0.0129 (4)
C6A0.69085 (18)0.5329 (2)0.40323 (13)0.0149 (4)
H1AA0.892 (2)0.864 (3)0.710 (2)0.028 (5)*
H1AB1.025 (2)0.842 (3)0.6644 (16)0.018 (4)*
H1AC0.917 (2)0.703 (3)0.6570 (18)0.024 (5)*
H4AA0.709 (3)0.295 (3)0.404 (2)0.044 (6)*
H1AD0.6284 (17)0.868 (2)0.5597 (16)0.008 (4)*
H2A0.522 (2)0.630 (2)0.4774 (15)0.013 (4)*
H3AA0.6122 (17)0.830 (3)0.2982 (15)0.006 (4)*
H3AB0.465 (2)0.868 (2)0.3501 (14)0.011 (4)*
H4AB0.8848 (19)0.827 (3)0.4588 (16)0.016 (4)*
O1WA0.79114 (15)1.00902 (16)0.16619 (12)0.0216 (3)
H1WC0.796 (3)1.099 (3)0.130 (2)0.041 (7)*
H1WD0.804 (3)1.030 (3)0.241 (2)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0227 (6)0.0139 (7)0.0160 (6)0.0011 (5)0.0077 (4)0.0020 (5)
O20.0242 (6)0.0144 (7)0.0163 (6)0.0019 (5)0.0061 (4)0.0010 (5)
O30.0197 (6)0.0162 (7)0.0203 (6)0.0010 (5)0.0093 (5)0.0007 (5)
O40.0202 (6)0.0130 (7)0.0240 (6)0.0006 (5)0.0082 (5)0.0009 (5)
N10.0187 (8)0.0155 (9)0.0154 (7)0.0016 (7)0.0057 (6)0.0006 (6)
C10.0181 (8)0.0125 (9)0.0217 (8)0.0024 (7)0.0090 (6)0.0006 (8)
C20.0145 (7)0.0144 (9)0.0217 (8)0.0031 (7)0.0051 (6)0.0013 (7)
C30.0160 (8)0.0160 (9)0.0258 (9)0.0004 (8)0.0006 (7)0.0015 (8)
C40.0188 (8)0.0143 (10)0.0129 (8)0.0016 (7)0.0075 (7)0.0003 (6)
C50.0116 (7)0.0148 (10)0.0164 (9)0.0006 (7)0.0036 (6)0.0009 (7)
C60.0180 (9)0.0130 (9)0.0098 (7)0.0023 (7)0.0022 (6)0.0011 (6)
O1W0.0361 (7)0.0127 (7)0.0171 (6)0.0008 (6)0.0081 (5)0.0008 (5)
O1A0.0212 (6)0.0127 (7)0.0160 (5)0.0013 (5)0.0080 (4)0.0014 (5)
O2A0.0230 (6)0.0144 (6)0.0145 (5)0.0006 (5)0.0039 (4)0.0032 (5)
O3A0.0196 (6)0.0160 (7)0.0203 (6)0.0017 (5)0.0099 (5)0.0011 (5)
O4A0.0178 (5)0.0092 (7)0.0228 (6)0.0013 (5)0.0074 (5)0.0003 (5)
N1A0.0147 (7)0.0116 (9)0.0170 (7)0.0001 (6)0.0057 (6)0.0005 (6)
C1A0.0184 (8)0.0107 (9)0.0159 (8)0.0015 (7)0.0076 (6)0.0018 (7)
C2A0.0143 (8)0.0151 (9)0.0177 (7)0.0001 (7)0.0050 (6)0.0011 (7)
C3A0.0144 (8)0.0155 (10)0.0215 (8)0.0015 (7)0.0044 (7)0.0006 (7)
C4A0.0154 (8)0.0112 (10)0.0140 (8)0.0005 (7)0.0052 (6)0.0006 (6)
C5A0.0101 (7)0.0131 (10)0.0166 (9)0.0004 (7)0.0056 (6)0.0011 (7)
C6A0.0155 (8)0.0163 (10)0.0108 (7)0.0012 (7)0.0000 (6)0.0015 (7)
O1WA0.0342 (7)0.0147 (7)0.0160 (6)0.0014 (6)0.0068 (5)0.0003 (6)
Geometric parameters (Å, º) top
O1—C51.271 (2)O1A—C5A1.273 (2)
O2—C51.2417 (19)O2A—C5A1.239 (2)
O3—C61.2270 (19)O3A—C6A1.2289 (19)
O4—C61.320 (2)O4A—C6A1.319 (2)
O4—H40.81 (3)O4A—H4AA0.98 (3)
N1—C41.492 (2)N1A—C4A1.492 (2)
N1—H1A0.94 (2)N1A—H1AA0.90 (2)
N1—H1B0.86 (2)N1A—H1AB0.87 (2)
N1—H1C0.98 (3)N1A—H1AC0.93 (2)
C1—C21.532 (3)C1A—C2A1.520 (3)
C1—C31.489 (2)C1A—C3A1.484 (2)
C1—C41.509 (2)C1A—C4A1.510 (2)
C1—H10.963 (19)C1A—H1AD0.933 (17)
C2—C31.512 (3)C2A—C3A1.516 (2)
C2—C61.473 (2)C2A—C6A1.474 (3)
C2—H20.953 (18)C2A—H2A0.925 (17)
C3—H3A0.93 (2)C3A—H3AA0.934 (16)
C3—H3B0.965 (18)C3A—H3AB0.929 (18)
C4—C51.539 (2)C4A—C5A1.541 (2)
C4—H4A0.932 (17)C4A—H4AB0.976 (19)
O1W—H1WA0.82 (3)O1WA—H1WC0.83 (3)
O1W—H1WB0.86 (2)O1WA—H1WD0.81 (2)
C6—O4—H4108.5 (19)C6A—O4A—H4AA111.5 (14)
C4—N1—H1A110.8 (12)C4A—N1A—H1AA111.9 (13)
C4—N1—H1B110.0 (14)C4A—N1A—H1AB111.6 (12)
C4—N1—H1C110.3 (14)C4A—N1A—H1AC112.4 (11)
H1A—N1—H1B106.2 (19)H1AA—N1A—H1AB107.1 (18)
H1A—N1—H1C108.4 (19)H1AA—N1A—H1AC105 (2)
H1B—N1—H1C111 (2)H1AB—N1A—H1AC108.5 (19)
C2—C1—H1113.3 (11)C2A—C1A—H1AD111.2 (10)
C3—C1—C260.03 (12)C3A—C1A—C2A60.61 (11)
C3—C1—C4120.41 (14)C3A—C1A—C4A121.37 (13)
C3—C1—H1115.3 (10)C3A—C1A—H1AD118.2 (9)
C4—C1—C2124.66 (14)C4A—C1A—C2A125.40 (14)
C4—C1—H1113.3 (10)C4A—C1A—H1AD111.5 (9)
C1—C2—H2113.0 (11)C1A—C2A—H2A112.3 (11)
C3—C2—C158.57 (11)C3A—C2A—C1A58.51 (11)
C3—C2—H2116.3 (11)C3A—C2A—H2A116.0 (11)
C6—C2—C1121.77 (14)C6A—C2A—C1A122.11 (13)
C6—C2—C3119.62 (14)C6A—C2A—C3A119.45 (14)
C6—C2—H2115.7 (11)C6A—C2A—H2A116.1 (11)
C1—C3—C261.40 (11)C1A—C3A—C2A60.89 (12)
C1—C3—H3A120.3 (11)C1A—C3A—H3AA116.1 (9)
C1—C3—H3B115.1 (10)C1A—C3A—H3AB117.8 (10)
C2—C3—H3A116.6 (12)C2A—C3A—H3AA113.7 (12)
C2—C3—H3B118.6 (12)C2A—C3A—H3AB115.9 (11)
H3A—C3—H3B114.6 (15)H3AA—C3A—H3AB119.0 (14)
N1—C4—C1110.69 (13)N1A—C4A—C1A109.69 (13)
N1—C4—C5109.68 (13)N1A—C4A—C5A109.39 (13)
N1—C4—H4A108.6 (10)N1A—C4A—H4AB106.7 (11)
C1—C4—C5106.36 (14)C1A—C4A—C5A106.73 (14)
C1—C4—H4A112.3 (10)C1A—C4A—H4AB111.6 (11)
C5—C4—H4A109.2 (12)C5A—C4A—H4AB112.7 (13)
O1—C5—C4115.33 (14)O1A—C5A—C4A114.98 (14)
O2—C5—O1126.49 (17)O2A—C5A—O1A126.36 (17)
O2—C5—C4117.97 (14)O2A—C5A—C4A118.46 (14)
O3—C6—O4122.97 (16)O3A—C6A—O4A122.89 (16)
O3—C6—C2124.64 (16)O3A—C6A—C2A124.66 (17)
O4—C6—C2112.39 (14)O4A—C6A—C2A112.45 (14)
H1WA—O1W—H1WB99 (2)H1WC—O1WA—H1WD107 (3)
N1—C4—C5—O1157.34 (12)N1A—C4A—C5A—O1A159.17 (12)
N1—C4—C5—O227.53 (18)N1A—C4A—C5A—O2A25.74 (18)
C1—C2—C6—O331.9 (2)C1A—C2A—C6A—O3A30.4 (2)
C1—C2—C6—O4148.40 (15)C1A—C2A—C6A—O4A150.15 (14)
C1—C4—C5—O182.93 (15)C1A—C4A—C5A—O1A82.23 (15)
C1—C4—C5—O292.20 (16)C1A—C4A—C5A—O2A92.87 (16)
C2—C1—C4—N183.47 (18)C2A—C1A—C4A—N1A85.57 (18)
C2—C1—C4—C5157.45 (15)C2A—C1A—C4A—C5A156.02 (14)
C3—C1—C2—C6107.63 (17)C3A—C1A—C2A—C6A107.23 (16)
C3—C1—C4—N1156.11 (16)C3A—C1A—C4A—N1A159.79 (16)
C3—C1—C4—C584.81 (19)C3A—C1A—C4A—C5A81.8 (2)
C3—C2—C6—O337.4 (2)C3A—C2A—C6A—O3A38.8 (2)
C3—C2—C6—O4142.30 (14)C3A—C2A—C6A—O4A140.58 (14)
C4—C1—C2—C3108.16 (17)C4A—C1A—C2A—C3A109.43 (17)
C4—C1—C2—C60.5 (2)C4A—C1A—C2A—C6A2.2 (2)
C4—C1—C3—C2115.01 (18)C4A—C1A—C3A—C2A115.80 (19)
C6—C2—C3—C1111.25 (16)C6A—C2A—C3A—C1A111.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3Ai0.94 (2)2.03 (2)2.9444 (18)162.1 (17)
N1—H1B···O2Aii0.86 (2)2.39 (2)2.9454 (18)123.1 (16)
N1—H1C···O1WAi0.98 (3)1.83 (3)2.795 (2)167 (2)
O4—H4···O1iii0.81 (3)1.79 (3)2.5851 (18)166 (3)
O1W—H1WA···O2Aiv0.82 (3)2.01 (3)2.8072 (19)166 (2)
O1W—H1WB···O10.86 (2)1.90 (2)2.7449 (16)169 (2)
N1A—H1AA···O3v0.90 (2)2.01 (2)2.9087 (18)173 (2)
N1A—H1AB···O3Avi0.87 (2)2.38 (2)3.1151 (19)141.7 (17)
N1A—H1AC···O1Wv0.93 (2)1.87 (2)2.785 (2)165.6 (18)
O4A—H4AA···O1Avii0.98 (3)1.60 (3)2.5672 (16)168 (2)
O1WA—H1WC···O2viii0.83 (3)2.07 (3)2.8628 (19)158 (2)
O1WA—H1WD···O1A0.81 (2)1.98 (3)2.7717 (17)166 (3)
Symmetry codes: (i) x+1, y1/2, z; (ii) x1, y1, z1; (iii) x, y+1, z; (iv) x+1, y3/2, z+1; (v) x+1, y+1/2, z+1; (vi) x+2, y+1/2, z+1; (vii) x, y1, z; (viii) x+1, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3Ai0.94 (2)2.03 (2)2.9444 (18)162.1 (17)
N1—H1B···O2Aii0.86 (2)2.39 (2)2.9454 (18)123.1 (16)
N1—H1C···O1WAi0.98 (3)1.83 (3)2.795 (2)167 (2)
O4—H4···O1iii0.81 (3)1.79 (3)2.5851 (18)166 (3)
O1W—H1WA···O2Aiv0.82 (3)2.01 (3)2.8072 (19)166 (2)
O1W—H1WB···O10.86 (2)1.90 (2)2.7449 (16)169 (2)
N1A—H1AA···O3v0.90 (2)2.01 (2)2.9087 (18)173 (2)
N1A—H1AB···O3Avi0.87 (2)2.38 (2)3.1151 (19)141.7 (17)
N1A—H1AC···O1Wv0.93 (2)1.87 (2)2.785 (2)165.6 (18)
O4A—H4AA···O1Avii0.98 (3)1.60 (3)2.5672 (16)168 (2)
O1WA—H1WC···O2viii0.83 (3)2.07 (3)2.8628 (19)158 (2)
O1WA—H1WD···O1A0.81 (2)1.98 (3)2.7717 (17)166 (3)
Symmetry codes: (i) x+1, y1/2, z; (ii) x1, y1, z1; (iii) x, y+1, z; (iv) x+1, y3/2, z+1; (v) x+1, y+1/2, z+1; (vi) x+2, y+1/2, z+1; (vii) x, y1, z; (viii) x+1, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC6H9NO4·H2O
Mr177.16
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.9688 (8), 8.0063 (8), 10.9628 (10)
β (°) 106.015 (4)
V3)756.65 (12)
Z4
Radiation typeCu Kα
µ (mm1)1.18
Crystal size (mm)0.37 × 0.32 × 0.10
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.669, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
6086, 2164, 2154
Rint0.018
θmax (°)61.0
(sin θ/λ)max1)0.567
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.06
No. of reflections2164
No. of parameters305
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.15, 0.16
Absolute structureFlack (1983), 836 Friedel pairs
Absolute structure parameter0.57 (15)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

References

First citationAllen, F. H. (1980). Acta Cryst. B36, 81–96.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBishop, R. & Scudder, M. L. (2009). Cryst. Growth Des. 9, 2890–2894.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madision, Wisconsin, USA.  Google Scholar
First citationCaveney, S. & Starratt, A. (1994). Nature, 372, 509.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFowden, L., Smith, A., Millington, D. S. & Sheppard, R. C. (1969). Phytochemistry, 8, 437–443.  CrossRef CAS Google Scholar
First citationPellicciari, R., Marinozzi, M., Camaioni, E., del Carmen Nùnez, M., Costantino, G., Gasparini, F., Giorgi, G., Macchiarulo, A. & Subramanian, N. (2002). J. Org. Chem. 67, 5497–5507.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimamoto, K., Ishida, M., Shinozaki, H. & Ohfune, Y. (1991). J. Org. Chem. 56, 4167–4176.  CrossRef CAS Google Scholar
First citationStarratt, A. N. & Caveney, S. (1995). Phytochemistry, 40, 479–481.  CrossRef CAS Google Scholar
First citationWallock, N. J. & Donaldson, W. A. (2004). J. Org. Chem. 69, 2997–3007.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 844-846
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds