organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o442-o443

Redetermined structure of gossypol (P3 polymorph)

CROSSMARK_Color_square_no_text.svg

aInstitute of Biorganic Chemistry, Mirzo-Ulughbek Str. 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: muhabbat.n75@mail.ru

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 April 2015; accepted 18 May 2015; online 3 June 2015)

An improved crystal structure of the title compound, C30H30O8 (systematic name: 1,1′,6,6′,7,7′-hexa­hydroxy-5,5′-diisopropyl-3,3′-dimeth­yl[2,2′-bi­naphthalene]-8,8′-dicarbaldehyde), was determined based on modern CCD data. Compared to the previous structure [Talipov et al. (1985). Khim. Prirod. Soedin. (Chem. Nat. Prod.), 6, 20–24], geometrical precision has been improved (typical C—C bond-distance s.u. = 0.002 Å in the present structure compared to 0.005 Å in the previous structure) and the locations of several H atoms have been corrected. The gossypol mol­ecules are in the aldehyde tautomeric form and the dihedral angle between the naphthyl fragments is 80.42 (4)°. Four intra­molecular O—H⋯O hydrogen bonds are formed. In the crystal, inversion dimers with graph-set motif R22(20) are formed by pairs of O—H⋯O hydrogen bonds; another pair of O—H⋯O hydrogen bonds with the same graph-set motif links the dimers into [001] chains. The packing of such chains in the crystal leads to the formation of channels (diameter = 5–8 Å) propagating in the [101] direction. The channels presumably contain highly disordered solvent mol­ecules; their contribution to the scattering was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON and the stated mol­ecular mass, density etc., do not take them into account.

1. Related literature

For the previous structure determination of gossypol P3 polymorph, see: Talipov et al., (1985[Talipov, S. A., Ibragimov, B. T., Nazarov, G. B., Aripov, T. F. & Sadikov, A. S. (1985). Khim. Prir. Soedin (Russ.) (Chem. Nat. Compd.), pp. 835-836.]). For details of the extraction and synthesis of gossypol and its derivatives, see: Adams et al. (1960[Adams, R., Geissman, T. A. & Edwards, J. D. (1960). Chem. Rev. 60, 555-574.]). For its synthesis and biological activities, see: Baram & Ismailov (1993[Baram, N. I. & Ismailov, A. I. (1993). Khim. Prir. Soedin. p. 334.]); Polsky et al. (1989[Polsky, B., Segal, S. J., Baron, P. A., Gold, J. W. M., Ueno, H. & Armstrong, D. (1989). Contraception, 39, 579-587.]); Radloff et al. (1985[Radloff, R. I., Deck, L. M., Royer, R. E. & Vander Jagt, D. L. (1985). Pharmacol. Res. Commun. 18, 1063.]). For information on crystalline inclusion compounds, see: Ibragimov & Talipov (1999[Ibragimov, B. T. & Talipov, S. A. (1999). J. Struct. Chem. 40, 686-704.], 2004[Ibragimov, B. T. & Talipov, S. A. (2004). Gossypol, in Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 606-614. New York: Dekker.]); Ibragimov et al. (1997[Ibragimov, B. T., Tiljakov, Z. G., Beketov, K. M. & Talipov, S. A. (1997). J. Inclusion Phenom. Mol. Recognit. Chem. 27, 99-104.]); Gdaniec et al. (1996[Gdaniec, M., Ibragimov, B. T. & Talipov, S. A. (1996). Gossypol, edited by D. D. MacNicol, F. Toda & R. Bishop, Solid-state supramolecular chemistry: crystal engineering, Vol. 6, Comprehensive supramolecular chemistry, pp. 117-146. Oxford: Pergamon Press.]); Talipov et al. (1988[Talipov, S. A., Ibragimov, B. T., Tishchenko, G. N., Aripov, T. F., Nazarov, G. B., Strokopytov, B. V. & Polyakov, K. M. (1988). Kristallografiya, 33, 384-389.]). For the use of SQUEEZE, see: Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C30H30O8

  • Mr = 518.54

  • Monoclinic, C 2/c

  • a = 21.2196 (4) Å

  • b = 19.0886 (2) Å

  • c = 15.2564 (2) Å

  • β = 113.262 (2)°

  • V = 5677.29 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.30 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.730, Tmax = 1.000

  • 13408 measured reflections

  • 5810 independent reflections

  • 4382 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.161

  • S = 1.11

  • 5810 reflections

  • 374 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6i 0.90 (2) 2.16 (2) 2.9692 (17) 150 (2)
O3—H3⋯O2 0.90 (3) 1.59 (3) 2.454 (2) 160 (3)
O5—H5⋯O3ii 0.83 (2) 2.30 (2) 2.9546 (17) 136 (2)
O4—H4A⋯O3 0.98 (4) 1.88 (4) 2.601 (2) 128 (3)
O4—H4A⋯O5ii 0.98 (4) 2.46 (4) 3.278 (2) 141 (3)
O7—H7⋯O6 0.92 (3) 1.63 (3) 2.479 (2) 152 (3)
O8—H8⋯O7 0.87 (4) 2.02 (4) 2.575 (2) 120 (3)
C22—H22⋯O1 0.93 2.12 2.721 (2) 121
C26—H26B⋯O8iii 0.96 2.55 3.483 (2) 165
C27—H27⋯O4iv 0.93 2.31 3.138 (2) 148
C27—H27⋯O5 0.93 2.07 2.727 (2) 127
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y, -z+1; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [x, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Experimental top

Synthesis and crystallization top

Preparative details of the material

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

Comment

Gossypol, a phenolic pigment extracted from cotton seeds [Adams et al., 1960], demonstrates a wide range of biological activity [Baram et al., 1993; Polsky et al., 1989: Radloff et al.,1985] and versatile host properties [Ibragimov, Talipov. 1999; 2004; Gdaniec et al., 1996]. Unique ability as a host compound to form crystalline inclusion compounds with many organic solvents makes gossypol an inter­esting object of solid supra­molecular chemistry. Gossypol has also been found to form pseudopolymorphic structures with same guest molecule, e.g., clathrates formed with di­chloro­methane [Ibragimov et al., 1997] and di­ethyl ether [Talipov et al., 1988]. Unsolvated polymorphs of the compound are also known [Gdaniec et al., 1996]. In the crystal of the title compound, gossypol (1,1',6,6',7,7'-hexa­hydroxy -5,5'diiso­propyl - 3,3'di­methyl­[2,2' - bi­naphthalene] - 8,8'- dicarboxaldehyde), C30H30O8, is one independent molecule in the asymmetric part of the unit cell. The crystals of the title compound were obtained after decomposition of gossypol clathrate with di­chloro­methane, where the single crystals are not destroyed and their cell volumes are only reduced by ~4%. In the title compound gossypol molecules are in the aldehyde tautomeric form (Fig. 1). H-bonds O4—H···O3 (O8—H···O7) and O3—H···O2 (O7—H···O6) form five- and six-membered rings. Naphthyl fragments C(1)—C(10) (C7 0.07A) and C(11)—C(20) (C12 0.04 A) are planar and dihedral angle between their planes are equal to 80.42 (4)°. One of the most commonly found associations is a centrosymmetric dimer that is linked by two pairs O5–H···O3 and O4–H···O5 hydrogen bonds and hydro­phobic stacking inter­actions between two of the naphthalene rings [Gdaniec et al., 1996]. In the title crystal centrosymmetric dimers are formed as above, these assemble into extended serpentine chains by other pair of hydrogen bonds O1—H···O6 directed along the c axis through a twofold rotation axis with direction [0 1 0]. The packing of such chains in the crystal leads to the formation of broadly rough channels (Fig. 2) (where diameter varied 5-7 A), parallel to the ac diagonal.

Related literature top

For the previous structure determination of gossypol P3 polymorph, see: Talipov et al., (1985). For details of extraction and synthesis of gossypol and its derivatives, see: Adams et al. (1960). For its synthesis and biological activities, see: Baram & Ismailov (1993); Polsky et al. (1989); Radloff et al. (1985). For information on crystalline inclusion compounds, see: Ibragimov & Talipov (1999, 2004); Ibragimov et al. (1997); Gdaniec et al. (1996); Talipov et al. (1988).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for title compound.
1,1',6,6',7,7'-Hexahydroxy-5,5'-diisopropyl-3,3'-dimethyl[2,2'-binaphthalene]-8,8'-dicarbaldehyde top
Crystal data top
C30H30O8Dx = 1.213 Mg m3
Mr = 518.54Melting point: 455 K
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 21.2196 (4) ÅCell parameters from 6170 reflections
b = 19.0886 (2) Åθ = 3.9–75.6°
c = 15.2564 (2) ŵ = 0.73 mm1
β = 113.262 (2)°T = 293 K
V = 5677.29 (16) Å3Prism, light brown
Z = 80.30 × 0.30 × 0.30 mm
F(000) = 2192
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
5810 independent reflections
Radiation source: fine-focus sealed tube4382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.2576 pixels mm-1θmax = 75.8°, θmin = 3.9°
ω scansh = 2625
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2320
Tmin = 0.730, Tmax = 1.000l = 1719
13408 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0994P)2 + 0.2158P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.161(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.44 e Å3
5810 reflectionsΔρmin = 0.30 e Å3
374 parametersExtinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00026 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C30H30O8V = 5677.29 (16) Å3
Mr = 518.54Z = 8
Monoclinic, C2/cCu Kα radiation
a = 21.2196 (4) ŵ = 0.73 mm1
b = 19.0886 (2) ÅT = 293 K
c = 15.2564 (2) Å0.30 × 0.30 × 0.30 mm
β = 113.262 (2)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
5810 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4382 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 1.000Rint = 0.021
13408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.44 e Å3
5810 reflectionsΔρmin = 0.30 e Å3
374 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.40 (release 27-04-2009 CrysAlis171 .NET) (compiled Apr 27 2009,10:20:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04702 (8)0.15341 (8)0.55658 (11)0.0429 (3)
C20.10359 (8)0.18397 (8)0.54801 (11)0.0447 (3)
C30.16553 (8)0.14655 (9)0.57686 (13)0.0547 (4)
C40.16876 (9)0.08045 (9)0.61308 (14)0.0564 (4)
H40.21000.05620.63220.068*
C50.11810 (9)0.02370 (8)0.65817 (12)0.0518 (4)
C60.06006 (9)0.05514 (8)0.65630 (12)0.0512 (4)
C70.00297 (9)0.01904 (8)0.62878 (11)0.0480 (4)
C80.00888 (8)0.05136 (8)0.60352 (11)0.0465 (3)
C90.04970 (8)0.08525 (8)0.59537 (11)0.0433 (3)
C100.11255 (8)0.04756 (8)0.62278 (12)0.0472 (4)
C110.09182 (8)0.26474 (7)0.41457 (11)0.0428 (3)
C120.09891 (8)0.25641 (7)0.50805 (11)0.0427 (3)
C130.10483 (9)0.31582 (8)0.56537 (11)0.0477 (4)
C140.10549 (9)0.38096 (8)0.52707 (11)0.0466 (4)
H140.10900.42020.56490.056*
C150.10583 (9)0.46057 (7)0.39810 (11)0.0479 (4)
C160.10033 (11)0.46668 (8)0.30665 (13)0.0605 (5)
C170.08923 (10)0.40867 (9)0.24522 (12)0.0559 (4)
C180.08645 (8)0.34087 (7)0.27596 (11)0.0434 (3)
C190.09259 (7)0.33132 (7)0.37324 (10)0.0393 (3)
C200.10103 (7)0.39099 (7)0.43325 (10)0.0407 (3)
C210.22811 (10)0.17856 (12)0.5684 (2)0.0817 (7)
H21A0.21760.19050.50300.123*
H21B0.26520.14550.58990.123*
H21C0.24130.22010.60700.123*
C220.07150 (10)0.08521 (11)0.59498 (18)0.0725 (6)
H220.07470.13360.58720.087*
C230.18663 (11)0.06196 (10)0.69912 (17)0.0703 (6)
H230.22140.03000.69470.084*
C240.18936 (15)0.12839 (16)0.6460 (2)0.1056 (9)
H24A0.15780.16210.65200.158*
H24B0.23500.14730.67250.158*
H24C0.17710.11780.57980.158*
C250.20640 (17)0.0777 (2)0.8058 (2)0.1318 (14)
H25A0.20670.03480.83900.198*
H25B0.25120.09860.83200.198*
H25C0.17360.10940.81280.198*
C260.11096 (13)0.30777 (10)0.66665 (13)0.0706 (6)
H26A0.06930.28810.66660.106*
H26B0.11880.35280.69710.106*
H26C0.14870.27720.70070.106*
C270.07713 (11)0.28657 (9)0.20641 (13)0.0591 (4)
H270.07760.24040.22600.071*
C280.11809 (12)0.52550 (8)0.46049 (13)0.0629 (5)
H280.12170.50970.52340.075*
C290.05884 (17)0.57648 (13)0.4239 (2)0.1027 (9)
H29A0.05330.59280.36180.154*
H29B0.06800.61560.46680.154*
H29C0.01760.55340.41990.154*
C300.18621 (17)0.56118 (16)0.4751 (2)0.1138 (11)
H30A0.22130.52630.48780.171*
H30B0.19870.59290.52810.171*
H30C0.18130.58670.41850.171*
O10.01395 (6)0.18820 (6)0.52761 (9)0.0547 (3)
O20.12161 (8)0.05299 (9)0.59743 (15)0.0931 (6)
O30.05495 (7)0.05604 (7)0.63411 (10)0.0615 (3)
O40.06055 (9)0.12336 (6)0.68412 (11)0.0692 (4)
O50.08350 (7)0.20689 (6)0.35806 (9)0.0590 (3)
O60.06858 (8)0.29704 (7)0.12265 (9)0.0644 (4)
O70.08315 (11)0.42438 (8)0.15667 (10)0.0847 (5)
O80.10566 (13)0.53046 (7)0.26920 (13)0.1047 (8)
H10.0135 (11)0.2226 (13)0.4879 (17)0.077 (7)*
H30.0864 (15)0.0220 (15)0.6236 (19)0.095 (9)*
H50.0875 (12)0.1717 (13)0.3922 (16)0.075 (7)*
H70.0769 (15)0.3820 (18)0.126 (2)0.111 (10)*
H4A0.0132 (19)0.1253 (18)0.680 (3)0.147 (13)*
H80.094 (2)0.523 (2)0.209 (3)0.150 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0461 (8)0.0365 (7)0.0473 (7)0.0015 (6)0.0197 (6)0.0053 (6)
C20.0508 (8)0.0338 (7)0.0500 (8)0.0038 (6)0.0206 (7)0.0057 (6)
C30.0477 (9)0.0472 (8)0.0699 (10)0.0027 (7)0.0240 (8)0.0120 (8)
C40.0468 (9)0.0466 (9)0.0758 (11)0.0064 (7)0.0242 (8)0.0159 (8)
C50.0574 (9)0.0379 (8)0.0594 (9)0.0047 (7)0.0224 (8)0.0097 (7)
C60.0695 (10)0.0341 (7)0.0532 (9)0.0007 (7)0.0275 (8)0.0091 (6)
C70.0574 (9)0.0423 (8)0.0479 (8)0.0098 (7)0.0246 (7)0.0035 (6)
C80.0485 (8)0.0411 (7)0.0512 (8)0.0023 (6)0.0213 (7)0.0078 (6)
C90.0474 (8)0.0357 (7)0.0476 (7)0.0029 (6)0.0198 (6)0.0047 (6)
C100.0502 (8)0.0361 (7)0.0543 (8)0.0005 (6)0.0197 (7)0.0085 (6)
C110.0479 (8)0.0323 (7)0.0509 (8)0.0046 (6)0.0224 (6)0.0012 (6)
C120.0448 (8)0.0337 (7)0.0506 (8)0.0049 (6)0.0199 (6)0.0045 (6)
C130.0583 (9)0.0410 (8)0.0445 (8)0.0044 (7)0.0209 (7)0.0028 (6)
C140.0616 (9)0.0335 (7)0.0466 (8)0.0037 (6)0.0233 (7)0.0017 (6)
C150.0642 (10)0.0327 (7)0.0498 (8)0.0031 (6)0.0256 (7)0.0002 (6)
C160.0982 (14)0.0334 (7)0.0564 (9)0.0045 (8)0.0377 (10)0.0046 (7)
C170.0837 (12)0.0442 (8)0.0472 (8)0.0039 (8)0.0336 (8)0.0027 (7)
C180.0487 (8)0.0366 (7)0.0474 (8)0.0038 (6)0.0217 (6)0.0010 (6)
C190.0396 (7)0.0347 (7)0.0449 (7)0.0022 (5)0.0179 (6)0.0016 (6)
C200.0445 (7)0.0328 (6)0.0453 (7)0.0029 (5)0.0184 (6)0.0018 (6)
C210.0505 (10)0.0701 (13)0.1269 (19)0.0021 (9)0.0375 (11)0.0316 (13)
C220.0609 (11)0.0571 (10)0.1109 (17)0.0042 (9)0.0459 (11)0.0266 (11)
C230.0620 (11)0.0503 (10)0.0965 (15)0.0120 (8)0.0291 (10)0.0236 (10)
C240.0982 (19)0.0973 (19)0.123 (2)0.0388 (16)0.0454 (17)0.0012 (17)
C250.097 (2)0.178 (3)0.0897 (19)0.064 (2)0.0040 (15)0.005 (2)
C260.1167 (17)0.0480 (9)0.0512 (9)0.0095 (10)0.0375 (10)0.0026 (8)
C270.0861 (13)0.0436 (8)0.0529 (9)0.0074 (8)0.0332 (9)0.0031 (7)
C280.1036 (15)0.0339 (7)0.0555 (9)0.0079 (8)0.0361 (10)0.0011 (7)
C290.146 (3)0.0668 (14)0.0910 (17)0.0310 (15)0.0415 (17)0.0126 (12)
C300.132 (3)0.0823 (17)0.120 (2)0.0452 (17)0.0423 (19)0.0307 (16)
O10.0512 (6)0.0445 (6)0.0724 (8)0.0076 (5)0.0288 (6)0.0194 (5)
O20.0632 (9)0.0838 (11)0.1484 (16)0.0039 (7)0.0589 (10)0.0385 (10)
O30.0680 (8)0.0479 (7)0.0764 (8)0.0133 (6)0.0369 (7)0.0076 (6)
O40.0928 (10)0.0367 (6)0.0868 (10)0.0017 (6)0.0449 (8)0.0167 (6)
O50.0923 (9)0.0322 (5)0.0590 (7)0.0084 (6)0.0367 (6)0.0027 (5)
O60.0897 (9)0.0578 (7)0.0516 (7)0.0050 (6)0.0343 (6)0.0086 (5)
O70.1637 (17)0.0497 (7)0.0551 (8)0.0093 (9)0.0587 (9)0.0028 (6)
O80.222 (2)0.0387 (7)0.0723 (10)0.0190 (10)0.0786 (13)0.0043 (6)
Geometric parameters (Å, º) top
C1—C21.387 (2)C19—C201.428 (2)
C1—C91.421 (2)C21—H21A0.9600
C1—O11.3633 (18)C21—H21B0.9600
C2—C31.405 (2)C21—H21C0.9600
C2—C121.4985 (19)C22—H220.9300
C3—C41.368 (2)C22—O21.242 (2)
C3—C211.513 (2)C23—H230.9800
C4—H40.9300C23—C241.519 (4)
C4—C101.406 (2)C23—C251.541 (4)
C5—C61.360 (2)C24—H24A0.9600
C5—C101.451 (2)C24—H24B0.9600
C5—C231.523 (2)C24—H24C0.9600
C6—C71.413 (2)C25—H25A0.9600
C6—O41.3685 (18)C25—H25B0.9600
C7—C81.390 (2)C25—H25C0.9600
C7—O31.3392 (19)C26—H26A0.9600
C8—C91.450 (2)C26—H26B0.9600
C8—C221.436 (2)C26—H26C0.9600
C9—C101.425 (2)C27—H270.9300
C11—C121.383 (2)C27—O61.234 (2)
C11—C191.4218 (19)C28—H280.9800
C11—O51.3688 (18)C28—C291.512 (3)
C12—C131.407 (2)C28—C301.533 (4)
C13—C141.376 (2)C29—H29A0.9600
C13—C261.507 (2)C29—H29B0.9600
C14—H140.9300C29—H29C0.9600
C14—C201.410 (2)C30—H30A0.9600
C15—C161.358 (2)C30—H30B0.9600
C15—C201.4509 (19)C30—H30C0.9600
C15—C281.521 (2)O1—H10.90 (2)
C16—C171.409 (2)O3—H30.90 (3)
C16—O81.368 (2)O4—H4A0.98 (4)
C17—C181.386 (2)O5—H50.83 (2)
C17—O71.339 (2)O7—H70.92 (3)
C18—C191.449 (2)O8—H80.87 (4)
C18—C271.440 (2)
C2—C1—C9122.05 (14)C3—C21—H21A109.5
O1—C1—C2120.70 (13)C3—C21—H21B109.5
O1—C1—C9117.25 (13)C3—C21—H21C109.5
C1—C2—C3119.61 (14)H21A—C21—H21B109.5
C1—C2—C12120.39 (14)H21A—C21—H21C109.5
C3—C2—C12120.00 (13)H21B—C21—H21C109.5
C2—C3—C21120.78 (15)C8—C22—H22118.4
C4—C3—C2119.13 (15)O2—C22—C8123.15 (18)
C4—C3—C21120.08 (16)O2—C22—H22118.4
C3—C4—H4118.5C5—C23—H23107.2
C3—C4—C10123.02 (15)C5—C23—C25110.12 (19)
C10—C4—H4118.5C24—C23—C5114.39 (19)
C6—C5—C10117.78 (15)C24—C23—H23107.2
C6—C5—C23120.46 (15)C24—C23—C25110.5 (2)
C10—C5—C23121.73 (16)C25—C23—H23107.2
C5—C6—C7122.28 (14)C23—C24—H24A109.5
C5—C6—O4121.16 (16)C23—C24—H24B109.5
O4—C6—C7116.53 (15)C23—C24—H24C109.5
C8—C7—C6121.68 (14)H24A—C24—H24B109.5
O3—C7—C6115.50 (14)H24A—C24—H24C109.5
O3—C7—C8122.71 (16)H24B—C24—H24C109.5
C7—C8—C9117.94 (14)C23—C25—H25A109.5
C7—C8—C22116.05 (14)C23—C25—H25B109.5
C22—C8—C9125.83 (14)C23—C25—H25C109.5
C1—C9—C8123.34 (14)H25A—C25—H25B109.5
C1—C9—C10117.61 (13)H25A—C25—H25C109.5
C10—C9—C8118.97 (13)H25B—C25—H25C109.5
C4—C10—C5120.68 (15)C13—C26—H26A109.5
C4—C10—C9118.55 (13)C13—C26—H26B109.5
C9—C10—C5120.76 (14)C13—C26—H26C109.5
C12—C11—C19122.99 (13)H26A—C26—H26B109.5
O5—C11—C12119.42 (13)H26A—C26—H26C109.5
O5—C11—C19117.59 (13)H26B—C26—H26C109.5
C11—C12—C2119.23 (13)C18—C27—H27117.7
C11—C12—C13119.66 (13)O6—C27—C18124.58 (16)
C13—C12—C2121.04 (14)O6—C27—H27117.7
C12—C13—C26120.37 (14)C15—C28—H28106.9
C14—C13—C12118.54 (14)C15—C28—C30111.80 (19)
C14—C13—C26121.09 (15)C29—C28—C15112.44 (18)
C13—C14—H14118.5C29—C28—H28106.9
C13—C14—C20123.09 (14)C29—C28—C30111.5 (2)
C20—C14—H14118.5C30—C28—H28106.9
C16—C15—C20117.91 (14)C28—C29—H29A109.5
C16—C15—C28119.79 (14)C28—C29—H29B109.5
C20—C15—C28122.29 (14)C28—C29—H29C109.5
C15—C16—C17122.66 (14)H29A—C29—H29B109.5
C15—C16—O8121.16 (15)H29A—C29—H29C109.5
O8—C16—C17116.18 (15)H29B—C29—H29C109.5
C18—C17—C16121.81 (14)C28—C30—H30A109.5
O7—C17—C16114.77 (15)C28—C30—H30B109.5
O7—C17—C18123.41 (15)C28—C30—H30C109.5
C17—C18—C19117.74 (13)H30A—C30—H30B109.5
C17—C18—C27115.76 (14)H30A—C30—H30C109.5
C27—C18—C19126.49 (14)H30B—C30—H30C109.5
C11—C19—C18123.67 (13)C1—O1—H1108.3 (15)
C11—C19—C20116.70 (13)C7—O3—H3100.3 (18)
C20—C19—C18119.62 (12)C6—O4—H4A98 (2)
C14—C20—C15120.88 (13)C11—O5—H5107.5 (16)
C14—C20—C19118.94 (12)C17—O7—H7104.4 (19)
C19—C20—C15120.17 (13)C16—O8—H8105 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.90 (2)2.16 (2)2.9692 (17)150 (2)
O3—H3···O20.90 (3)1.59 (3)2.454 (2)160 (3)
O5—H5···O3ii0.83 (2)2.30 (2)2.9546 (17)136 (2)
O4—H4A···O30.98 (4)1.88 (4)2.601 (2)128 (3)
O4—H4A···O5ii0.98 (4)2.46 (4)3.278 (2)141 (3)
O7—H7···O60.92 (3)1.63 (3)2.479 (2)152 (3)
O8—H8···O70.87 (4)2.02 (4)2.575 (2)120 (3)
C22—H22···O10.932.122.721 (2)121
C26—H26B···O8iii0.962.553.483 (2)165
C27—H27···O4iv0.932.313.138 (2)148
C27—H27···O50.932.072.727 (2)127
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1; (iii) x, y+1, z+1/2; (iv) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O6i0.90 (2)2.16 (2)2.9692 (17)150 (2)
O3—H3···O20.90 (3)1.59 (3)2.454 (2)160 (3)
O5—H5···O3ii0.83 (2)2.30 (2)2.9546 (17)136 (2)
O4—H4A···O30.98 (4)1.88 (4)2.601 (2)128 (3)
O4—H4A···O5ii0.98 (4)2.46 (4)3.278 (2)141 (3)
O7—H7···O60.92 (3)1.63 (3)2.479 (2)152 (3)
O8—H8···O70.87 (4)2.02 (4)2.575 (2)120 (3)
C22—H22···O10.932.122.721 (2)121
C26—H26B···O8iii0.962.553.483 (2)165
C27—H27···O4iv0.932.313.138 (2)148
C27—H27···O50.932.072.727 (2)127
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1; (iii) x, y+1, z+1/2; (iv) x, y, z1/2.
 

Acknowledgements

We thank the Academy of Sciencesof the Republic of Uzbek­istan for supporting this study (F7-T048).

References

First citationAdams, R., Geissman, T. A. & Edwards, J. D. (1960). Chem. Rev. 60, 555–574.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBaram, N. I. & Ismailov, A. I. (1993). Khim. Prir. Soedin. p. 334.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGdaniec, M., Ibragimov, B. T. & Talipov, S. A. (1996). Gossypol, edited by D. D. MacNicol, F. Toda & R. Bishop, Solid-state supramolecular chemistry: crystal engineering, Vol. 6, Comprehensive supramolecular chemistry, pp. 117–146. Oxford: Pergamon Press.  Google Scholar
First citationIbragimov, B. T. & Talipov, S. A. (1999). J. Struct. Chem. 40, 686–704.  Web of Science CrossRef CAS Google Scholar
First citationIbragimov, B. T. & Talipov, S. A. (2004). Gossypol, in Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 606–614. New York: Dekker.  Google Scholar
First citationIbragimov, B. T., Tiljakov, Z. G., Beketov, K. M. & Talipov, S. A. (1997). J. Inclusion Phenom. Mol. Recognit. Chem. 27, 99–104.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPolsky, B., Segal, S. J., Baron, P. A., Gold, J. W. M., Ueno, H. & Armstrong, D. (1989). Contraception, 39, 579–587.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRadloff, R. I., Deck, L. M., Royer, R. E. & Vander Jagt, D. L. (1985). Pharmacol. Res. Commun. 18, 1063.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTalipov, S. A., Ibragimov, B. T., Nazarov, G. B., Aripov, T. F. & Sadikov, A. S. (1985). Khim. Prir. Soedin (Russ.) (Chem. Nat. Compd.), pp. 835–836.  Google Scholar
First citationTalipov, S. A., Ibragimov, B. T., Tishchenko, G. N., Aripov, T. F., Nazarov, G. B., Strokopytov, B. V. & Polyakov, K. M. (1988). Kristallografiya, 33, 384–389.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o442-o443
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds