research communications
cis-2-(2-carboxycyclopropyl)glycine (CCG-III) monohydrate
ofaDepartment of Chemistry, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA
*Correspondence e-mail: william.donaldson@marquette.edu
The title compound, C6H9NO4·H2O [systematic name: (αR,1R,2S)-rel-α-amino-2-carboxycyclopropaneacetic acid monohydrate], crystallizes with two organic molecules and two water molecules in the The is P21 and the organic molecules are enantiomers, thus this is an example of a `false conglomerate' with two molecules of opposite handedness in the (r.m.s. overlay fit = 0.056 Å for one molecule and its inverted partner). Each molecule exists as a zwitterion, with proton transfer from the amino acid carboxylic acid group to the amine group. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating (100) sheets. Conformationally restricted glutamate analogs are of interest due to their selective activation of different glutamate receptors, and the naturally occurring (+)-CCG-III is an inhibitor of glutamate uptake and the key geometrical parameters are discussed.
CCDC reference: 1406594
1. Chemical context
2-(2′-Carboxycyclopropyl)glycines CCG-I, CCG-III and CCG-IV (Fig. 1) are naturally occuring conformationally restricted analogs of glutamate isolated from Aesculus parviflora, Blighia sapida (Fowden, et al., 1969), Ephedra foeminea (Caveney & Starratt, 1994), and Ephedra altissima (Starratt & Caveney, 1995). While not naturally occurring, both enantiomers of CCG-II (Fig. 1) have been prepared in the laboratory (Shimamoto, et al., 1991) and all of the diastereomeric CCGs are useful tools for investigating the mechanism of glutamate function. The of the title hydrate, (±)-CCG-III·H2O, is now reported.
2. Structural commentary
The racemic title compound (Fig. 2) crystallizes as a `false conglomerate' with two molecules of opposite handedness in the Each of molecules of 2-(2′-carboxycyclopropyl)glycine has a molecule of water hydrogen bonded to the glycine carboxylate group. It has been estimated that only 1% of organic compounds are false conglomerates (Bishop & Scudder, 2009).
The torsion angles O3—C6—C2—X = −4.3° and O3A—C6A—C2A—X = −11.1° (where X is the midpoint of the distal cyclopropane bond) indicate that the carboxylic acid attached to the cyclpropane ring adopts a bisected conformation (Allen, 1980). The cyclopropane C—C bonds proximal to the C2 carboxylic group are roughly equal [C1—C2 = 1.532 (3); C2—C3 = 1.512 (3); C1A—C2A = 1.520 (3); C2A—C3A = 1.516 (2) Å] and are longer than the cyclopropane bonds distal to the C2 carboxylic acid [C1—C3 = 1.489 (2); C1A—C3A = 1.484 (2) Å]. These distances and torsion angles are consistent with other cyclopropane carboxylic acids (Allen, 1980).
Conformationally restricted glutamic acid analogs can be classified into one of four categories, which are characterized by the distances between the nitrogen atom of the amino group and the γ-carboxylate carbon atom (d1), between the α- and γ-carboxylate carbon atoms (d2), and their sum (d1 + d2). The classifications `folded', `semi-folded', `semi-extended', and `extended' are defined by (d1 + d2) ≤ 7.5 Å, 7.5 Å ≤ (d1 + d2) ≤ 8.0 Å, 8.0 Å ≤ (d1 + d2) ≤ 8.5 Å, and (d1 + d2) ≥ 8.5 Å, respectively (Pellicciari, et al., 2002). The two enantiomeric moleclules in the evidence the following distances/sums: d1, 3.65 and 3.71 Å; d2, 4.59 and 4.59 Å; (d1 + d2), 8.24 and 8.30 Å, respectively. From these values, these conformers of CCG-III can be considered to be in the `semi-extended' class.
3. Supramolecular features
In the crystal, the molecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to (100); Table 1 and Fig. 3.
4. Synthesis and crystallization
The racemic title compound was prepared according to the literature procedure (Wallock & Donaldson, 2004). A sample for X-ray was recrystallized from water.
5. Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Supporting information
CCDC reference: 1406594
10.1107/S2056989015011500/hb7407sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015011500/hb7407Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015011500/hb7407Isup3.cml
2-(2'-Carboxycyclopropyl)glycines CCG-I, CCG-III and CCG-IV (Fig. 1) are naturally occuring conformationally restricted analogs of glutamate isolated from Aesculus parviflora, Blighia sapida (Fowden, et al., 1969), Ephedra foeminea (Caveney & Starratt, 1994), and Ephedra altissima (Starratt & Caveney, 1995). While not naturally occurring, both enantiomers of CCG-II (Fig. 1) have been prepared in the laboratory (Shimamoto, et al., 1991) and all of the diastereomeric CCGs are useful tools for investigating the mechanism of glutamate function. The
of the title hydrate, (±)-CCG-III·H2O, is now reported.The racemic title compound crystallizes as a `false conglomerate' with two molecules of opposite handedness in the
Each of molecules of 2-(2'-carboxycyclopropyl)glycine has a molecule of water hydrogen bonded to the glycine carboxylate group. It has been estimated that only 1% of organic compounds are false conglomerates (Bishop & Scudder, 2009).The torsion angles t, O3—C6—C2—X = –4.3° and O3A—C6A—C2A—X = –11.1° (where X is the midpoint of the distal cyclopropane bond) indicate that the carboxylic acid attached to the cyclpropane ring adopts a bisected conformation (Allen, 1980). The cyclopropane C—C bonds proximal to the C2 carboxylic group are roughly equal [C1—C2 = 1.532 (3); C2—C3 = 1.512 (3); C1A—C2A = 1.520 (3); C2A—C3A = 1.516 (2) Å] and are longer than the cyclopropane bonds distal to the C2 carboxylic acid [C1—C3 = 1.489 (2); C1A—C3A = 1.484 (2) Å]. These distances and torsion angles are consistent with other cyclopropane carboxylic acids (Allen, 1980).
Conformationally restricted glutamic acid analogs can be classified into one of four categories, which are characterized by the distances between the nitrogen atom of the amino group and the γ-carboxylate carbon atom (d1), between the α- and γ-carboxylate carbon atoms (d2), and their sum (d1 + d2). The classifications `folded', `semi-folded', `semi-extended', and `extended' are defined by (d1 + d2) ≤ 7.5 Å, 7.5 Å ≤ (d1 + d2) ≤ 8.0 Å, 8.0 Å ≤ (d1 + d2) ≤ 8.5 Å, and (d1 + d2) ≥ 8.5 Å, respectively (Pellicciari, et al., 2002). The two enantiomeric moleclules in the evidence the following distances/sums: d1, 3.65 and 3.71 Å; d2, 4.59 and 4.59 Å; (d1 + d2), 8.24 and 8.30 Å, respectively. From these values, these conformers of CCG-III can be considered to be in the `semi-extended' class.
In the crystal, the molecules are linked by N—H···O and O—H···O hydrogen bonds, generating a three-dimensional network (Table 1 and Fig. 2).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Structures of the diastereomers of 2-(2'-carboxycyclopropyl)glycine. | |
Fig. 2. The asymmetic unit of the title compound, showing 50% displacement ellipsoids. | |
Fig. 3. The packing for the title compound viewed approximately down [100], with hydrogen bonds shown as dashed lines. |
C6H9NO4·H2O | F(000) = 376 |
Mr = 177.16 | Dx = 1.555 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 8.9688 (8) Å | Cell parameters from 5577 reflections |
b = 8.0063 (8) Å | θ = 4–61° |
c = 10.9628 (10) Å | µ = 1.18 mm−1 |
β = 106.015 (4)° | T = 100 K |
V = 756.65 (12) Å3 | Plate, colorless |
Z = 4 | 0.37 × 0.32 × 0.10 mm |
Bruker APEXII CCD detector diffractometer | 2164 independent reflections |
Radiation source: fine-focus sealed tube | 2154 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 61.0°, θmin = 4.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −10→9 |
Tmin = 0.669, Tmax = 0.891 | k = −8→9 |
6086 measured reflections | l = 0→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | All H-atom parameters refined |
wR(F2) = 0.055 | w = 1/[σ2(Fo2) + (0.0523P)2 + 0.0652P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2164 reflections | Δρmax = 0.15 e Å−3 |
305 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 836 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.57 (15) |
C6H9NO4·H2O | V = 756.65 (12) Å3 |
Mr = 177.16 | Z = 4 |
Monoclinic, P21 | Cu Kα radiation |
a = 8.9688 (8) Å | µ = 1.18 mm−1 |
b = 8.0063 (8) Å | T = 100 K |
c = 10.9628 (10) Å | 0.37 × 0.32 × 0.10 mm |
β = 106.015 (4)° |
Bruker APEXII CCD detector diffractometer | 2164 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2154 reflections with I > 2σ(I) |
Tmin = 0.669, Tmax = 0.891 | Rint = 0.018 |
6086 measured reflections | θmax = 61.0° |
R[F2 > 2σ(F2)] = 0.021 | All H-atom parameters refined |
wR(F2) = 0.055 | Δρmax = 0.15 e Å−3 |
S = 1.06 | Δρmin = −0.16 e Å−3 |
2164 reflections | Absolute structure: Flack (1983), 836 Friedel pairs |
305 parameters | Absolute structure parameter: 0.57 (15) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.16905 (12) | −0.14281 (15) | 0.09397 (9) | 0.0171 (3) | |
O2 | 0.16680 (12) | −0.14746 (15) | −0.11118 (10) | 0.0182 (3) | |
O3 | 0.17732 (12) | 0.43933 (15) | 0.13921 (10) | 0.0179 (3) | |
O4 | 0.36153 (14) | 0.61213 (15) | 0.11160 (11) | 0.0187 (3) | |
N1 | 0.10810 (17) | 0.18398 (19) | −0.14010 (12) | 0.0163 (3) | |
C1 | 0.34487 (17) | 0.1610 (2) | 0.03879 (15) | 0.0167 (3) | |
C2 | 0.40767 (18) | 0.3278 (2) | 0.10039 (15) | 0.0169 (3) | |
C3 | 0.42184 (19) | 0.1692 (3) | 0.17765 (16) | 0.0203 (4) | |
C4 | 0.17508 (18) | 0.1174 (2) | −0.00932 (14) | 0.0147 (4) | |
C5 | 0.16579 (16) | −0.0746 (2) | −0.01143 (14) | 0.0143 (4) | |
C6 | 0.30359 (18) | 0.4620 (2) | 0.11880 (14) | 0.0139 (4) | |
H1A | 0.150 (2) | 0.128 (3) | −0.1987 (17) | 0.020 (5)* | |
H1B | 0.010 (3) | 0.166 (3) | −0.1641 (18) | 0.029 (5)* | |
H1C | 0.131 (3) | 0.303 (4) | −0.143 (2) | 0.050 (7)* | |
H4 | 0.297 (3) | 0.681 (4) | 0.115 (2) | 0.044 (7)* | |
H1 | 0.407 (2) | 0.114 (2) | −0.0118 (16) | 0.020 (5)* | |
H2 | 0.499 (2) | 0.364 (2) | 0.0793 (15) | 0.017 (4)* | |
H3A | 0.522 (2) | 0.127 (3) | 0.2107 (17) | 0.020 (4)* | |
H3B | 0.354 (2) | 0.154 (3) | 0.2312 (15) | 0.017 (4)* | |
H4A | 0.1176 (17) | 0.159 (3) | 0.0430 (14) | 0.006 (4)* | |
O1W | 0.15198 (15) | −0.01307 (17) | 0.32148 (12) | 0.0218 (3) | |
H1WA | 0.152 (3) | −0.106 (3) | 0.352 (2) | 0.038 (7)* | |
H1WB | 0.149 (2) | −0.042 (3) | 0.246 (2) | 0.034 (6)* | |
O1A | 0.81679 (12) | 1.13479 (15) | 0.40666 (10) | 0.0161 (3) | |
O2A | 0.86473 (13) | 1.14792 (16) | 0.61824 (10) | 0.0175 (3) | |
O3A | 0.80378 (12) | 0.55765 (16) | 0.36274 (10) | 0.0177 (3) | |
O4A | 0.63822 (12) | 0.38208 (15) | 0.41642 (10) | 0.0162 (3) | |
N1A | 0.92671 (16) | 0.8177 (2) | 0.64801 (12) | 0.0142 (3) | |
C1A | 0.66918 (17) | 0.8314 (2) | 0.49476 (14) | 0.0144 (4) | |
C2A | 0.59847 (17) | 0.6653 (2) | 0.44103 (14) | 0.0156 (3) | |
C3A | 0.56440 (18) | 0.8249 (2) | 0.36381 (16) | 0.0173 (4) | |
C4A | 0.83802 (17) | 0.8786 (2) | 0.51986 (14) | 0.0133 (4) | |
C5A | 0.84454 (16) | 1.0708 (2) | 0.51702 (14) | 0.0129 (4) | |
C6A | 0.69085 (18) | 0.5329 (2) | 0.40323 (13) | 0.0149 (4) | |
H1AA | 0.892 (2) | 0.864 (3) | 0.710 (2) | 0.028 (5)* | |
H1AB | 1.025 (2) | 0.842 (3) | 0.6644 (16) | 0.018 (4)* | |
H1AC | 0.917 (2) | 0.703 (3) | 0.6570 (18) | 0.024 (5)* | |
H4AA | 0.709 (3) | 0.295 (3) | 0.404 (2) | 0.044 (6)* | |
H1AD | 0.6284 (17) | 0.868 (2) | 0.5597 (16) | 0.008 (4)* | |
H2A | 0.522 (2) | 0.630 (2) | 0.4774 (15) | 0.013 (4)* | |
H3AA | 0.6122 (17) | 0.830 (3) | 0.2982 (15) | 0.006 (4)* | |
H3AB | 0.465 (2) | 0.868 (2) | 0.3501 (14) | 0.011 (4)* | |
H4AB | 0.8848 (19) | 0.827 (3) | 0.4588 (16) | 0.016 (4)* | |
O1WA | 0.79114 (15) | 1.00902 (16) | 0.16619 (12) | 0.0216 (3) | |
H1WC | 0.796 (3) | 1.099 (3) | 0.130 (2) | 0.041 (7)* | |
H1WD | 0.804 (3) | 1.030 (3) | 0.241 (2) | 0.041 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0227 (6) | 0.0139 (7) | 0.0160 (6) | 0.0011 (5) | 0.0077 (4) | 0.0020 (5) |
O2 | 0.0242 (6) | 0.0144 (7) | 0.0163 (6) | 0.0019 (5) | 0.0061 (4) | −0.0010 (5) |
O3 | 0.0197 (6) | 0.0162 (7) | 0.0203 (6) | −0.0010 (5) | 0.0093 (5) | −0.0007 (5) |
O4 | 0.0202 (6) | 0.0130 (7) | 0.0240 (6) | −0.0006 (5) | 0.0082 (5) | −0.0009 (5) |
N1 | 0.0187 (8) | 0.0155 (9) | 0.0154 (7) | 0.0016 (7) | 0.0057 (6) | 0.0006 (6) |
C1 | 0.0181 (8) | 0.0125 (9) | 0.0217 (8) | 0.0024 (7) | 0.0090 (6) | 0.0006 (8) |
C2 | 0.0145 (7) | 0.0144 (9) | 0.0217 (8) | −0.0031 (7) | 0.0051 (6) | 0.0013 (7) |
C3 | 0.0160 (8) | 0.0160 (9) | 0.0258 (9) | −0.0004 (8) | 0.0006 (7) | 0.0015 (8) |
C4 | 0.0188 (8) | 0.0143 (10) | 0.0129 (8) | 0.0016 (7) | 0.0075 (7) | 0.0003 (6) |
C5 | 0.0116 (7) | 0.0148 (10) | 0.0164 (9) | 0.0006 (7) | 0.0036 (6) | −0.0009 (7) |
C6 | 0.0180 (9) | 0.0130 (9) | 0.0098 (7) | −0.0023 (7) | 0.0022 (6) | 0.0011 (6) |
O1W | 0.0361 (7) | 0.0127 (7) | 0.0171 (6) | 0.0008 (6) | 0.0081 (5) | −0.0008 (5) |
O1A | 0.0212 (6) | 0.0127 (7) | 0.0160 (5) | 0.0013 (5) | 0.0080 (4) | 0.0014 (5) |
O2A | 0.0230 (6) | 0.0144 (6) | 0.0145 (5) | 0.0006 (5) | 0.0039 (4) | −0.0032 (5) |
O3A | 0.0196 (6) | 0.0160 (7) | 0.0203 (6) | −0.0017 (5) | 0.0099 (5) | −0.0011 (5) |
O4A | 0.0178 (5) | 0.0092 (7) | 0.0228 (6) | −0.0013 (5) | 0.0074 (5) | 0.0003 (5) |
N1A | 0.0147 (7) | 0.0116 (9) | 0.0170 (7) | 0.0001 (6) | 0.0057 (6) | −0.0005 (6) |
C1A | 0.0184 (8) | 0.0107 (9) | 0.0159 (8) | 0.0015 (7) | 0.0076 (6) | 0.0018 (7) |
C2A | 0.0143 (8) | 0.0151 (9) | 0.0177 (7) | −0.0001 (7) | 0.0050 (6) | 0.0011 (7) |
C3A | 0.0144 (8) | 0.0155 (10) | 0.0215 (8) | 0.0015 (7) | 0.0044 (7) | 0.0006 (7) |
C4A | 0.0154 (8) | 0.0112 (10) | 0.0140 (8) | 0.0005 (7) | 0.0052 (6) | −0.0006 (6) |
C5A | 0.0101 (7) | 0.0131 (10) | 0.0166 (9) | 0.0004 (7) | 0.0056 (6) | 0.0011 (7) |
C6A | 0.0155 (8) | 0.0163 (10) | 0.0108 (7) | −0.0012 (7) | 0.0000 (6) | 0.0015 (7) |
O1WA | 0.0342 (7) | 0.0147 (7) | 0.0160 (6) | 0.0014 (6) | 0.0068 (5) | −0.0003 (6) |
O1—C5 | 1.271 (2) | O1A—C5A | 1.273 (2) |
O2—C5 | 1.2417 (19) | O2A—C5A | 1.239 (2) |
O3—C6 | 1.2270 (19) | O3A—C6A | 1.2289 (19) |
O4—C6 | 1.320 (2) | O4A—C6A | 1.319 (2) |
O4—H4 | 0.81 (3) | O4A—H4AA | 0.98 (3) |
N1—C4 | 1.492 (2) | N1A—C4A | 1.492 (2) |
N1—H1A | 0.94 (2) | N1A—H1AA | 0.90 (2) |
N1—H1B | 0.86 (2) | N1A—H1AB | 0.87 (2) |
N1—H1C | 0.98 (3) | N1A—H1AC | 0.93 (2) |
C1—C2 | 1.532 (3) | C1A—C2A | 1.520 (3) |
C1—C3 | 1.489 (2) | C1A—C3A | 1.484 (2) |
C1—C4 | 1.509 (2) | C1A—C4A | 1.510 (2) |
C1—H1 | 0.963 (19) | C1A—H1AD | 0.933 (17) |
C2—C3 | 1.512 (3) | C2A—C3A | 1.516 (2) |
C2—C6 | 1.473 (2) | C2A—C6A | 1.474 (3) |
C2—H2 | 0.953 (18) | C2A—H2A | 0.925 (17) |
C3—H3A | 0.93 (2) | C3A—H3AA | 0.934 (16) |
C3—H3B | 0.965 (18) | C3A—H3AB | 0.929 (18) |
C4—C5 | 1.539 (2) | C4A—C5A | 1.541 (2) |
C4—H4A | 0.932 (17) | C4A—H4AB | 0.976 (19) |
O1W—H1WA | 0.82 (3) | O1WA—H1WC | 0.83 (3) |
O1W—H1WB | 0.86 (2) | O1WA—H1WD | 0.81 (2) |
C6—O4—H4 | 108.5 (19) | C6A—O4A—H4AA | 111.5 (14) |
C4—N1—H1A | 110.8 (12) | C4A—N1A—H1AA | 111.9 (13) |
C4—N1—H1B | 110.0 (14) | C4A—N1A—H1AB | 111.6 (12) |
C4—N1—H1C | 110.3 (14) | C4A—N1A—H1AC | 112.4 (11) |
H1A—N1—H1B | 106.2 (19) | H1AA—N1A—H1AB | 107.1 (18) |
H1A—N1—H1C | 108.4 (19) | H1AA—N1A—H1AC | 105 (2) |
H1B—N1—H1C | 111 (2) | H1AB—N1A—H1AC | 108.5 (19) |
C2—C1—H1 | 113.3 (11) | C2A—C1A—H1AD | 111.2 (10) |
C3—C1—C2 | 60.03 (12) | C3A—C1A—C2A | 60.61 (11) |
C3—C1—C4 | 120.41 (14) | C3A—C1A—C4A | 121.37 (13) |
C3—C1—H1 | 115.3 (10) | C3A—C1A—H1AD | 118.2 (9) |
C4—C1—C2 | 124.66 (14) | C4A—C1A—C2A | 125.40 (14) |
C4—C1—H1 | 113.3 (10) | C4A—C1A—H1AD | 111.5 (9) |
C1—C2—H2 | 113.0 (11) | C1A—C2A—H2A | 112.3 (11) |
C3—C2—C1 | 58.57 (11) | C3A—C2A—C1A | 58.51 (11) |
C3—C2—H2 | 116.3 (11) | C3A—C2A—H2A | 116.0 (11) |
C6—C2—C1 | 121.77 (14) | C6A—C2A—C1A | 122.11 (13) |
C6—C2—C3 | 119.62 (14) | C6A—C2A—C3A | 119.45 (14) |
C6—C2—H2 | 115.7 (11) | C6A—C2A—H2A | 116.1 (11) |
C1—C3—C2 | 61.40 (11) | C1A—C3A—C2A | 60.89 (12) |
C1—C3—H3A | 120.3 (11) | C1A—C3A—H3AA | 116.1 (9) |
C1—C3—H3B | 115.1 (10) | C1A—C3A—H3AB | 117.8 (10) |
C2—C3—H3A | 116.6 (12) | C2A—C3A—H3AA | 113.7 (12) |
C2—C3—H3B | 118.6 (12) | C2A—C3A—H3AB | 115.9 (11) |
H3A—C3—H3B | 114.6 (15) | H3AA—C3A—H3AB | 119.0 (14) |
N1—C4—C1 | 110.69 (13) | N1A—C4A—C1A | 109.69 (13) |
N1—C4—C5 | 109.68 (13) | N1A—C4A—C5A | 109.39 (13) |
N1—C4—H4A | 108.6 (10) | N1A—C4A—H4AB | 106.7 (11) |
C1—C4—C5 | 106.36 (14) | C1A—C4A—C5A | 106.73 (14) |
C1—C4—H4A | 112.3 (10) | C1A—C4A—H4AB | 111.6 (11) |
C5—C4—H4A | 109.2 (12) | C5A—C4A—H4AB | 112.7 (13) |
O1—C5—C4 | 115.33 (14) | O1A—C5A—C4A | 114.98 (14) |
O2—C5—O1 | 126.49 (17) | O2A—C5A—O1A | 126.36 (17) |
O2—C5—C4 | 117.97 (14) | O2A—C5A—C4A | 118.46 (14) |
O3—C6—O4 | 122.97 (16) | O3A—C6A—O4A | 122.89 (16) |
O3—C6—C2 | 124.64 (16) | O3A—C6A—C2A | 124.66 (17) |
O4—C6—C2 | 112.39 (14) | O4A—C6A—C2A | 112.45 (14) |
H1WA—O1W—H1WB | 99 (2) | H1WC—O1WA—H1WD | 107 (3) |
N1—C4—C5—O1 | −157.34 (12) | N1A—C4A—C5A—O1A | 159.17 (12) |
N1—C4—C5—O2 | 27.53 (18) | N1A—C4A—C5A—O2A | −25.74 (18) |
C1—C2—C6—O3 | 31.9 (2) | C1A—C2A—C6A—O3A | −30.4 (2) |
C1—C2—C6—O4 | −148.40 (15) | C1A—C2A—C6A—O4A | 150.15 (14) |
C1—C4—C5—O1 | 82.93 (15) | C1A—C4A—C5A—O1A | −82.23 (15) |
C1—C4—C5—O2 | −92.20 (16) | C1A—C4A—C5A—O2A | 92.87 (16) |
C2—C1—C4—N1 | 83.47 (18) | C2A—C1A—C4A—N1A | −85.57 (18) |
C2—C1—C4—C5 | −157.45 (15) | C2A—C1A—C4A—C5A | 156.02 (14) |
C3—C1—C2—C6 | −107.63 (17) | C3A—C1A—C2A—C6A | 107.23 (16) |
C3—C1—C4—N1 | 156.11 (16) | C3A—C1A—C4A—N1A | −159.79 (16) |
C3—C1—C4—C5 | −84.81 (19) | C3A—C1A—C4A—C5A | 81.8 (2) |
C3—C2—C6—O3 | −37.4 (2) | C3A—C2A—C6A—O3A | 38.8 (2) |
C3—C2—C6—O4 | 142.30 (14) | C3A—C2A—C6A—O4A | −140.58 (14) |
C4—C1—C2—C3 | 108.16 (17) | C4A—C1A—C2A—C3A | −109.43 (17) |
C4—C1—C2—C6 | 0.5 (2) | C4A—C1A—C2A—C6A | −2.2 (2) |
C4—C1—C3—C2 | −115.01 (18) | C4A—C1A—C3A—C2A | 115.80 (19) |
C6—C2—C3—C1 | 111.25 (16) | C6A—C2A—C3A—C1A | −111.72 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3Ai | 0.94 (2) | 2.03 (2) | 2.9444 (18) | 162.1 (17) |
N1—H1B···O2Aii | 0.86 (2) | 2.39 (2) | 2.9454 (18) | 123.1 (16) |
N1—H1C···O1WAi | 0.98 (3) | 1.83 (3) | 2.795 (2) | 167 (2) |
O4—H4···O1iii | 0.81 (3) | 1.79 (3) | 2.5851 (18) | 166 (3) |
O1W—H1WA···O2Aiv | 0.82 (3) | 2.01 (3) | 2.8072 (19) | 166 (2) |
O1W—H1WB···O1 | 0.86 (2) | 1.90 (2) | 2.7449 (16) | 169 (2) |
N1A—H1AA···O3v | 0.90 (2) | 2.01 (2) | 2.9087 (18) | 173 (2) |
N1A—H1AB···O3Avi | 0.87 (2) | 2.38 (2) | 3.1151 (19) | 141.7 (17) |
N1A—H1AC···O1Wv | 0.93 (2) | 1.87 (2) | 2.785 (2) | 165.6 (18) |
O4A—H4AA···O1Avii | 0.98 (3) | 1.60 (3) | 2.5672 (16) | 168 (2) |
O1WA—H1WC···O2viii | 0.83 (3) | 2.07 (3) | 2.8628 (19) | 158 (2) |
O1WA—H1WD···O1A | 0.81 (2) | 1.98 (3) | 2.7717 (17) | 166 (3) |
Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x−1, y−1, z−1; (iii) x, y+1, z; (iv) −x+1, y−3/2, −z+1; (v) −x+1, y+1/2, −z+1; (vi) −x+2, y+1/2, −z+1; (vii) x, y−1, z; (viii) −x+1, y+3/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3Ai | 0.94 (2) | 2.03 (2) | 2.9444 (18) | 162.1 (17) |
N1—H1B···O2Aii | 0.86 (2) | 2.39 (2) | 2.9454 (18) | 123.1 (16) |
N1—H1C···O1WAi | 0.98 (3) | 1.83 (3) | 2.795 (2) | 167 (2) |
O4—H4···O1iii | 0.81 (3) | 1.79 (3) | 2.5851 (18) | 166 (3) |
O1W—H1WA···O2Aiv | 0.82 (3) | 2.01 (3) | 2.8072 (19) | 166 (2) |
O1W—H1WB···O1 | 0.86 (2) | 1.90 (2) | 2.7449 (16) | 169 (2) |
N1A—H1AA···O3v | 0.90 (2) | 2.01 (2) | 2.9087 (18) | 173 (2) |
N1A—H1AB···O3Avi | 0.87 (2) | 2.38 (2) | 3.1151 (19) | 141.7 (17) |
N1A—H1AC···O1Wv | 0.93 (2) | 1.87 (2) | 2.785 (2) | 165.6 (18) |
O4A—H4AA···O1Avii | 0.98 (3) | 1.60 (3) | 2.5672 (16) | 168 (2) |
O1WA—H1WC···O2viii | 0.83 (3) | 2.07 (3) | 2.8628 (19) | 158 (2) |
O1WA—H1WD···O1A | 0.81 (2) | 1.98 (3) | 2.7717 (17) | 166 (3) |
Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x−1, y−1, z−1; (iii) x, y+1, z; (iv) −x+1, y−3/2, −z+1; (v) −x+1, y+1/2, −z+1; (vi) −x+2, y+1/2, −z+1; (vii) x, y−1, z; (viii) −x+1, y+3/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C6H9NO4·H2O |
Mr | 177.16 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 8.9688 (8), 8.0063 (8), 10.9628 (10) |
β (°) | 106.015 (4) |
V (Å3) | 756.65 (12) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.18 |
Crystal size (mm) | 0.37 × 0.32 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.669, 0.891 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6086, 2164, 2154 |
Rint | 0.018 |
θmax (°) | 61.0 |
(sin θ/λ)max (Å−1) | 0.567 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.055, 1.06 |
No. of reflections | 2164 |
No. of parameters | 305 |
No. of restraints | 1 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.15, −0.16 |
Absolute structure | Flack (1983), 836 Friedel pairs |
Absolute structure parameter | 0.57 (15) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).
References
Allen, F. H. (1980). Acta Cryst. B36, 81–96. CrossRef IUCr Journals Web of Science Google Scholar
Bishop, R. & Scudder, M. L. (2009). Cryst. Growth Des. 9, 2890–2894. Web of Science CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madision, Wisconsin, USA. Google Scholar
Caveney, S. & Starratt, A. (1994). Nature, 372, 509. CrossRef Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fowden, L., Smith, A., Millington, D. S. & Sheppard, R. C. (1969). Phytochemistry, 8, 437–443. CrossRef CAS Google Scholar
Pellicciari, R., Marinozzi, M., Camaioni, E., del Carmen Nùnez, M., Costantino, G., Gasparini, F., Giorgi, G., Macchiarulo, A. & Subramanian, N. (2002). J. Org. Chem. 67, 5497–5507. CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimamoto, K., Ishida, M., Shinozaki, H. & Ohfune, Y. (1991). J. Org. Chem. 56, 4167–4176. CrossRef CAS Google Scholar
Starratt, A. N. & Caveney, S. (1995). Phytochemistry, 40, 479–481. CrossRef CAS Google Scholar
Wallock, N. J. & Donaldson, W. A. (2004). J. Org. Chem. 69, 2997–3007. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.