organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o447-o448

Crystal structure of benzyl 3-oxo-2-oxa-5-aza­bi­cyclo­[2.2.1]heptane-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 sensui-cho tobata-ku kitakyushu 804-8550, Japan, and bDepartment of Biological Functions and Systems Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
*Correspondence e-mail: suvrathak@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 May 2015; accepted 1 June 2015; online 6 June 2015)

The title compound, C13H13NO4 (also known as N-benzyl­oxycarbonyl-4-hy­droxy-L-proline lactone), crystallizes with two mol­ecules in the asymmetric unit. They have slightly different conformations: the fused ring systems almost overlap, but different C—O—C—C torsion angles for the central chains of −155.5 (2) and −178.6 (2)° lead to different twists for the terminal benzene ring. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions, generating a three-dimensional network. The absolute structure was established based on an unchanging chiral centre in the synthesis.

1. Related literature

For biological background, see: Dickens et al. (2008[Dickens, H., Ullrich, A., Runge, D., Mueller, B., Olszewski, U. & Hamilton, G. (2008). Mol. Med. Rep. 1, 459-464.]); Erdmann & Wennemers (2011[Erdmann, R. S. & Wennemers, H. (2011). Angew. Chem. Int. Ed. 50, 6835-6838.]); Krishnamurthy et al. (2014[Krishnamurthy, S., Arai, T., Nakanishi, K. & Nishino, N. (2014). RSC Adv. 4, 2482-2490.]); Gómez-Vidal & Silverman (2001[Gómez-Vidal, J. A. & Silverman, R. B. (2001). Org. Lett. 3, 2481-2484.]). For the synthesis, see: Lombardo et al. (2012[Lombardo, M., Montroni, E., Quintavalla, A. & Trombini, C. (2012). Adv. Synth. Catal. 354, 3428-3434.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H13NO4

  • Mr = 247.24

  • Monoclinic, P 21

  • a = 11.212 (2) Å

  • b = 8.8943 (16) Å

  • c = 12.258 (2) Å

  • β = 105.345 (2)°

  • V = 1178.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 90 K

  • 0.40 × 0.35 × 0.30 mm

2.2. Data collection

  • Bruker APEX II KY CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.709, Tmax = 0.969

  • 11252 measured reflections

  • 4157 independent reflections

  • 4079 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.06

  • 4157 reflections

  • 325 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5i 0.98 2.42 3.3493 (18) 159
C2—H2A⋯O7ii 0.97 2.46 3.2116 (18) 134
C3—H3⋯O5iii 0.98 2.37 3.2816 (18) 155
C4—H4B⋯O7iii 0.97 2.39 3.3408 (18) 168
C15—H15A⋯O3iv 0.97 2.44 3.1382 (19) 128
C16—H16⋯O1v 0.98 2.49 3.2207 (18) 131
C26—H26⋯O6vi 0.93 2.58 3.4584 (19) 157
Symmetry codes: (i) x-1, y-1, z; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) x+1, y+1, z; (v) [-x+1, y+{\script{1\over 2}}, -z]; (vi) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Chemical context top

Four possible stereoisomers exists for 4-hy­droxy­proline. The (2S,4R)-isomer is mainly found in collagen and its presence in collagen is a very important factor for its triple helix stabilization (Erdmann & Wennemers, 2011). Moreover (2S,4S)- of 4-hy­droxy­proline isomer was found to have anti­cancer activity (Dickens et al. 2008)

For related derivatives and synthesis see (Krishnamurthy et al. 2014, Gomez-Vidal and Silverman, 2001)

Synthesis and crystallization top

(I) was prepared in exactly the same manner as described by (Lombardo et al. 2012). To a solution of Z-Hyp-OH (3.0 g, 11.3 mmol) and tri­phenyl­phosphine (3.5 g, 13.3 mmol) in dry THF (50 mL) at 0 °C, was added DEAD (40% in toluene, 5.7 mL, 12.4 mmol), under argon. The resulting solution was warmed to room temperature and stirred. After 12 h, the solvent was evaporated to give a crude residue which was purified directly by flash chromatography on silica gel (EtOAc:hexane, 40:60, v/v) to give I as a white solid ( 2 g, 72 %). (1H NMR matched Lombardo et al. 2012)

Single crystals were obtained by vapour diffusion method at room temperature, i.e., pentane vapour was allowed to slowly diffuse into a EtOAc (0.3 ml) solution of I at room temperature. Single crystals were obtained after three days.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For biological background, see: Dickens et al. (2008); Erdmann & Wennemers (2011); Krishnamurthy et al. (2014); Gómez-Vidal & Silverman (2001). For the synthesis, see: Lombardo et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular configuration for the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing diagram of the title compound.
[Figure 3] Fig. 3. Synthetic scheme for the title compound (I)
(I) top
Crystal data top
C13H13NO4Z = 4
Mr = 247.24F(000) = 520
Monoclinic, P21Dx = 1.393 Mg m3
a = 11.212 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8943 (16) ŵ = 0.10 mm1
c = 12.258 (2) ÅT = 90 K
β = 105.345 (2)°Prism, colorless
V = 1178.8 (4) Å30.40 × 0.35 × 0.30 mm
Data collection top
Bruker APEX II KY CCD
diffractometer
4157 independent reflections
Radiation source: fine-focus sealed tube4079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 1.7°
ϕandω–scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.709, Tmax = 0.969l = 1414
11252 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.1656P]
where P = (Fo2 + 2Fc2)/3
4157 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C13H13NO4V = 1178.8 (4) Å3
Mr = 247.24Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.212 (2) ŵ = 0.10 mm1
b = 8.8943 (16) ÅT = 90 K
c = 12.258 (2) Å0.40 × 0.35 × 0.30 mm
β = 105.345 (2)°
Data collection top
Bruker APEX II KY CCD
diffractometer
4157 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4079 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.969Rint = 0.035
11252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.073H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
4157 reflectionsΔρmin = 0.16 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03159 (12)0.45789 (16)0.37070 (12)0.0215 (3)
H10.02560.40190.310.026*
C20.02168 (13)0.52285 (17)0.46339 (12)0.0235 (3)
H2A0.08620.59680.43560.028*
H2B0.04930.44650.50770.028*
C30.10287 (13)0.59254 (17)0.52422 (12)0.0229 (3)
H30.10230.65070.5920.027*
C40.19041 (13)0.45866 (17)0.54550 (11)0.0229 (3)
H4A0.27540.48880.55350.027*
H4B0.18520.40180.61160.027*
C50.09010 (12)0.59924 (16)0.33634 (11)0.0210 (3)
C60.19212 (13)0.25806 (16)0.39927 (12)0.0218 (3)
C70.35825 (16)0.0823 (2)0.44690 (14)0.0356 (4)
H7A0.41760.11950.40830.043*
H7B0.30120.01540.39610.043*
C80.42360 (14)0.00050 (16)0.55255 (13)0.0265 (3)
C90.35980 (13)0.10101 (17)0.60196 (15)0.0319 (4)
H90.27650.11890.56830.038*
C100.41768 (15)0.17599 (18)0.70017 (15)0.0341 (4)
H100.37310.24250.73280.041*
C110.54297 (15)0.15203 (18)0.75052 (14)0.0310 (3)
H110.58280.20350.81610.037*
C120.60744 (13)0.05120 (18)0.70219 (13)0.0290 (3)
H120.69110.03490.73540.035*
C130.54857 (13)0.02589 (18)0.60467 (13)0.0281 (3)
H130.59260.0950.57370.034*
C140.96660 (12)0.95675 (15)0.18254 (11)0.0199 (3)
H140.99690.92910.26250.024*
C151.06237 (13)0.96354 (17)0.11437 (12)0.0228 (3)
H15A1.12621.03830.14210.027*
H15B1.09890.86660.10650.027*
C160.96511 (13)1.01286 (16)0.00832 (12)0.0230 (3)
H160.99691.03210.05750.028*
C170.86734 (13)0.88969 (16)0.00859 (11)0.0227 (3)
H17A0.78630.9260.04970.027*
H17B0.88920.80290.04720.027*
C180.90739 (12)1.11153 (16)0.15699 (11)0.0200 (3)
C190.81590 (12)0.74552 (15)0.15094 (12)0.0190 (3)
C200.66990 (14)0.54756 (16)0.09787 (12)0.0257 (3)
H20A0.61440.58760.13940.031*
H20B0.72420.47450.1450.031*
C210.59844 (12)0.47712 (16)0.01037 (12)0.0224 (3)
C220.47838 (13)0.52208 (17)0.06415 (13)0.0259 (3)
H220.43910.59360.03050.031*
C230.41709 (13)0.46052 (18)0.16784 (13)0.0280 (3)
H230.33650.490.20280.034*
C240.47492 (14)0.35578 (17)0.21940 (13)0.0293 (3)
H240.43390.31580.28940.035*
C250.59509 (15)0.31033 (18)0.16600 (14)0.0310 (3)
H250.63490.24040.20060.037*
C260.65512 (13)0.36930 (17)0.06153 (13)0.0262 (3)
H260.73440.33640.02510.031*
N10.13918 (11)0.37446 (13)0.43984 (10)0.0227 (3)
N20.87336 (11)0.85642 (14)0.11057 (9)0.0213 (2)
O10.10735 (9)0.63621 (12)0.24784 (8)0.0278 (2)
O20.13217 (9)0.68041 (11)0.43299 (8)0.0233 (2)
O30.15344 (9)0.20350 (13)0.30604 (9)0.0302 (2)
O40.29114 (9)0.20752 (12)0.47981 (8)0.0267 (2)
O50.85762 (8)1.19197 (12)0.21078 (8)0.0252 (2)
O60.91040 (9)1.14515 (11)0.04972 (8)0.0232 (2)
O70.82890 (8)0.71808 (11)0.25057 (8)0.0224 (2)
O80.74174 (9)0.66846 (11)0.06459 (8)0.0244 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0192 (6)0.0193 (7)0.0234 (7)0.0006 (6)0.0013 (5)0.0015 (6)
C20.0206 (7)0.0251 (7)0.0246 (7)0.0012 (6)0.0055 (6)0.0036 (6)
C30.0257 (7)0.0239 (7)0.0195 (7)0.0011 (6)0.0068 (6)0.0003 (6)
C40.0246 (7)0.0232 (7)0.0200 (7)0.0005 (6)0.0043 (5)0.0000 (6)
C50.0185 (6)0.0229 (7)0.0204 (7)0.0071 (5)0.0031 (5)0.0010 (5)
C60.0188 (6)0.0196 (7)0.0268 (7)0.0004 (5)0.0056 (5)0.0016 (6)
C70.0374 (9)0.0358 (8)0.0343 (8)0.0174 (7)0.0109 (7)0.0006 (7)
C80.0245 (7)0.0228 (8)0.0325 (8)0.0074 (6)0.0081 (6)0.0035 (6)
C90.0171 (7)0.0253 (8)0.0502 (10)0.0003 (6)0.0031 (6)0.0034 (7)
C100.0282 (8)0.0255 (8)0.0497 (10)0.0006 (6)0.0123 (7)0.0060 (7)
C110.0278 (8)0.0301 (8)0.0329 (8)0.0075 (6)0.0042 (6)0.0019 (6)
C120.0172 (7)0.0322 (8)0.0360 (8)0.0036 (6)0.0041 (6)0.0069 (7)
C130.0242 (7)0.0253 (7)0.0383 (9)0.0007 (6)0.0144 (7)0.0027 (7)
C140.0181 (6)0.0208 (7)0.0198 (6)0.0006 (5)0.0032 (5)0.0009 (5)
C150.0201 (7)0.0227 (7)0.0262 (7)0.0004 (6)0.0073 (5)0.0026 (6)
C160.0262 (7)0.0216 (7)0.0239 (7)0.0022 (6)0.0111 (6)0.0007 (6)
C170.0253 (7)0.0238 (7)0.0183 (7)0.0008 (6)0.0047 (5)0.0011 (6)
C180.0147 (6)0.0220 (7)0.0225 (7)0.0046 (5)0.0034 (5)0.0025 (5)
C190.0149 (6)0.0178 (7)0.0238 (7)0.0030 (5)0.0043 (5)0.0001 (5)
C200.0267 (7)0.0222 (8)0.0284 (8)0.0069 (6)0.0075 (6)0.0006 (6)
C210.0213 (7)0.0200 (7)0.0266 (7)0.0057 (6)0.0077 (5)0.0017 (6)
C220.0224 (7)0.0222 (7)0.0345 (8)0.0009 (6)0.0103 (6)0.0006 (6)
C230.0174 (7)0.0278 (7)0.0362 (8)0.0019 (6)0.0028 (6)0.0057 (7)
C240.0284 (8)0.0271 (8)0.0295 (8)0.0064 (6)0.0026 (6)0.0028 (6)
C250.0298 (8)0.0269 (8)0.0376 (8)0.0013 (6)0.0112 (6)0.0057 (7)
C260.0178 (7)0.0252 (7)0.0350 (8)0.0008 (6)0.0061 (6)0.0018 (6)
N10.0230 (6)0.0191 (6)0.0225 (6)0.0033 (5)0.0001 (5)0.0003 (5)
N20.0221 (6)0.0216 (6)0.0182 (6)0.0028 (5)0.0016 (5)0.0011 (5)
O10.0283 (5)0.0338 (6)0.0224 (5)0.0082 (5)0.0086 (4)0.0067 (4)
O20.0272 (5)0.0203 (5)0.0220 (5)0.0007 (4)0.0058 (4)0.0011 (4)
O30.0254 (5)0.0293 (6)0.0332 (6)0.0024 (5)0.0028 (4)0.0082 (5)
O40.0253 (5)0.0249 (5)0.0288 (5)0.0079 (4)0.0052 (4)0.0010 (4)
O50.0210 (5)0.0265 (5)0.0280 (5)0.0002 (4)0.0060 (4)0.0053 (4)
O60.0266 (5)0.0192 (5)0.0239 (5)0.0018 (4)0.0068 (4)0.0018 (4)
O70.0207 (5)0.0234 (5)0.0226 (5)0.0002 (4)0.0049 (4)0.0023 (4)
O80.0253 (5)0.0230 (5)0.0239 (5)0.0070 (4)0.0048 (4)0.0011 (4)
Geometric parameters (Å, º) top
C1—N11.4776 (17)C14—N21.4763 (17)
C1—C51.528 (2)C14—C181.525 (2)
C1—C21.530 (2)C14—C151.5263 (19)
C1—H10.98C14—H140.98
C2—C31.530 (2)C15—C161.524 (2)
C2—H2A0.97C15—H15A0.97
C2—H2B0.97C15—H15B0.97
C3—O21.4710 (17)C16—O61.4775 (16)
C3—C41.521 (2)C16—C171.525 (2)
C3—H30.98C16—H160.98
C4—N11.4746 (18)C17—N21.4742 (18)
C4—H4A0.97C17—H17A0.97
C4—H4B0.97C17—H17B0.97
C5—O11.1973 (18)C18—O51.2053 (17)
C5—O21.3606 (17)C18—O61.3576 (17)
C6—O31.2113 (18)C19—O71.2158 (17)
C6—N11.3519 (19)C19—N21.3423 (18)
C6—O41.3526 (17)C19—O81.3475 (16)
C7—O41.4592 (18)C20—O81.4648 (16)
C7—C81.497 (2)C20—C211.494 (2)
C7—H7A0.97C20—H20A0.97
C7—H7B0.97C20—H20B0.97
C8—C91.387 (2)C21—C261.388 (2)
C8—C131.396 (2)C21—C221.392 (2)
C9—C101.379 (2)C22—C231.388 (2)
C9—H90.93C22—H220.93
C10—C111.393 (2)C23—C241.380 (2)
C10—H100.93C23—H230.93
C11—C121.380 (2)C24—C251.393 (2)
C11—H110.93C24—H240.93
C12—C131.385 (2)C25—C261.383 (2)
C12—H120.93C25—H250.93
C13—H130.93C26—H260.93
N1—C1—C5103.08 (11)C15—C14—H14116.7
N1—C1—C2100.58 (11)C16—C15—C1491.73 (10)
C5—C1—C2100.05 (11)C16—C15—H15A113.3
N1—C1—H1116.8C14—C15—H15A113.3
C5—C1—H1116.8C16—C15—H15B113.3
C2—C1—H1116.8C14—C15—H15B113.3
C3—C2—C191.69 (11)H15A—C15—H15B110.7
C3—C2—H2A113.3O6—C16—C15101.81 (10)
C1—C2—H2A113.3O6—C16—C17105.66 (10)
C3—C2—H2B113.3C15—C16—C17103.63 (11)
C1—C2—H2B113.3O6—C16—H16114.8
H2A—C2—H2B110.7C15—C16—H16114.8
O2—C3—C4106.41 (11)C17—C16—H16114.8
O2—C3—C2101.74 (11)N2—C17—C1699.60 (11)
C4—C3—C2103.34 (12)N2—C17—H17A111.9
O2—C3—H3114.6C16—C17—H17A111.9
C4—C3—H3114.6N2—C17—H17B111.9
C2—C3—H3114.6C16—C17—H17B111.9
N1—C4—C399.40 (11)H17A—C17—H17B109.6
N1—C4—H4A111.9O5—C18—O6122.20 (13)
C3—C4—H4A111.9O5—C18—C14131.54 (13)
N1—C4—H4B111.9O6—C18—C14106.07 (11)
C3—C4—H4B111.9O7—C19—N2125.19 (13)
H4A—C4—H4B109.6O7—C19—O8124.89 (12)
O1—C5—O2122.78 (14)N2—C19—O8109.92 (12)
O1—C5—C1131.28 (13)O8—C20—C21105.41 (11)
O2—C5—C1105.77 (11)O8—C20—H20A110.7
O3—C6—N1124.85 (13)C21—C20—H20A110.7
O3—C6—O4125.12 (13)O8—C20—H20B110.7
N1—C6—O4109.97 (12)C21—C20—H20B110.7
O4—C7—C8107.58 (12)H20A—C20—H20B108.8
O4—C7—H7A110.2C26—C21—C22119.05 (13)
C8—C7—H7A110.2C26—C21—C20119.26 (13)
O4—C7—H7B110.2C22—C21—C20121.62 (13)
C8—C7—H7B110.2C23—C22—C21120.20 (14)
H7A—C7—H7B108.5C23—C22—H22119.9
C9—C8—C13118.47 (14)C21—C22—H22119.9
C9—C8—C7120.22 (14)C24—C23—C22120.46 (14)
C13—C8—C7121.29 (14)C24—C23—H23119.8
C10—C9—C8121.21 (14)C22—C23—H23119.8
C10—C9—H9119.4C23—C24—C25119.60 (14)
C8—C9—H9119.4C23—C24—H24120.2
C9—C10—C11119.95 (15)C25—C24—H24120.2
C9—C10—H10120.0C26—C25—C24119.89 (15)
C11—C10—H10120.0C26—C25—H25120.1
C12—C11—C10119.38 (15)C24—C25—H25120.1
C12—C11—H11120.3C25—C26—C21120.76 (13)
C10—C11—H11120.3C25—C26—H26119.6
C11—C12—C13120.54 (14)C21—C26—H26119.6
C11—C12—H12119.7C6—N1—C4127.24 (12)
C13—C12—H12119.7C6—N1—C1123.02 (11)
C12—C13—C8120.43 (14)C4—N1—C1108.53 (11)
C12—C13—H13119.8C19—N2—C17127.75 (12)
C8—C13—H13119.8C19—N2—C14123.84 (11)
N2—C14—C18102.83 (10)C17—N2—C14108.07 (11)
N2—C14—C15100.74 (11)C5—O2—C3106.52 (11)
C18—C14—C15100.54 (11)C6—O4—C7115.82 (11)
N2—C14—H14116.7C18—O6—C16106.04 (10)
C18—C14—H14116.7C19—O8—C20115.16 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i0.982.423.3493 (18)159
C2—H2A···O7ii0.972.463.2116 (18)134
C3—H3···O5iii0.982.373.2816 (18)155
C4—H4B···O7iii0.972.393.3408 (18)168
C15—H15A···O3iv0.972.443.1382 (19)128
C16—H16···O1v0.982.493.2207 (18)131
C26—H26···O6vi0.932.583.4584 (19)157
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1; (iv) x+1, y+1, z; (v) x+1, y+1/2, z; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i0.982.423.3493 (18)159
C2—H2A···O7ii0.972.463.2116 (18)134
C3—H3···O5iii0.982.373.2816 (18)155
C4—H4B···O7iii0.972.393.3408 (18)168
C15—H15A···O3iv0.972.443.1382 (19)128
C16—H16···O1v0.982.493.2207 (18)131
C26—H26···O6vi0.932.583.4584 (19)157
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1; (iv) x+1, y+1, z; (v) x+1, y+1/2, z; (vi) x, y1, z.
 

Acknowledgements

We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA), for the 1H NMR and X-ray analysis.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDickens, H., Ullrich, A., Runge, D., Mueller, B., Olszewski, U. & Hamilton, G. (2008). Mol. Med. Rep. 1, 459–464.  Web of Science CAS PubMed Google Scholar
First citationErdmann, R. S. & Wennemers, H. (2011). Angew. Chem. Int. Ed. 50, 6835–6838.  Web of Science CrossRef CAS Google Scholar
First citationGómez-Vidal, J. A. & Silverman, R. B. (2001). Org. Lett. 3, 2481–2484.  Web of Science CrossRef PubMed Google Scholar
First citationKrishnamurthy, S., Arai, T., Nakanishi, K. & Nishino, N. (2014). RSC Adv. 4, 2482–2490.  Web of Science CrossRef CAS Google Scholar
First citationLombardo, M., Montroni, E., Quintavalla, A. & Trombini, C. (2012). Adv. Synth. Catal. 354, 3428–3434.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o447-o448
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds