organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o477-o478

Crystal structure of ethyl 2-acetyl-3,7-di­methyl-5-(thio­phen-2-yl)-5H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 May 2015; accepted 6 June 2015; online 13 June 2015)

In the title compound, C17H18N2O3S2, the pyrimidine ring adopts a shallow sofa conformation, with the C atom bearing the axially-oriented thio­phene ring as the flap [deviation = 0.439 (3) Å]. The plane of the thio­phene ring lies almost normal to the pyrimidine ring, making a dihedral angle of 79.36 (19)°. In the crystal, pairs of very weak C—H⋯O hydrogen bonds link the mol­ecules related by twofold rotation axes, forming R22(18) rings, which are in turn linked by another C—H⋯O inter­action, forming chains of rings along [010]. In addition, weak C—H⋯π(thio­phene) inter­actions link the chains into layers parallel to [001] and ππ inter­actions with a centroid–centroid distance of 3.772 (10) Å connect these layers into a three-dimensional network.

1. Related literature

For the biological activities of fused pyrimidine derivatives, see: Atwal et al. (1991[Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O'Reilly, B. C. (1991). J. Med. Chem. 34, 806-811.]); Kappe et al. (1997[Kappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803-2816.]); Singh et al. (2011[Singh, S., Schober, A., Gebinoga, M. & Alexander Gross, G. (2011). Tetrahedron Lett. 52, 3814-3817.]); Ozair et al. (2010[Ozair, A., Suroor, A. K., Nadeem, S. & Waquar, A. (2010). Med. Chem. Res. 19, 1245-1258.]); Hayam et al. (2010[Hayam, H. S., Eman, M. H. M. & Eman, R. K. (2010). Synth. Commun. 40, 2712-2722.]). For related structures, see: Prasad et al. (2014[Prasad, N. L., Krishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1204.]); Nagarajaiah et al. (2012[Nagarajaiah, H., Khazi, I. M. & Begum, N. S. (2012). J. Chem. Sci. 124, 847-855.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H18N2O3S2

  • Mr = 362.45

  • Monoclinic, P 21 /c

  • a = 7.8835 (10) Å

  • b = 14.4041 (19) Å

  • c = 15.231 (2) Å

  • β = 94.940 (4)°

  • V = 1723.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.16 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.950

  • 12021 measured reflections

  • 3038 independent reflections

  • 1984 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.189

  • S = 1.00

  • 3038 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S2/C12–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O1i 0.98 2.64 3.598 (6) 166
C13—H13⋯O2ii 0.95 2.63 3.269 (8) 125
C11—H11ACg1iii 0.98 2.89 3.693 (2) 139
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: SMART (Bruker,1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker,1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Pyrimidine derivatives are important class of compounds which display number of pharmacological properties including antiviral, antitumour, antibacterial and antihypertensive effects (Atwal et al., 1991; Kappe et al., 1997). Pyrimidine has been subjected to a large variety of structural modifications in order to synthesize derivatives (Singh et al., 2011) with different biological properties, among which, thiazole ring fused to pyrimidine ring resulting in thiazolopyrimidine is found to be more active (Ozair et al., 2010; Hayam et al., 2010). Herein, we report the crystal structure of the title compound (1). The bond lengths and angles in the title compound are in good agreement with the corresponding bond distances and angles reported in closely related structures (Nagarajaiah et al., 2012; Prasad et al., 2014). The molecular structure of the compound C17H18N2O3S2 is shown in Fig. 1. The thiophenyl ring at chiral carbon C5 is positioned axially and exactly bisects the pyrimidine ring with a dihedral angle of 82.973 (1)°. The thiazine and pyrimidine ring form a dihedral angle of 5.975 (1)°. In the central pyrimidine ring, the chiral carbon atom C6 is displaced by 0.3130 (4) Å and adopts a flattened sofa conformation. The exocyclic ester group at C6 adopts cis orientation with respect to C6=C7 double bond and the carboxyl group (C11/C10/O3/C16) is slightly deviating from the thiozolopyrimidine plane at -87.946 (6)°. The crystal structure is mainly stabilized by a variety of intermolecular C—H···O interactions. C1—H1C···O1 hydrogen bonds link the molecules related by twofold rotation axes, forming R22(18) loops, which are in turn linked by C13—H13···O2 interactions to form chains of rings along [010] (Table.1; Fig. 2). In addition, weak C—H···π (thiophene) interactions of the type C11—H11A···Cg link the chains into layers parallel to [001] and ππ interactions between inversion-related thiazolopyrimidine rings with a centroid—centroid distance of 3.772 (10) Å connect these layers into a three-dimensional network (Fig. 3).

Related literature top

For the biological activities of fused pyrimidine derivatives, see: Atwal et al. (1991); Kappe et al. (1997); Singh et al. (2011); Ozair et al. (2010); Hayam et al. (2010). For related structures, see: Prasad et al. (2014); Nagarajaiah et al. (2012).

Experimental top

A mixture of 6-methyl-4-thiophen-2-yl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5- carboxylic acid ethyl ester (10 mmol) and 3-chloro-2,4-pentanedione (10 mmol) was refluxed in dry ethanol (20 mmol) for 12 h. The excess of solvent was distilled off and the solid hydrochloride salt that separated was collected by filtration, suspended in water and neutralized by aqueous sodium carbonate solution to yield the free base. The solution was filtered, the solid washed with water, dried and recrystallized from ethyl acetate to give the title compound (74% yield, mp 385 K). The compound was recrystallized by slow evaporation from 1:1 mixture of ethyl acetate and methanol, yielding pale- yellow blocks of the title compound.

Refinement top

The H atoms were placed at calculated positions in the riding-model approximation with C—H = 0.95 Å, 1.00 Å and 0.96 Å for aromatic, methyne and methyl H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Computing details top

Data collection: SMART (Bruker,1998); cell refinement: SAINT-Plus (Bruker,1998); data reduction: SAINT-Plus (Bruker,1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell packing of the title compound showing C—H···O interactions as dotted lines. H atoms not involved in hydrogen bonding have been excluded.
[Figure 3] Fig. 3. Unit-cell packing depicting the C—H···π and ππ interactions with dotted lines.
Ethyl 2-acetyl-3,7-dimethyl-5-(thiophen-2-yl)-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C17H18N2O3S2F(000) = 760
Mr = 362.45Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3038 reflections
a = 7.8835 (10) Åθ = 2.6–25.0°
b = 14.4041 (19) ŵ = 0.33 mm1
c = 15.231 (2) ÅT = 100 K
β = 94.940 (4)°Block, yellow
V = 1723.2 (4) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3038 independent reflections
Radiation source: fine-focus sealed tube1984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.944, Tmax = 0.950k = 1717
12021 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1059P)2 + 1.4984P]
where P = (Fo2 + 2Fc2)/3
3038 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H18N2O3S2V = 1723.2 (4) Å3
Mr = 362.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8835 (10) ŵ = 0.33 mm1
b = 14.4041 (19) ÅT = 100 K
c = 15.231 (2) Å0.18 × 0.16 × 0.16 mm
β = 94.940 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3038 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1984 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.950Rint = 0.046
12021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
3038 reflectionsΔρmin = 0.28 e Å3
221 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41155 (14)0.67664 (8)0.10428 (8)0.0478 (4)
S20.86975 (15)0.38590 (8)0.30180 (7)0.0514 (4)
N10.6122 (4)0.5389 (2)0.11268 (19)0.0343 (8)
C60.5337 (5)0.3792 (3)0.1355 (2)0.0384 (10)
O10.8379 (4)0.7993 (2)0.0552 (2)0.0610 (9)
C90.4445 (5)0.5583 (3)0.1190 (2)0.0378 (10)
N20.3249 (4)0.5002 (3)0.1340 (2)0.0472 (9)
C30.7148 (5)0.6131 (3)0.0965 (2)0.0345 (9)
C130.6889 (5)0.5373 (3)0.2994 (2)0.0378 (10)
H130.61440.58690.28150.045*
O20.4904 (5)0.2161 (2)0.1141 (3)0.0753 (11)
C20.6282 (5)0.6938 (3)0.0902 (3)0.0386 (10)
C160.5843 (6)0.2820 (3)0.1255 (3)0.0482 (11)
C170.9012 (5)0.5964 (3)0.0884 (3)0.0521 (12)
H17A0.91510.54200.05111.000*
H17B0.95920.58550.14701.000*
H17C0.95080.65090.06181.000*
C120.7368 (5)0.4638 (3)0.2456 (2)0.0359 (9)
C70.3696 (6)0.4072 (3)0.1363 (3)0.0434 (10)
C50.6754 (5)0.4494 (3)0.1488 (2)0.0359 (9)
H50.77340.42860.11620.043*
C100.8235 (8)0.1808 (3)0.1127 (4)0.0683 (15)
H10A0.74310.14480.07240.082*
H10B0.93190.18660.08490.082*
C140.7725 (6)0.5240 (3)0.3865 (3)0.0499 (11)
H140.76020.56620.43350.060*
C40.6955 (6)0.7881 (3)0.0792 (3)0.0447 (11)
C10.2188 (6)0.3437 (3)0.1387 (3)0.0592 (13)
H1A0.11980.37960.15381.000*
H1B0.24440.29540.18321.000*
H1C0.19400.31490.08081.000*
C80.5863 (7)0.8697 (3)0.0997 (4)0.0686 (15)
H8A0.54070.85990.15691.000*
H8B0.49200.87580.05381.000*
H8C0.65520.92640.10191.000*
C150.8682 (6)0.4481 (3)0.3959 (3)0.0484 (11)
H150.92930.43060.44990.058*
O30.7530 (4)0.2735 (2)0.1262 (2)0.0560 (8)
C110.8530 (10)0.1323 (5)0.1948 (4)0.110 (3)
H11A0.89400.06940.18390.166*
H11B0.74660.12860.22350.166*
H11C0.93870.16560.23320.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0422 (7)0.0400 (7)0.0619 (7)0.0079 (5)0.0093 (5)0.0074 (5)
S20.0591 (8)0.0471 (7)0.0467 (7)0.0086 (5)0.0026 (5)0.0011 (5)
N10.0349 (19)0.0318 (18)0.0364 (18)0.0033 (15)0.0036 (14)0.0039 (14)
C60.043 (2)0.038 (2)0.033 (2)0.0054 (19)0.0006 (17)0.0010 (17)
O10.061 (2)0.047 (2)0.075 (2)0.0107 (16)0.0111 (18)0.0040 (16)
C90.037 (2)0.039 (2)0.037 (2)0.0067 (19)0.0031 (17)0.0017 (18)
N20.038 (2)0.048 (2)0.057 (2)0.0058 (18)0.0122 (17)0.0046 (18)
C30.038 (2)0.036 (2)0.029 (2)0.0036 (19)0.0006 (16)0.0010 (16)
C130.048 (2)0.035 (2)0.030 (2)0.0105 (18)0.0020 (18)0.0038 (17)
O20.077 (3)0.041 (2)0.106 (3)0.0134 (19)0.006 (2)0.0007 (19)
C20.041 (2)0.036 (2)0.039 (2)0.0001 (18)0.0054 (18)0.0045 (18)
C160.062 (3)0.036 (2)0.045 (3)0.009 (2)0.005 (2)0.0013 (19)
C170.036 (2)0.051 (3)0.070 (3)0.001 (2)0.008 (2)0.008 (2)
C120.036 (2)0.031 (2)0.040 (2)0.0005 (17)0.0011 (17)0.0016 (17)
C70.051 (3)0.039 (3)0.041 (2)0.006 (2)0.0069 (19)0.0014 (18)
C50.042 (2)0.032 (2)0.034 (2)0.0055 (18)0.0034 (17)0.0009 (16)
C100.085 (4)0.042 (3)0.078 (4)0.013 (3)0.008 (3)0.014 (3)
C140.057 (3)0.051 (3)0.042 (2)0.000 (2)0.004 (2)0.009 (2)
C40.055 (3)0.040 (2)0.039 (2)0.004 (2)0.003 (2)0.0020 (19)
C10.051 (3)0.057 (3)0.070 (3)0.022 (2)0.013 (2)0.001 (2)
C80.087 (4)0.038 (3)0.083 (4)0.008 (3)0.019 (3)0.005 (2)
C150.052 (3)0.054 (3)0.038 (2)0.001 (2)0.0011 (19)0.003 (2)
O30.060 (2)0.0390 (18)0.067 (2)0.0087 (15)0.0048 (16)0.0080 (15)
C110.157 (7)0.091 (5)0.086 (5)0.063 (5)0.027 (4)0.017 (4)
Geometric parameters (Å, º) top
S1—C91.736 (4)C17—H17B0.9902
S1—C21.757 (4)C17—H17C0.9902
S2—C151.692 (4)C12—C51.525 (5)
S2—C121.714 (4)C7—C11.502 (6)
N1—C91.363 (5)C5—H51.0000
N1—C31.375 (5)C10—C111.433 (7)
N1—C51.471 (5)C10—O31.467 (5)
C6—C71.355 (6)C10—H10A0.9900
C6—C161.468 (6)C10—H10B0.9900
C6—C51.508 (6)C14—C151.328 (6)
O1—C41.221 (5)C14—H140.9500
C9—N21.296 (5)C4—C81.506 (6)
N2—C71.385 (5)C1—H1A0.9828
C3—C21.348 (5)C1—H1B0.9828
C3—C171.505 (6)C1—H1C0.9828
C13—C121.410 (5)C8—H8A0.9913
C13—C141.442 (6)C8—H8B0.9913
C13—H130.9500C8—H8C0.9913
O2—C161.207 (5)C15—H150.9500
C2—C41.472 (6)C11—H11A0.9800
C16—O31.335 (5)C11—H11B0.9800
C17—H17A0.9902C11—H11C0.9800
C9—S1—C291.04 (19)C6—C5—C12113.0 (3)
C15—S2—C1291.6 (2)N1—C5—H5109.1
C9—N1—C3116.3 (3)C6—C5—H5109.1
C9—N1—C5116.9 (3)C12—C5—H5109.1
C3—N1—C5124.2 (3)C11—C10—O3110.9 (4)
C7—C6—C16123.5 (4)C11—C10—H10A109.5
C7—C6—C5119.8 (4)O3—C10—H10A109.5
C16—C6—C5116.7 (4)C11—C10—H10B109.4
N2—C9—N1127.2 (4)O3—C10—H10B109.5
N2—C9—S1123.7 (3)H10A—C10—H10B108.0
N1—C9—S1109.1 (3)C15—C14—C13114.8 (4)
C9—N2—C7116.2 (4)C15—C14—H14122.6
C2—C3—N1112.4 (3)C13—C14—H14122.6
C2—C3—C17128.6 (4)O1—C4—C2120.4 (4)
N1—C3—C17119.0 (3)O1—C4—C8121.0 (4)
C12—C13—C14108.1 (4)C2—C4—C8118.6 (4)
C12—C13—H13126.0C7—C1—H1A109.8
C14—C13—H13125.9C7—C1—H1B109.7
C3—C2—C4128.2 (4)H1A—C1—H1B109.2
C3—C2—S1111.2 (3)C7—C1—H1C109.8
C4—C2—S1120.5 (3)H1A—C1—H1C109.2
O2—C16—O3121.8 (4)H1B—C1—H1C109.2
O2—C16—C6126.6 (5)C4—C8—H8A110.6
O3—C16—C6111.5 (4)C4—C8—H8B110.6
C3—C17—H17A110.5H8A—C8—H8B108.3
C3—C17—H17B110.5C4—C8—H8C110.6
H17A—C17—H17B108.4H8A—C8—H8C108.3
C3—C17—H17C110.5H8B—C8—H8C108.3
H17A—C17—H17C108.4C14—C15—S2112.9 (3)
H17B—C17—H17C108.4C14—C15—H15123.5
C13—C12—C5125.8 (3)S2—C15—H15123.5
C13—C12—S2112.6 (3)C16—O3—C10118.1 (4)
C5—C12—S2121.6 (3)C10—C11—H11A109.5
C6—C7—N2121.9 (4)C10—C11—H11B109.5
C6—C7—C1125.3 (4)H11A—C11—H11B109.5
N2—C7—C1112.8 (4)C10—C11—H11C109.5
N1—C5—C6108.3 (3)H11A—C11—H11C109.5
N1—C5—C12108.2 (3)H11B—C11—H11C109.5
C3—N1—C9—N2179.9 (4)C5—C6—C7—N211.1 (6)
C5—N1—C9—N217.4 (6)C16—C6—C7—C18.2 (6)
C3—N1—C9—S10.2 (4)C5—C6—C7—C1169.4 (4)
C5—N1—C9—S1162.2 (2)C9—N2—C7—C69.1 (6)
C2—S1—C9—N2179.7 (4)C9—N2—C7—C1170.4 (4)
C2—S1—C9—N10.0 (3)C9—N1—C5—C633.4 (4)
N1—C9—N2—C76.0 (6)C3—N1—C5—C6165.7 (3)
S1—C9—N2—C7174.4 (3)C9—N1—C5—C1289.4 (4)
C9—N1—C3—C20.4 (5)C3—N1—C5—C1271.5 (4)
C5—N1—C3—C2160.6 (3)C7—C6—C5—N131.2 (5)
C9—N1—C3—C17179.8 (3)C16—C6—C5—N1151.0 (3)
C5—N1—C3—C1719.2 (5)C7—C6—C5—C1288.6 (4)
N1—C3—C2—C4175.6 (4)C16—C6—C5—C1289.2 (4)
C17—C3—C2—C44.2 (7)C13—C12—C5—N120.6 (5)
N1—C3—C2—S10.4 (4)S2—C12—C5—N1162.0 (3)
C17—C3—C2—S1179.8 (3)C13—C12—C5—C699.3 (4)
C9—S1—C2—C30.2 (3)S2—C12—C5—C678.1 (4)
C9—S1—C2—C4176.1 (3)C12—C13—C14—C151.3 (5)
C7—C6—C16—O22.5 (7)C3—C2—C4—O116.3 (7)
C5—C6—C16—O2179.8 (4)S1—C2—C4—O1168.1 (3)
C7—C6—C16—O3179.4 (4)C3—C2—C4—C8162.5 (4)
C5—C6—C16—O32.8 (5)S1—C2—C4—C813.1 (5)
C14—C13—C12—C5178.8 (4)C13—C14—C15—S20.7 (5)
C14—C13—C12—S21.3 (4)C12—S2—C15—C140.1 (4)
C15—S2—C12—C130.8 (3)O2—C16—O3—C100.2 (6)
C15—S2—C12—C5178.5 (3)C6—C16—O3—C10177.3 (3)
C16—C6—C7—N2171.2 (4)C11—C10—O3—C1687.9 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S2/C12–C15 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1C···O1i0.982.643.598 (6)166
C13—H13···O2ii0.952.633.269 (8)125
C11—H11A···Cg1iii0.982.893.693 (2)139
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S2/C12–C15 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1C···O1i0.982.643.598 (6)166
C13—H13···O2ii0.952.633.269 (8)125
C11—H11A···Cg1iii0.982.893.693 (2)139
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

NLP is thankful to the University Grants Commission (UGC), India for the UGC–JRF and MSK thanks the UGC for the UGC–BSR Meritorious Fellowship.

References

First citationAtwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O'Reilly, B. C. (1991). J. Med. Chem. 34, 806–811.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHayam, H. S., Eman, M. H. M. & Eman, R. K. (2010). Synth. Commun. 40, 2712–2722.  Google Scholar
First citationKappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803–2816.  CSD CrossRef CAS Google Scholar
First citationNagarajaiah, H., Khazi, I. M. & Begum, N. S. (2012). J. Chem. Sci. 124, 847–855.  Web of Science CSD CrossRef CAS Google Scholar
First citationOzair, A., Suroor, A. K., Nadeem, S. & Waquar, A. (2010). Med. Chem. Res. 19, 1245–1258.  Google Scholar
First citationPrasad, N. L., Krishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1204.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S., Schober, A., Gebinoga, M. & Alexander Gross, G. (2011). Tetrahedron Lett. 52, 3814–3817.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o477-o478
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds