organic compounds
Redetermined structure of gossypol (P3 polymorph)
aInstitute of Biorganic Chemistry, Mirzo-Ulughbek Str. 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: muhabbat.n75@mail.ru
An improved 30H30O8 (systematic name: 1,1′,6,6′,7,7′-hexahydroxy-5,5′-diisopropyl-3,3′-dimethyl[2,2′-binaphthalene]-8,8′-dicarbaldehyde), was determined based on modern CCD data. Compared to the previous structure [Talipov et al. (1985). Khim. Prirod. Soedin. (Chem. Nat. Prod.), 6, 20–24], geometrical precision has been improved (typical C—C bond-distance s.u. = 0.002 Å in the present structure compared to 0.005 Å in the previous structure) and the locations of several H atoms have been corrected. The gossypol molecules are in the aldehyde tautomeric form and the dihedral angle between the naphthyl fragments is 80.42 (4)°. Four intramolecular O—H⋯O hydrogen bonds are formed. In the crystal, inversion dimers with graph-set motif R22(20) are formed by pairs of O—H⋯O hydrogen bonds; another pair of O—H⋯O hydrogen bonds with the same graph-set motif links the dimers into [001] chains. The packing of such chains in the crystal leads to the formation of channels (diameter = 5–8 Å) propagating in the [101] direction. The channels presumably contain highly disordered solvent molecules; their contribution to the scattering was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON and the stated molecular etc., do not take them into account.
of the title compound, CKeywords: crystal structure; redetermination; gossypol; polymorph; hydrogen bonding.
CCDC reference: 1401388
1. Related literature
For the previous P3 polymorph, see: Talipov et al., (1985). For details of the extraction and synthesis of gossypol and its derivatives, see: Adams et al. (1960). For its synthesis and biological activities, see: Baram & Ismailov (1993); Polsky et al. (1989); Radloff et al. (1985). For information on crystalline inclusion compounds, see: Ibragimov & Talipov (1999, 2004); Ibragimov et al. (1997); Gdaniec et al. (1996); Talipov et al. (1988). For the use of SQUEEZE, see: Spek (2015).
of gossypol2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1401388
10.1107/S205698901500941X/hb7412sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S205698901500941X/hb7412Isup2.hkl
Supporting information file. DOI: 10.1107/S205698901500941X/hb7412Isup3.cml
Comment
Gossypol, a phenolic pigment extracted from cotton seeds [Adams et al., 1960], demonstrates a wide range of biological activity [Baram et al., 1993; Polsky et al., 1989: Radloff et al.,1985] and versatile host properties [Ibragimov, Talipov. 1999; 2004; Gdaniec et al., 1996]. Unique ability as a host compound to form crystalline inclusion compounds with many organic solvents makes gossypol an interesting object of solid supramolecular chemistry. Gossypol has also been found to form pseudopolymorphic structures with same guest molecule, e.g.,
formed with dichloromethane [Ibragimov et al., 1997] and diethyl ether [Talipov et al., 1988]. Unsolvated polymorphs of the compound are also known [Gdaniec et al., 1996]. In the crystal of the title compound, gossypol (1,1',6,6',7,7'-hexahydroxy -5,5'diisopropyl - 3,3'dimethyl[2,2' - binaphthalene] - 8,8'- dicarboxaldehyde), C30H30O8, is one independent molecule in the asymmetric part of the The crystals of the title compound were obtained after decomposition of gossypol clathrate with dichloromethane, where the single crystals are not destroyed and their cell volumes are only reduced by ~4%. In the title compound gossypol molecules are in the aldehyde tautomeric form (Fig. 1). H-bonds O4—H···O3 (O8—H···O7) and O3—H···O2 (O7—H···O6) form five- and six-membered rings. Naphthyl fragments C(1)—C(10) (C7 0.07A) and C(11)—C(20) (C12 0.04 A) are planar and dihedral angle between their planes are equal to 80.42 (4)°. One of the most commonly found associations is a centrosymmetric dimer that is linked by two pairs O5–H···O3 and O4–H···O5 hydrogen bonds and hydrophobic stacking interactions between two of the naphthalene rings [Gdaniec et al., 1996]. In the title crystal centrosymmetric dimers are formed as above, these assemble into extended serpentine chains by other pair of hydrogen bonds O1—H···O6 directed along the c axis through a twofold rotation axis with direction [0 1 0]. The packing of such chains in the crystal leads to the formation of broadly rough channels (Fig. 2) (where diameter varied 5-7 A), parallel to the ac diagonal.Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The molecular structure of title compound, with displacement ellipsoids shown at the 50% probability level. | |
Fig. 2. A packing diagram for title compound. |
C30H30O8 | Dx = 1.213 Mg m−3 |
Mr = 518.54 | Melting point: 455 K |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 21.2196 (4) Å | Cell parameters from 6170 reflections |
b = 19.0886 (2) Å | θ = 3.9–75.6° |
c = 15.2564 (2) Å | µ = 0.73 mm−1 |
β = 113.262 (2)° | T = 293 K |
V = 5677.29 (16) Å3 | Prism, light brown |
Z = 8 | 0.30 × 0.30 × 0.30 mm |
F(000) = 2192 |
Oxford Diffraction Xcalibur Ruby diffractometer | 5810 independent reflections |
Radiation source: fine-focus sealed tube | 4382 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 75.8°, θmin = 3.9° |
ω scans | h = −26→25 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −23→20 |
Tmin = 0.730, Tmax = 1.000 | l = −17→19 |
13408 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.047 | w = 1/[σ2(Fo2) + (0.0994P)2 + 0.2158P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.161 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.44 e Å−3 |
5810 reflections | Δρmin = −0.30 e Å−3 |
374 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00026 (5) |
Primary atom site location: structure-invariant direct methods |
C30H30O8 | V = 5677.29 (16) Å3 |
Mr = 518.54 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 21.2196 (4) Å | µ = 0.73 mm−1 |
b = 19.0886 (2) Å | T = 293 K |
c = 15.2564 (2) Å | 0.30 × 0.30 × 0.30 mm |
β = 113.262 (2)° |
Oxford Diffraction Xcalibur Ruby diffractometer | 5810 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 4382 reflections with I > 2σ(I) |
Tmin = 0.730, Tmax = 1.000 | Rint = 0.021 |
13408 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.161 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.44 e Å−3 |
5810 reflections | Δρmin = −0.30 e Å−3 |
374 parameters |
Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.40 (release 27-04-2009 CrysAlis171 .NET) (compiled Apr 27 2009,10:20:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.04702 (8) | 0.15341 (8) | 0.55658 (11) | 0.0429 (3) | |
C2 | 0.10359 (8) | 0.18397 (8) | 0.54801 (11) | 0.0447 (3) | |
C3 | 0.16553 (8) | 0.14655 (9) | 0.57686 (13) | 0.0547 (4) | |
C4 | 0.16876 (9) | 0.08045 (9) | 0.61308 (14) | 0.0564 (4) | |
H4 | 0.2100 | 0.0562 | 0.6322 | 0.068* | |
C5 | 0.11810 (9) | −0.02370 (8) | 0.65817 (12) | 0.0518 (4) | |
C6 | 0.06006 (9) | −0.05514 (8) | 0.65630 (12) | 0.0512 (4) | |
C7 | −0.00297 (9) | −0.01904 (8) | 0.62878 (11) | 0.0480 (4) | |
C8 | −0.00888 (8) | 0.05136 (8) | 0.60352 (11) | 0.0465 (3) | |
C9 | 0.04970 (8) | 0.08525 (8) | 0.59537 (11) | 0.0433 (3) | |
C10 | 0.11255 (8) | 0.04756 (8) | 0.62278 (12) | 0.0472 (4) | |
C11 | 0.09182 (8) | 0.26474 (7) | 0.41457 (11) | 0.0428 (3) | |
C12 | 0.09891 (8) | 0.25641 (7) | 0.50805 (11) | 0.0427 (3) | |
C13 | 0.10483 (9) | 0.31582 (8) | 0.56537 (11) | 0.0477 (4) | |
C14 | 0.10549 (9) | 0.38096 (8) | 0.52707 (11) | 0.0466 (4) | |
H14 | 0.1090 | 0.4202 | 0.5649 | 0.056* | |
C15 | 0.10583 (9) | 0.46057 (7) | 0.39810 (11) | 0.0479 (4) | |
C16 | 0.10033 (11) | 0.46668 (8) | 0.30665 (13) | 0.0605 (5) | |
C17 | 0.08923 (10) | 0.40867 (9) | 0.24522 (12) | 0.0559 (4) | |
C18 | 0.08645 (8) | 0.34087 (7) | 0.27596 (11) | 0.0434 (3) | |
C19 | 0.09259 (7) | 0.33132 (7) | 0.37324 (10) | 0.0393 (3) | |
C20 | 0.10103 (7) | 0.39099 (7) | 0.43325 (10) | 0.0407 (3) | |
C21 | 0.22811 (10) | 0.17856 (12) | 0.5684 (2) | 0.0817 (7) | |
H21A | 0.2176 | 0.1905 | 0.5030 | 0.123* | |
H21B | 0.2652 | 0.1455 | 0.5899 | 0.123* | |
H21C | 0.2413 | 0.2201 | 0.6070 | 0.123* | |
C22 | −0.07150 (10) | 0.08521 (11) | 0.59498 (18) | 0.0725 (6) | |
H22 | −0.0747 | 0.1336 | 0.5872 | 0.087* | |
C23 | 0.18663 (11) | −0.06196 (10) | 0.69912 (17) | 0.0703 (6) | |
H23 | 0.2214 | −0.0300 | 0.6947 | 0.084* | |
C24 | 0.18936 (15) | −0.12839 (16) | 0.6460 (2) | 0.1056 (9) | |
H24A | 0.1578 | −0.1621 | 0.6520 | 0.158* | |
H24B | 0.2350 | −0.1473 | 0.6725 | 0.158* | |
H24C | 0.1771 | −0.1178 | 0.5798 | 0.158* | |
C25 | 0.20640 (17) | −0.0777 (2) | 0.8058 (2) | 0.1318 (14) | |
H25A | 0.2067 | −0.0348 | 0.8390 | 0.198* | |
H25B | 0.2512 | −0.0986 | 0.8320 | 0.198* | |
H25C | 0.1736 | −0.1094 | 0.8128 | 0.198* | |
C26 | 0.11096 (13) | 0.30777 (10) | 0.66665 (13) | 0.0706 (6) | |
H26A | 0.0693 | 0.2881 | 0.6666 | 0.106* | |
H26B | 0.1188 | 0.3528 | 0.6971 | 0.106* | |
H26C | 0.1487 | 0.2772 | 0.7007 | 0.106* | |
C27 | 0.07713 (11) | 0.28657 (9) | 0.20641 (13) | 0.0591 (4) | |
H27 | 0.0776 | 0.2404 | 0.2260 | 0.071* | |
C28 | 0.11809 (12) | 0.52550 (8) | 0.46049 (13) | 0.0629 (5) | |
H28 | 0.1217 | 0.5097 | 0.5234 | 0.075* | |
C29 | 0.05884 (17) | 0.57648 (13) | 0.4239 (2) | 0.1027 (9) | |
H29A | 0.0533 | 0.5928 | 0.3618 | 0.154* | |
H29B | 0.0680 | 0.6156 | 0.4668 | 0.154* | |
H29C | 0.0176 | 0.5534 | 0.4199 | 0.154* | |
C30 | 0.18621 (17) | 0.56118 (16) | 0.4751 (2) | 0.1138 (11) | |
H30A | 0.2213 | 0.5263 | 0.4878 | 0.171* | |
H30B | 0.1987 | 0.5929 | 0.5281 | 0.171* | |
H30C | 0.1813 | 0.5867 | 0.4185 | 0.171* | |
O1 | −0.01395 (6) | 0.18820 (6) | 0.52761 (9) | 0.0547 (3) | |
O2 | −0.12161 (8) | 0.05299 (9) | 0.59743 (15) | 0.0931 (6) | |
O3 | −0.05495 (7) | −0.05604 (7) | 0.63411 (10) | 0.0615 (3) | |
O4 | 0.06055 (9) | −0.12336 (6) | 0.68412 (11) | 0.0692 (4) | |
O5 | 0.08350 (7) | 0.20689 (6) | 0.35806 (9) | 0.0590 (3) | |
O6 | 0.06858 (8) | 0.29704 (7) | 0.12265 (9) | 0.0644 (4) | |
O7 | 0.08315 (11) | 0.42438 (8) | 0.15667 (10) | 0.0847 (5) | |
O8 | 0.10566 (13) | 0.53046 (7) | 0.26920 (13) | 0.1047 (8) | |
H1 | −0.0135 (11) | 0.2226 (13) | 0.4879 (17) | 0.077 (7)* | |
H3 | −0.0864 (15) | −0.0220 (15) | 0.6236 (19) | 0.095 (9)* | |
H5 | 0.0875 (12) | 0.1717 (13) | 0.3922 (16) | 0.075 (7)* | |
H7 | 0.0769 (15) | 0.3820 (18) | 0.126 (2) | 0.111 (10)* | |
H4A | 0.0132 (19) | −0.1253 (18) | 0.680 (3) | 0.147 (13)* | |
H8 | 0.094 (2) | 0.523 (2) | 0.209 (3) | 0.150 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0461 (8) | 0.0365 (7) | 0.0473 (7) | 0.0015 (6) | 0.0197 (6) | 0.0053 (6) |
C2 | 0.0508 (8) | 0.0338 (7) | 0.0500 (8) | −0.0038 (6) | 0.0206 (7) | 0.0057 (6) |
C3 | 0.0477 (9) | 0.0472 (8) | 0.0699 (10) | −0.0027 (7) | 0.0240 (8) | 0.0120 (8) |
C4 | 0.0468 (9) | 0.0466 (9) | 0.0758 (11) | 0.0064 (7) | 0.0242 (8) | 0.0159 (8) |
C5 | 0.0574 (9) | 0.0379 (8) | 0.0594 (9) | 0.0047 (7) | 0.0224 (8) | 0.0097 (7) |
C6 | 0.0695 (10) | 0.0341 (7) | 0.0532 (9) | −0.0007 (7) | 0.0275 (8) | 0.0091 (6) |
C7 | 0.0574 (9) | 0.0423 (8) | 0.0479 (8) | −0.0098 (7) | 0.0246 (7) | 0.0035 (6) |
C8 | 0.0485 (8) | 0.0411 (7) | 0.0512 (8) | −0.0023 (6) | 0.0213 (7) | 0.0078 (6) |
C9 | 0.0474 (8) | 0.0357 (7) | 0.0476 (7) | −0.0029 (6) | 0.0198 (6) | 0.0047 (6) |
C10 | 0.0502 (8) | 0.0361 (7) | 0.0543 (8) | 0.0005 (6) | 0.0197 (7) | 0.0085 (6) |
C11 | 0.0479 (8) | 0.0323 (7) | 0.0509 (8) | −0.0046 (6) | 0.0224 (6) | −0.0012 (6) |
C12 | 0.0448 (8) | 0.0337 (7) | 0.0506 (8) | −0.0049 (6) | 0.0199 (6) | 0.0045 (6) |
C13 | 0.0583 (9) | 0.0410 (8) | 0.0445 (8) | −0.0044 (7) | 0.0209 (7) | 0.0028 (6) |
C14 | 0.0616 (9) | 0.0335 (7) | 0.0466 (8) | −0.0037 (6) | 0.0233 (7) | −0.0017 (6) |
C15 | 0.0642 (10) | 0.0327 (7) | 0.0498 (8) | −0.0031 (6) | 0.0256 (7) | 0.0002 (6) |
C16 | 0.0982 (14) | 0.0334 (7) | 0.0564 (9) | −0.0045 (8) | 0.0377 (10) | 0.0046 (7) |
C17 | 0.0837 (12) | 0.0442 (8) | 0.0472 (8) | −0.0039 (8) | 0.0336 (8) | 0.0027 (7) |
C18 | 0.0487 (8) | 0.0366 (7) | 0.0474 (8) | −0.0038 (6) | 0.0217 (6) | −0.0010 (6) |
C19 | 0.0396 (7) | 0.0347 (7) | 0.0449 (7) | −0.0022 (5) | 0.0179 (6) | 0.0016 (6) |
C20 | 0.0445 (7) | 0.0328 (6) | 0.0453 (7) | −0.0029 (5) | 0.0184 (6) | 0.0018 (6) |
C21 | 0.0505 (10) | 0.0701 (13) | 0.1269 (19) | −0.0021 (9) | 0.0375 (11) | 0.0316 (13) |
C22 | 0.0609 (11) | 0.0571 (10) | 0.1109 (17) | 0.0042 (9) | 0.0459 (11) | 0.0266 (11) |
C23 | 0.0620 (11) | 0.0503 (10) | 0.0965 (15) | 0.0120 (8) | 0.0291 (10) | 0.0236 (10) |
C24 | 0.0982 (19) | 0.0973 (19) | 0.123 (2) | 0.0388 (16) | 0.0454 (17) | 0.0012 (17) |
C25 | 0.097 (2) | 0.178 (3) | 0.0897 (19) | 0.064 (2) | 0.0040 (15) | 0.005 (2) |
C26 | 0.1167 (17) | 0.0480 (9) | 0.0512 (9) | −0.0095 (10) | 0.0375 (10) | 0.0026 (8) |
C27 | 0.0861 (13) | 0.0436 (8) | 0.0529 (9) | −0.0074 (8) | 0.0332 (9) | −0.0031 (7) |
C28 | 0.1036 (15) | 0.0339 (7) | 0.0555 (9) | −0.0079 (8) | 0.0361 (10) | −0.0011 (7) |
C29 | 0.146 (3) | 0.0668 (14) | 0.0910 (17) | 0.0310 (15) | 0.0415 (17) | −0.0126 (12) |
C30 | 0.132 (3) | 0.0823 (17) | 0.120 (2) | −0.0452 (17) | 0.0423 (19) | −0.0307 (16) |
O1 | 0.0512 (6) | 0.0445 (6) | 0.0724 (8) | 0.0076 (5) | 0.0288 (6) | 0.0194 (5) |
O2 | 0.0632 (9) | 0.0838 (11) | 0.1484 (16) | 0.0039 (7) | 0.0589 (10) | 0.0385 (10) |
O3 | 0.0680 (8) | 0.0479 (7) | 0.0764 (8) | −0.0133 (6) | 0.0369 (7) | 0.0076 (6) |
O4 | 0.0928 (10) | 0.0367 (6) | 0.0868 (10) | 0.0017 (6) | 0.0449 (8) | 0.0167 (6) |
O5 | 0.0923 (9) | 0.0322 (5) | 0.0590 (7) | −0.0084 (6) | 0.0367 (6) | −0.0027 (5) |
O6 | 0.0897 (9) | 0.0578 (7) | 0.0516 (7) | −0.0050 (6) | 0.0343 (6) | −0.0086 (5) |
O7 | 0.1637 (17) | 0.0497 (7) | 0.0551 (8) | −0.0093 (9) | 0.0587 (9) | 0.0028 (6) |
O8 | 0.222 (2) | 0.0387 (7) | 0.0723 (10) | −0.0190 (10) | 0.0786 (13) | 0.0043 (6) |
C1—C2 | 1.387 (2) | C19—C20 | 1.428 (2) |
C1—C9 | 1.421 (2) | C21—H21A | 0.9600 |
C1—O1 | 1.3633 (18) | C21—H21B | 0.9600 |
C2—C3 | 1.405 (2) | C21—H21C | 0.9600 |
C2—C12 | 1.4985 (19) | C22—H22 | 0.9300 |
C3—C4 | 1.368 (2) | C22—O2 | 1.242 (2) |
C3—C21 | 1.513 (2) | C23—H23 | 0.9800 |
C4—H4 | 0.9300 | C23—C24 | 1.519 (4) |
C4—C10 | 1.406 (2) | C23—C25 | 1.541 (4) |
C5—C6 | 1.360 (2) | C24—H24A | 0.9600 |
C5—C10 | 1.451 (2) | C24—H24B | 0.9600 |
C5—C23 | 1.523 (2) | C24—H24C | 0.9600 |
C6—C7 | 1.413 (2) | C25—H25A | 0.9600 |
C6—O4 | 1.3685 (18) | C25—H25B | 0.9600 |
C7—C8 | 1.390 (2) | C25—H25C | 0.9600 |
C7—O3 | 1.3392 (19) | C26—H26A | 0.9600 |
C8—C9 | 1.450 (2) | C26—H26B | 0.9600 |
C8—C22 | 1.436 (2) | C26—H26C | 0.9600 |
C9—C10 | 1.425 (2) | C27—H27 | 0.9300 |
C11—C12 | 1.383 (2) | C27—O6 | 1.234 (2) |
C11—C19 | 1.4218 (19) | C28—H28 | 0.9800 |
C11—O5 | 1.3688 (18) | C28—C29 | 1.512 (3) |
C12—C13 | 1.407 (2) | C28—C30 | 1.533 (4) |
C13—C14 | 1.376 (2) | C29—H29A | 0.9600 |
C13—C26 | 1.507 (2) | C29—H29B | 0.9600 |
C14—H14 | 0.9300 | C29—H29C | 0.9600 |
C14—C20 | 1.410 (2) | C30—H30A | 0.9600 |
C15—C16 | 1.358 (2) | C30—H30B | 0.9600 |
C15—C20 | 1.4509 (19) | C30—H30C | 0.9600 |
C15—C28 | 1.521 (2) | O1—H1 | 0.90 (2) |
C16—C17 | 1.409 (2) | O3—H3 | 0.90 (3) |
C16—O8 | 1.368 (2) | O4—H4A | 0.98 (4) |
C17—C18 | 1.386 (2) | O5—H5 | 0.83 (2) |
C17—O7 | 1.339 (2) | O7—H7 | 0.92 (3) |
C18—C19 | 1.449 (2) | O8—H8 | 0.87 (4) |
C18—C27 | 1.440 (2) | ||
C2—C1—C9 | 122.05 (14) | C3—C21—H21A | 109.5 |
O1—C1—C2 | 120.70 (13) | C3—C21—H21B | 109.5 |
O1—C1—C9 | 117.25 (13) | C3—C21—H21C | 109.5 |
C1—C2—C3 | 119.61 (14) | H21A—C21—H21B | 109.5 |
C1—C2—C12 | 120.39 (14) | H21A—C21—H21C | 109.5 |
C3—C2—C12 | 120.00 (13) | H21B—C21—H21C | 109.5 |
C2—C3—C21 | 120.78 (15) | C8—C22—H22 | 118.4 |
C4—C3—C2 | 119.13 (15) | O2—C22—C8 | 123.15 (18) |
C4—C3—C21 | 120.08 (16) | O2—C22—H22 | 118.4 |
C3—C4—H4 | 118.5 | C5—C23—H23 | 107.2 |
C3—C4—C10 | 123.02 (15) | C5—C23—C25 | 110.12 (19) |
C10—C4—H4 | 118.5 | C24—C23—C5 | 114.39 (19) |
C6—C5—C10 | 117.78 (15) | C24—C23—H23 | 107.2 |
C6—C5—C23 | 120.46 (15) | C24—C23—C25 | 110.5 (2) |
C10—C5—C23 | 121.73 (16) | C25—C23—H23 | 107.2 |
C5—C6—C7 | 122.28 (14) | C23—C24—H24A | 109.5 |
C5—C6—O4 | 121.16 (16) | C23—C24—H24B | 109.5 |
O4—C6—C7 | 116.53 (15) | C23—C24—H24C | 109.5 |
C8—C7—C6 | 121.68 (14) | H24A—C24—H24B | 109.5 |
O3—C7—C6 | 115.50 (14) | H24A—C24—H24C | 109.5 |
O3—C7—C8 | 122.71 (16) | H24B—C24—H24C | 109.5 |
C7—C8—C9 | 117.94 (14) | C23—C25—H25A | 109.5 |
C7—C8—C22 | 116.05 (14) | C23—C25—H25B | 109.5 |
C22—C8—C9 | 125.83 (14) | C23—C25—H25C | 109.5 |
C1—C9—C8 | 123.34 (14) | H25A—C25—H25B | 109.5 |
C1—C9—C10 | 117.61 (13) | H25A—C25—H25C | 109.5 |
C10—C9—C8 | 118.97 (13) | H25B—C25—H25C | 109.5 |
C4—C10—C5 | 120.68 (15) | C13—C26—H26A | 109.5 |
C4—C10—C9 | 118.55 (13) | C13—C26—H26B | 109.5 |
C9—C10—C5 | 120.76 (14) | C13—C26—H26C | 109.5 |
C12—C11—C19 | 122.99 (13) | H26A—C26—H26B | 109.5 |
O5—C11—C12 | 119.42 (13) | H26A—C26—H26C | 109.5 |
O5—C11—C19 | 117.59 (13) | H26B—C26—H26C | 109.5 |
C11—C12—C2 | 119.23 (13) | C18—C27—H27 | 117.7 |
C11—C12—C13 | 119.66 (13) | O6—C27—C18 | 124.58 (16) |
C13—C12—C2 | 121.04 (14) | O6—C27—H27 | 117.7 |
C12—C13—C26 | 120.37 (14) | C15—C28—H28 | 106.9 |
C14—C13—C12 | 118.54 (14) | C15—C28—C30 | 111.80 (19) |
C14—C13—C26 | 121.09 (15) | C29—C28—C15 | 112.44 (18) |
C13—C14—H14 | 118.5 | C29—C28—H28 | 106.9 |
C13—C14—C20 | 123.09 (14) | C29—C28—C30 | 111.5 (2) |
C20—C14—H14 | 118.5 | C30—C28—H28 | 106.9 |
C16—C15—C20 | 117.91 (14) | C28—C29—H29A | 109.5 |
C16—C15—C28 | 119.79 (14) | C28—C29—H29B | 109.5 |
C20—C15—C28 | 122.29 (14) | C28—C29—H29C | 109.5 |
C15—C16—C17 | 122.66 (14) | H29A—C29—H29B | 109.5 |
C15—C16—O8 | 121.16 (15) | H29A—C29—H29C | 109.5 |
O8—C16—C17 | 116.18 (15) | H29B—C29—H29C | 109.5 |
C18—C17—C16 | 121.81 (14) | C28—C30—H30A | 109.5 |
O7—C17—C16 | 114.77 (15) | C28—C30—H30B | 109.5 |
O7—C17—C18 | 123.41 (15) | C28—C30—H30C | 109.5 |
C17—C18—C19 | 117.74 (13) | H30A—C30—H30B | 109.5 |
C17—C18—C27 | 115.76 (14) | H30A—C30—H30C | 109.5 |
C27—C18—C19 | 126.49 (14) | H30B—C30—H30C | 109.5 |
C11—C19—C18 | 123.67 (13) | C1—O1—H1 | 108.3 (15) |
C11—C19—C20 | 116.70 (13) | C7—O3—H3 | 100.3 (18) |
C20—C19—C18 | 119.62 (12) | C6—O4—H4A | 98 (2) |
C14—C20—C15 | 120.88 (13) | C11—O5—H5 | 107.5 (16) |
C14—C20—C19 | 118.94 (12) | C17—O7—H7 | 104.4 (19) |
C19—C20—C15 | 120.17 (13) | C16—O8—H8 | 105 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O6i | 0.90 (2) | 2.16 (2) | 2.9692 (17) | 150 (2) |
O3—H3···O2 | 0.90 (3) | 1.59 (3) | 2.454 (2) | 160 (3) |
O5—H5···O3ii | 0.83 (2) | 2.30 (2) | 2.9546 (17) | 136 (2) |
O4—H4A···O3 | 0.98 (4) | 1.88 (4) | 2.601 (2) | 128 (3) |
O4—H4A···O5ii | 0.98 (4) | 2.46 (4) | 3.278 (2) | 141 (3) |
O7—H7···O6 | 0.92 (3) | 1.63 (3) | 2.479 (2) | 152 (3) |
O8—H8···O7 | 0.87 (4) | 2.02 (4) | 2.575 (2) | 120 (3) |
C22—H22···O1 | 0.93 | 2.12 | 2.721 (2) | 121 |
C26—H26B···O8iii | 0.96 | 2.55 | 3.483 (2) | 165 |
C27—H27···O4iv | 0.93 | 2.31 | 3.138 (2) | 148 |
C27—H27···O5 | 0.93 | 2.07 | 2.727 (2) | 127 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y, −z+1; (iii) x, −y+1, z+1/2; (iv) x, −y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O6i | 0.90 (2) | 2.16 (2) | 2.9692 (17) | 150 (2) |
O3—H3···O2 | 0.90 (3) | 1.59 (3) | 2.454 (2) | 160 (3) |
O5—H5···O3ii | 0.83 (2) | 2.30 (2) | 2.9546 (17) | 136 (2) |
O4—H4A···O3 | 0.98 (4) | 1.88 (4) | 2.601 (2) | 128 (3) |
O4—H4A···O5ii | 0.98 (4) | 2.46 (4) | 3.278 (2) | 141 (3) |
O7—H7···O6 | 0.92 (3) | 1.63 (3) | 2.479 (2) | 152 (3) |
O8—H8···O7 | 0.87 (4) | 2.02 (4) | 2.575 (2) | 120 (3) |
C22—H22···O1 | 0.93 | 2.12 | 2.721 (2) | 121 |
C26—H26B···O8iii | 0.96 | 2.55 | 3.483 (2) | 165 |
C27—H27···O4iv | 0.93 | 2.31 | 3.138 (2) | 148 |
C27—H27···O5 | 0.93 | 2.07 | 2.727 (2) | 127 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y, −z+1; (iii) x, −y+1, z+1/2; (iv) x, −y, z−1/2. |
Acknowledgements
We thank the Academy of Sciencesof the Republic of Uzbekistan for supporting this study (F7-T048).
References
Adams, R., Geissman, T. A. & Edwards, J. D. (1960). Chem. Rev. 60, 555–574. CrossRef PubMed CAS Web of Science Google Scholar
Baram, N. I. & Ismailov, A. I. (1993). Khim. Prir. Soedin. p. 334. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gdaniec, M., Ibragimov, B. T. & Talipov, S. A. (1996). Gossypol, edited by D. D. MacNicol, F. Toda & R. Bishop, Solid-state supramolecular chemistry: crystal engineering, Vol. 6, Comprehensive supramolecular chemistry, pp. 117–146. Oxford: Pergamon Press. Google Scholar
Ibragimov, B. T. & Talipov, S. A. (1999). J. Struct. Chem. 40, 686–704. Web of Science CrossRef CAS Google Scholar
Ibragimov, B. T. & Talipov, S. A. (2004). Gossypol, in Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 606–614. New York: Dekker. Google Scholar
Ibragimov, B. T., Tiljakov, Z. G., Beketov, K. M. & Talipov, S. A. (1997). J. Inclusion Phenom. Mol. Recognit. Chem. 27, 99–104. CSD CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Polsky, B., Segal, S. J., Baron, P. A., Gold, J. W. M., Ueno, H. & Armstrong, D. (1989). Contraception, 39, 579–587. CrossRef CAS PubMed Web of Science Google Scholar
Radloff, R. I., Deck, L. M., Royer, R. E. & Vander Jagt, D. L. (1985). Pharmacol. Res. Commun. 18, 1063. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Talipov, S. A., Ibragimov, B. T., Nazarov, G. B., Aripov, T. F. & Sadikov, A. S. (1985). Khim. Prir. Soedin (Russ.) (Chem. Nat. Compd.), pp. 835–836. Google Scholar
Talipov, S. A., Ibragimov, B. T., Tishchenko, G. N., Aripov, T. F., Nazarov, G. B., Strokopytov, B. V. & Polyakov, K. M. (1988). Kristallografiya, 33, 384–389. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.