research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 766-771

Crystal structures of two 6-(2-hy­dr­oxy­benzo­yl)-5H-thia­zolo[3,2-a]pyrimidin-5-ones

CROSSMARK_Color_square_no_text.svg

aFP–ENAS–Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, bREQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dCIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
*Correspondence e-mail: jnlow111@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 June 2015; accepted 7 June 2015; online 13 June 2015)

The title compounds, 6-(2-hy­droxy­benz­yl)-5H-thia­zolo[3,2-a]pyrimidin-5-one, C13H8N2O3S, (1), and 6-(2-hy­droxy­benz­yl)-3-methyl-5H-thia­zolo[3,2-a]pyrimidin-5-one, C14H10N2O3S, (2), were synthesized when a chromone-3-carb­oxy­lic acid, activated with (benzotriazol-1-yl­oxy)tripyrrolidinyl­phospho­nium hexa­fluorido­phosphate (PyBOP), was reacted with a primary heteromamine. Instead of the expected amidation, the unusual title thia­zolo­pyrimidine-5-one derivatives were obtained serendipitously and a mechanism of formation is proposed. Both compounds present an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring. The dihedral angles between the heterocyclic moiety and the 2-hydroxybenzoyl ring are 55.22 (5) and 46.83 (6)° for (1) and (2), respectively. In the crystals, the mol­ecules are linked by weak C—H⋯O hydrogen bonds and ππ stacking inter­actions.

1. Chemical context

Although heterocycles, namely those bearing thia­zole or pyrimidine motifs, are reported to show a broad spectrum of pharmacological properties such as anti­microbial, anti­cancer and anti-inflammatory activities (Jiang et al., 2013[Jiang, Z., Wang, Y., Wang, W., Wang, S., Xu, B., Fan, G., Dong, G., Liu, Y., Yao, J., Miao, Z., Zhang, W. & Sheng, C. (2013). Eur. J. Med. Chem. 64, 16-22.]; Mishra et al., 2015[Mishra, C. B., Kumari, S. & Tiwari, M. (2015). Eur J Med Chem. 92, DOI: 10.1016/j. ejmech. 2014.12.031.]; Perrone et al., 2012[Perrone, M. G., Vitale, P., Malerba, P., Altomare, A., Rizzi, R., Lavecchia, A., Di Giovanni, C., Novellino, E. & Scilimati, A. (2012). ChemMedChem, 7, 629-641.]), only a few compounds enclosing the thia­zolo[3,2a]pyrimidine framework have been explored and screened towards the above-mentioned pharmacological activities. Even though some derivatives tested up to now have shown inter­esting anti-inflammatory (Bekhit et al., 2003[Bekhit, A. A., Fahmy, H. T. Y., Rostom, S. A. F. & Baraka, A. M. (2003). Eur. J. Med. Chem. 38, 27-36.]), anti­viral (Abd El-Galil et al., 2010[Abd El-Galil, E. A., Salwa, F. M., Eman, M. F. & Abd El-Shafy, D. N. (2010). Eur J Med Chem. 45, 149-1501.]) and anti­bacterial activities (Mulwad et al., 2010[Mulwad, V. V., Parmar, H. T. & Mir, A. A. (2010). J. Korean Chem. Soc. 54, 9-12.]) and as calcium agonists (Balkan et al., 1992[Balkan, A., Uma, S., Ertan, M. & Wiegrebe, W. (1992). Pharmazie, 47, 687-688.]), the data acquired so far are insufficient to indicate the importance of the thia­zolo[3,2a]pyrimidine motif as a positive contributor to the biological profile mentioned above. The same reflection is valid in relation to the data acquired for some thia­zolo[3,2a]pyrimidine-5-one derivatives as 5-HT2a receptor antagonists, a putative therapeutic target for the treatment of depression, although they have structural similarity to ritanserin, a serotonin antagonist (Awadallah, 2008[Awadallah, F. M. (2008). Sci. Pharm. 76, 415-438.]). In this last case, the pharmacological activity appears to be enhanced by the nature of the planar aromatic or heterocyclic ring systems, the type of spacer as well as the presence of a basic nitro­gen atom.

A search made in the latest version (5.36.0; 2015) of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for thia­zolo[3,2a]pyrimidine-5-one-based structures revealed the existence of 11 compounds containing the 5H-thia­zolo[3,2a]-pyrimidine-5-one fragment in which the hetero ring was not fused with other cyclic rings. In order to clarify the significance of the thia­zolo[3,2a]pyrimidine scaffold in medicinal chemistry, new 5H-thia­zolo[3,2-a]pyrimidin-5-one derivatives were synthesized. In this work we report the structures and synthesis, by a one-pot reaction, of two deriva­tives 6-(2-hy­droxy­benz­yl)-5H-thia­zolo[3,2-a]pyrimidin-5-one (1) and 6-(2-hy­droxy­benz­yl)-5H-thia­zolo[3,2-a]pyrimidin-3-methyl-5-one (2), which will be screened for anti­microbial activity.

[Scheme 1]

2. Structural commentary

The mol­ecules of (1) and (2) are shown in Figs. 1[link] and 2[link]. The structural characterization reveals that the mol­ecules have two cyclic units, viz. the hy­droxy­benzyl and the heterocyclic 5H-thia­zolo[3,2-a]pyrimidin-5-one ring separated by a carbonyl spacer, as expected. In both compounds, the carbonyl O atoms are trans oriented with respect to each other, contributing to the establishment of an intra­molecular O—H⋯O hydrogen bond between the o-hydroxyl group of the benzene ring and the carbonyl group of the spacer (Tables 1[link] and 2[link]), which generates an S(6) ring. Taken together, the benzene ring and hydrogen-bonded pseudo ring are roughly planar, the carbonyl oxygen atom deviates by 0.391 (3) and 0.055 (4) Å in (1) and (2), respectively from the least-square plane formed by the benzene ring atoms. The heterocyclic rings of both compounds are also almost planar, as expected; the maximum deviation from the best plane formed by the ten atoms of the thia­zolo­pyrimidine moiety is 0.103 (1) Å for the carbonyl oxygen atom, O5, in (1) and 0.129 (1) Å for the same atom in (2). Thus, both mol­ecules are twisted around the C6—C67 bond that links the ring systems, which are inclined to one another by 55.22 (5) and 46.83 (6)° for (1) and (2), respectively.

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O62—H62A⋯O67 0.84 1.87 2.5906 (16) 144
C2—H2⋯O5i 0.95 2.29 3.146 (2) 150
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O62—H3⋯O67 0.84 1.81 2.557 (2) 146
C64—H64⋯O5i 0.95 2.57 3.217 (3) 125
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
A view of the asymmetric unit of (1) with displacement ellipsoids drawn at the 70% probability level.
[Figure 2]
Figure 2
A view of the asymmetric unit of (2) with displacement ellipsoids drawn at the 70% probability level.

3. Supra­molecular features

As noted above, the hydroxyl group is involved in intra­molecular hydrogen bonding, which leaves it unavailable for participation in inter­molecular hydrogen bonding. Thus, the mol­ecules are linked via weak C—H⋯O inter­actions: in both compounds the oxygen acceptor atom is the oxo atom O5, being in (1) the hydrogen-bond donor atom is C2 (of the heterocyclic group) and in (2) the hydrogen-bond donor atom is C64 (located in the exocyclic benzene ring).

In (1) the mol­ecules are linked by the C2—H2⋯O5 (x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]) hydrogen bond, forming a C(6) chain, which runs parallel to [101] and results from the action of a c-glide at (0, [{1\over 4}], 0) (Table 1[link] and Fig. 3[link]). The presence of the methyl group on atom C2 of the heterocyclic ring precludes the formation of a similar bond in (2). Thus in the supra­molecular structure of this compound, the mol­ecules are linked by a C64—H64⋯O5(−x + 2, y + [{1\over 2}], −z + 1) hydrogen bond, forming a C(9) chain, which runs parallel to the b-axis direction and results from the action of a 21 screw axis at (1, y, [{1\over 2}]) (Table 2[link] and Fig. 4[link]).

[Figure 3]
Figure 3
Compound (1): Mol­ecular C6 chain which runs parallel to [101]. Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]. Hydrogen atoms not involved in the hydrogen bonding are omitted.
[Figure 4]
Figure 4
Compound (2): Mol­ecular C9 chain which runs parallel to the a-axis direction. Symmetry codes: (i) −x + 2, y + [{1\over 2}], −z + 1; (ii) −x + 2, y − [{1\over 2}], −z + 1. Hydrogen atoms not involved in the hydrogen bonding are omitted.

Both mol­ecules present aromatic ππ stacking contacts. In (1) there is a close contact between centrosymmetrically related rings containing atom C5 at (x, y, z) and (−x + 1, −y + 1, −z + 1) [centroid-to-centroid distance = 3.6764 (9) Å, perpendicular distance between rings = 3.2478 (6) Å and slippage = 1.723 Å]. In (2) the mol­ecules stack above each other along the a-axis direction with unit translation of 3.931 (2) Å [perpendicular distances between the rings (and slippages) of 3.3821 (9) (2.004), 3.3355 (9) (2.080), 3.4084 (9) (1.958) Å for the thia­zole, pyrimidine and benzene rings, respectively].

4. Database survey

As said before, a search made in the latest version (5.36.0; 2015) of the Cambridge Structural Database revealed the existence of 11 deposited compounds containing the 5H-thia­zolo[3,2a]-pyrimidine-5-one residue. Of those, eight were 2,3-di­hydro derivatives thus leaving only the compounds listed below. Fig. 5[link] shows representations of the compounds referred to in this work (the scaffold indicates the adopted numbering scheme for the 5H-thia­zolo[3,2a]-pyrimidine-5-one residue). Compounds (1) and (2) are herein characterized and the remaining are referred to by their CSD codes. GEFTES: 7-(methyl­sulfan­yl)-5H-[1,3]thia­zolo[3,2-a]pyrimidin-5-one (Bernhardt & Wentrup, 2012[Bernhardt, P. V. & Wentrup, C. (2012). Aust. J. Chem. 65, 371-375.]); JABRAG: 7-penta­fluoro­ethyl-6-tri­fluoro­methyl­thia­zolo[3,2-a]pyrimidine-5-one (Chi et al., 2002[Chi, K.-W., Kim, H.-A., Lee, W., Park, T.-H., Lee, U. & Furin, G. G. (2002). Bull. Korean Chem. Soc. 23, 1017-1020.]); NAMWEE: N-phenyl-6-methyl-5-oxo-5H-[1,3]-thia­zolo[3,2-a]pyrimidine-2-carboxamide (Volovenko et al., 2004[Volovenko, Y. M. G. G., Dubinina, G. G. & Chernega, A. N. (2004). Khim. Get. Soedin. SSSR, pp. 100-106.]); QIBNOF: 3-ethyl-2-(4-methyl­thia­zol-2-yl)thia­zolo[3,2-a]pyrimidin-4-one (Troisi et al., 2006[Troisi, L., Ronzini, L., Granito, C., Pindinelli, E., Troisi, A. & Pilati, T. (2006). Tetrahedron, 62, 12064-12070.]); and TUFCAY: 3-benzoyl-7-methyl-5H-thia­zolo[3,2-a]pyrimidine-5-one (Elokhina et al., 1996[Elokhina, V. N., Nakhmanovich, A. S., Stepanova, Z. V., Lopyrev, V. A., Bannikova, O. V., Struchkov, Y. T. & Shishkin, O. V. (1996). Izv. Akad. Nauk SSSR, Ser. Khim. 45, 2189-2191.]). In those compounds, the C2—C3 bond length averages 1.329 (9) Å, typical for values for a Csp2—Csp2 bond length in thio­phenes (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The average length of the C3—N4 bond at 1.397 (6) Å is slightly shorter than that for N4—C5, which is 1.418 (7) Å. The average values for the N4—C9 and C7—N8 bond lengths, 1.363 (7) and 1.357 (12) Å, respectively, are significantly shorter than the previous ones, suggesting the presence of a higher electronic density in that part of the rings. The N8—C9 average of 1.306 (9) Å is typical of a C=N bond.

[Figure 5]
Figure 5
Representations of the compounds referred to in this work (the scaffold indicates the adopted numbering scheme for the 5H-thia­zolo[3,2a]-pyrimidine-5-one residue).

5. Synthesis and crystallization

Compounds (1) and (2) were synthesized in moderate/high yields by a one-pot reaction using 4-oxo-4H-chromene-3-carb­oxy­lic acid as the starting material. Chromone-3-carb­oxy­lic acid was initially activated with benzotriazol-1-yl-oxy­tripyrrolidino­phospho­nium hexa­fluorido­phosphate (PyBOP). Then the in situ formed inter­mediate reacts with the hetero­amine (stoichiometry 1:1) giving rise to 5H-thia­zolo[3,2-a]pyrimidin-5-one derivatives (1) (68%) and (2) (81%). From a mechanistic point of view, the 6-(2-hy­droxy­benzo­yl)-5H-thia­zolo[3,2-a]pyrimidin-5-one derivatives may have been obtained by a nucleophilic attack of primary hetero­amine to the 2-position of the activated chromone with a subsequent opening of the pyran ring. Then, the heterocycle entities were obtained by a process involving an intra­molecular reaction assisted by the nitro­gen atom of the heterocycle moiety (see scheme below). Crystals were obtained by recrystallization from (1) in AcOEt (m.p. 454–456 K) in the form of colourless plates and from (2) in CH2Cl2 (m.p. 451–453 K) in the form of yellow blocks.

[Scheme 2]

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geom­etrically and treated as riding atoms with C—H(aromatic) = 0.95 and O—H = 0.84 Å with Uiso = 1.2Ueq(C) or 1.5Ueq(O).

Table 3
Experimental details

  (1) (2)
Crystal data
Chemical formula C13H8N2O3S C14H10N2O3S
Mr 272.27 286.30
Crystal system, space group Monoclinic, P21/n Monoclinic, P21
Temperature (K) 100 100
a, b, c (Å) 7.5563 (5), 15.3187 (11), 10.1229 (7) 3.931 (2), 10.459 (6), 14.657 (8)
β (°) 99.49 (2) 94.201 (14)
V3) 1155.70 (15) 601.0 (6)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.29 0.28
Crystal size (mm) 0.33 × 0.21 × 0.04 0.26 × 0.13 × 0.09
 
Data collection
Diffractometer Rigaku Saturn724+ Rigaku Saturn724+
Absorption correction Multi-scan CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Multi-scan CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.912, 0.989 0.931, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 7713, 2632, 2135 4859, 3175, 2808
Rint 0.040 0.023
(sin θ/λ)max−1) 0.649 0.729
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.02 0.031, 0.067, 1.04
No. of reflections 2632 3175
No. of parameters 172 183
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.22 0.35, −0.34
Absolute structure Flack x determined using 981 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.03 (4)
Computer programs: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Flipper 25 (Oszlányi & Sütő, 2004[Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm. 6, 30-309.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Chemical context top

Although heterocycles, namely those bearing thia­zole or pyrimidine motifs, are reported to show a broad spectrum of pharmacological properties such as anti­microbial, anti­cancer and anti-inflammatory activities (Jiang et al., 2013; Mishra et al., 2015; Perrone et al., 2012), only a few compounds enclosing the thia­zolo[3,2a]pyrimidine framework have been explored and screened towards the above-mentioned pharmacological activities. Even though some derivatives tested up to now have shown inter­esting anti-inflammatory (Bekhit et al., 2003), anti­viral (Abd El-Galil et al., 2010) and anti­bacterial activities (Mulwad et al., 2010) and as calcium agonists (Balkan et al., 1992), the data acquired so far are insufficient to indicate the importance of the thia­zolo[3,2a]pyrimidine motif as a positive contributor to the biological profile mentioned above. The same reflection is valid in relation to the data acquired for some thia­zolo[3,2a]pyrimidine-5-one derivatives as 5-HT2a receptor antagonists, a putative therapeutic target for the treatment of depression, although they have structural similarity to ritanserin, a serotonin antagonist (Awadallah, 2008). In this last case, the pharmacological activity appears to be enhanced by the nature of the planar aromatic or heterocyclic ring systems, the type of spacer as well as the presence of a basic nitro­gen atom.

A search made in the latest version (5.36.0; 2015) of the Cambridge Structural Database (Groom & Allen, 2014) for thia­zolo[3,2a]pyrimidine-5-one-based structures revealed the existence of 11 compounds containing the 5H-thia­zolo[3,2a]-pyrimidine-5-one fragment residual in which the hetero ring was not fused with other cyclic rings. In order to clarify of the significance of the thia­zolo[3,2a]pyrimidine scaffold in medicinal chemistry, new 5H-thia­zolo[3,2-a]pyrimidin-5-one derivatives were synthesized. In this work we report the structures and synthesis, by a one-pot reaction, of two derivatives 6-(2-hy­droxy­benzyl)-5H-thia­zolo[3,2-a]pyrimidin-5-one (1) and 6-(2-hy­droxy­benzyl)-5H-thia­zolo[3,2-a]pyrimidin-3-methyl-5-one (2), which will be screened for anti­microbial activity.

Structural commentary top

The molecules of (1) and (2) are shown in Figs. 1 and 2. The structural characterization reveals that the molecules have two cyclic units, viz. the hy­droxy­benzyl and the heterocyclic 5H-thia­zolo[3,2-a]pyrimidin-5-one ring separated by a carbonyl spacer, as expected. In both compounds, the carbonyl O atoms are trans oriented with respect to each other, contributing to the establishment of an intra­molecular O—H···O hydrogen bond between the o-hydroxyl group of the benzene ring and the carbonyl group of the spacer (Tables 1 and 2), which generates an S(6) ring. Taken together, the phenyl ring and hydrogen-bonded pseudo ring are roughly planar, the carbonyl oxygen atom deviates by 0.391 (3) and 0.055 (4) Å in (1) and (2), respectively from the least-square plane formed by the benzene ring atoms. The heterocyclic rings of both compounds are also almost planar, as expected; the maximum deviation from the best plane formed by the ten atoms of the thia­zolo­pyrimidine moiety is 0.103 (1) Å for the carbonyl oxygen atom, O5, in (1) and 0.129 (1) Å for the same atom in (2). Thus, both molecules are able to twist around the C6—C67 bond that links the ring systems. Those rotations can be evaluated by the dihedral angles between the heterocyclic moiety and the phenyl substituent, which are 55.22 (5) and 46.83 (6)° for (1) and (2), respectively.

Supra­molecular features top

As noted above, the hydroxyl group is involved in intra­molecular hydrogen bonding, which leaves it unavailable for participation in inter­molecular hydrogen bonding. Thus, the molecules are linked via weak C—H···O inter­actions: in both compounds the oxygen acceptor atom is the oxo atom O5 being in (1) the hydrogen-bond donor atom of C2 (of the heterocyclic group) and in (2) the hydrogen atom of C64 (located in the exocyclic phenyl ring).

In (1) the molecules are linked by the C2—H2···O5 (1/2 + x, 1/2 - y, 1/2 + z) hydrogen bond, forming a C(6) chain, which runs parallel to [101] and results from the action of a c-glide at (0, 1/4, 0) (Table 1and Fig. 3). The presence of the methyl group on atom C2 of the heterocyclic ring precludes the formation of a similar bond in (2). Thus in the supra­molecular structure of this compound, the molecules are linked by a C64—H64···O5(2 - x, 1/2 + y, 1 - z) hydrogen bond, forming a C(9) chain, which runs parallel to the b-axis direction and results from the action of a 21 screw axis at (1, y, 1/2) (Table 3 and Fig. 4).

Both molecules present aromatic ππ stacking contacts. In (1) there is a close contact between centrosymmetrically related rings containing atom C5 at (x, y, z) and (1 - x, 1 - y, 1 - z) [centroid-to-centroid distance = 3.6764 (9) Å, perpendicular distance between rings = 3.2478 (6) Å and slippage = 1.723 Å]. In (2) the molecules stack above each other along the a-axis direction with unit translation of 3.931 (2) Å [perpendicular distances between the rings (and slippages) of 3.3821 (9) (2.004), 3.3355 (9) (2.080), 3.4084 (9) (1.958) Å for the thia­zole, pyrimidine and phenyl rings, respectively].

Database survey top

As said before, a search made in the latest version (5.36.0; 2015) of the Cambridge Structural Database revealed the existence of 11 deposited compounds containing the 5H-thia­zolo[3,2a]-pyrimidine-5-one residue. Of those, eight were 2,3-di­hydro derivatives thus leaving only the compounds listed below. Fig. 5 shows representations of the compounds referred to in this work. Compounds (1) and (2) are herein characterized and the remaining are referred to by their CSD codes. GEFTES: 7-(methyl­sulfanyl)-5H-[1,3]thia­zolo[3,2-a]pyrimidin-5-one (Bernhardt & Wentrup, 2012); JABRAG: 7-penta­fluoro­ethyl-6-tri­fluoro­methyl­thia­zolo[3,2-a]pyrimidine-5-one (Chi et al., 2002); NAMWEE: N-phenyl-6-methyl-5-oxo-5H-[1,3]-thia­zolo[3,2-a]pyrimidine-2-carboxamide (Volovenko et al., 2004); QIBNOF: 3-ethyl-2-(4-methyl­thia­zol-2-yl)thia­zolo[3,2-a]pyrimidin-4-one (Troisi et al., 2006); and TUFCAY: 3-benzoyl-7-methyl-5H-thia­zolo[3,2-a]pyrimidine-5-one (Elokhina et al., 1996). In those compounds, the C2—C3 bond length averages 1.329 (9) Å, typical of values for the Csp2—Csp2 bond length in thio­phenes (Allen et al., 1987). The average length of the C3—N4 bond is 1.397 (6) Å slightly shorter than that for N4—C5, which is 1.418 (7) Å. The average values for the N4—C9 and C7—N8 bond lengths, 1.363 (7) and 1.357 (12) Å, respectively, are significantly shorter than the previous ones, suggesting the presence of a higher electronic density in that part of the rings. The N8—C9 average of 1.306 (9) Å is typical of a C N bond.

Synthesis and crystallization top

Compounds (1) and (2) were synthesized in moderate/high yields by a one-pot reaction using 4-oxo-4H-chromene-3-carb­oxy­lic acid as the starting material. Chromone-3-carb­oxy­lic acid was initially activated with benzotriazol-1-yl-oxytripyrrolidino­phospho­nium hexafluoridophosphate (PyBOP). Then the in situ formed inter­mediate reacts with the hetero­amine (stoichiometry 1:1) giving rise to 5H-thia­zolo[3,2-a]pyrimidin-5-one derivatives (1) (68%) and (2) (81%). From a mechanistic point of view, the 6-(2-hy­droxy­benzoyl)-5H-thia­zolo[3,2-a]pyrimidin-5-one derivatives may have been obtained by a nucleophilic attack of primary hetero­amine to the 2-position of the activated chromone with a subsequent opening of the pyran ring. Then, the heterocycle entities were obtained by a process enfolding an intra­molecular reaction assisted by the nitro­gen atom of the heterocycle moiety (see scheme below). Crystals were obtained by recrystallization from (1) in AcOEt (m.p. 454–456 K) in the form of colourless plates and from (2) in CH2Cl2 (m.p. 451–453 K) in the form of yellow blocks.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically and treated as riding atoms with C—H(aromatic) = 0.95 and O–H = 0.84 Å with Uiso = 1.2Ueq(C).

Related literature top

For related literature, see: Abd El-Galil, Salwa, Eman & Abd El-Shafy (2010); Allen (2002); Allen et al. (1987); Awadallah (2008); Balkan et al. (1992); Bekhit et al. (2003); Bernhardt & Wentrup (2012); Chi et al. (2002); Elokhina et al. (1996); Jiang et al. (2013); Mishra et al. (2015); Perrone et al. (2012); Troisi et al. (2006); Mulwad et al. (2010); Volovenko et al. (2004).

Computing details top

For both compounds, data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012). Program(s) used to solve structure: SHELXS (Sheldrick, 2008) for (1); SHELXS (Sheldrick, 2008), PLATON (Spek, 2009) and Flipper 25 (Oszlányi & Sütő, 2004) for (2). For both compounds, program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006). Software used to prepare material for publication: OSCAIL (McArdle et al., 2004) and SHELXL2014 (Sheldrick, 2015) for (1); OSCAIL (McArdle et al., 2004), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009) for (2).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (1) with displacement ellipsoids drawn at the 70% probability level.
[Figure 2] Fig. 2. A view of the asymmetric unit of (2) with displacement ellipsoids drawn at the 70% probability level.
[Figure 3] Fig. 3. Compound 1: Molecular C9 [C6 in text?] chain which runs parallel to [101]. Symmetry codes: (i) 1/2 + x, 1/2 - y, 1/2 + z ;(ii) -1/2 + x, 1/2 -y, -1/2 + z. Hydrogen atoms not involved in the hydrogen bonding are omitted.
[Figure 4] Fig. 4. Compound 1: Molecular C7 [C9 in text?] chain which runs parallel to the a-axis direction. Symmetry codes: (i) 2 - x,1/2 + y,1 - z; (ii) 2 - x,-1/2 +y,1 - z. Hydrogen atoms not involved in the hydrogen bonding are omitted.
[Figure 5] Fig. 5. Representations of the compounds referred to in this work (the scaffold indicates the adopted numbering scheme for the 5H-thiazolo[3,2a]-pyrimidine-5-one residue).
(1) 6-(2-Hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-one top
Crystal data top
C13H8N2O3SF(000) = 560
Mr = 272.27Dx = 1.565 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.5563 (5) ÅCell parameters from 7040 reflections
b = 15.3187 (11) Åθ = 2.4–27.5°
c = 10.1229 (7) ŵ = 0.28 mm1
β = 99.49 (2)°T = 100 K
V = 1155.70 (15) Å3Plate, colourless
Z = 40.33 × 0.21 × 0.04 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2632 independent reflections
Radiation source: Sealed Tube2135 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.040
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
profile data from ω–scansh = 89
Absorption correction: multi-scan
CrystalClear-SM Expert (Rigaku, 2012)
k = 1619
Tmin = 0.912, Tmax = 0.989l = 1310
7713 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.3293P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2632 reflectionsΔρmax = 0.38 e Å3
172 parametersΔρmin = 0.22 e Å3
Crystal data top
C13H8N2O3SV = 1155.70 (15) Å3
Mr = 272.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5563 (5) ŵ = 0.28 mm1
b = 15.3187 (11) ÅT = 100 K
c = 10.1229 (7) Å0.33 × 0.21 × 0.04 mm
β = 99.49 (2)°
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2632 independent reflections
Absorption correction: multi-scan
CrystalClear-SM Expert (Rigaku, 2012)
2135 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.989Rint = 0.040
7713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.38 e Å3
2632 reflectionsΔρmin = 0.22 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53044 (5)0.47242 (3)0.82245 (4)0.01896 (13)
O50.13953 (16)0.30924 (7)0.48703 (11)0.0220 (3)
O620.16684 (15)0.43565 (8)0.04276 (11)0.0244 (3)
H62A0.15490.47870.09490.037*
O670.03352 (15)0.51893 (7)0.25912 (11)0.0202 (3)
N40.32960 (17)0.39593 (9)0.62970 (12)0.0153 (3)
N80.35861 (18)0.54953 (9)0.59756 (13)0.0182 (3)
C20.4957 (2)0.36098 (11)0.83142 (15)0.0200 (3)
H20.54820.32540.90440.024*
C30.3863 (2)0.33073 (11)0.72355 (15)0.0184 (3)
H30.35100.27130.71210.022*
C50.2084 (2)0.38137 (11)0.50752 (15)0.0167 (3)
C60.1834 (2)0.45847 (10)0.42710 (14)0.0157 (3)
C70.2532 (2)0.53721 (11)0.47770 (15)0.0174 (3)
H70.22440.58730.42320.021*
C90.3934 (2)0.47688 (10)0.66844 (15)0.0159 (3)
C610.1006 (2)0.39010 (10)0.19292 (14)0.0162 (3)
C620.0209 (2)0.38331 (11)0.07150 (15)0.0184 (3)
C630.0072 (2)0.32092 (11)0.02354 (16)0.0219 (4)
H620.07740.31460.10350.026*
C640.1571 (2)0.26854 (11)0.00138 (16)0.0217 (4)
H640.17520.22640.06660.026*
C650.2832 (2)0.27646 (11)0.11565 (16)0.0201 (3)
H650.38810.24130.12890.024*
C660.2531 (2)0.33623 (10)0.21201 (15)0.0178 (3)
H660.33720.34090.29260.021*
C670.0738 (2)0.45816 (10)0.29057 (15)0.0160 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0213 (2)0.0200 (2)0.01334 (19)0.00121 (15)0.00382 (14)0.00147 (15)
O50.0276 (6)0.0188 (6)0.0182 (6)0.0057 (5)0.0003 (5)0.0008 (4)
O620.0242 (6)0.0272 (7)0.0184 (6)0.0057 (5)0.0068 (5)0.0042 (5)
O670.0210 (6)0.0209 (6)0.0167 (5)0.0045 (5)0.0025 (4)0.0006 (4)
N40.0172 (6)0.0143 (7)0.0140 (6)0.0011 (5)0.0008 (5)0.0005 (5)
N80.0209 (7)0.0164 (7)0.0151 (6)0.0003 (5)0.0038 (5)0.0002 (5)
C20.0231 (8)0.0204 (9)0.0160 (7)0.0034 (6)0.0019 (6)0.0034 (6)
C30.0235 (8)0.0150 (8)0.0166 (7)0.0028 (6)0.0033 (6)0.0039 (6)
C50.0161 (7)0.0188 (9)0.0148 (7)0.0002 (6)0.0015 (6)0.0025 (6)
C60.0164 (7)0.0177 (9)0.0122 (7)0.0015 (6)0.0004 (6)0.0016 (6)
C70.0181 (7)0.0174 (9)0.0154 (7)0.0019 (6)0.0014 (6)0.0008 (6)
C90.0158 (7)0.0156 (8)0.0153 (7)0.0001 (6)0.0007 (6)0.0009 (6)
C610.0179 (7)0.0161 (8)0.0136 (7)0.0025 (6)0.0002 (6)0.0002 (6)
C620.0193 (7)0.0181 (9)0.0164 (7)0.0009 (6)0.0013 (6)0.0013 (6)
C630.0283 (8)0.0211 (9)0.0145 (7)0.0042 (7)0.0017 (6)0.0004 (6)
C640.0328 (9)0.0163 (9)0.0165 (7)0.0029 (7)0.0059 (7)0.0021 (6)
C650.0241 (8)0.0163 (9)0.0200 (8)0.0015 (6)0.0043 (6)0.0006 (6)
C660.0196 (8)0.0171 (9)0.0160 (7)0.0015 (6)0.0007 (6)0.0005 (6)
C670.0153 (7)0.0162 (8)0.0158 (7)0.0014 (6)0.0004 (6)0.0016 (6)
Geometric parameters (Å, º) top
S1—C91.7248 (16)C6—C71.381 (2)
S1—C21.7318 (17)C6—C671.489 (2)
O5—C51.225 (2)C7—H70.9500
O62—C621.3559 (19)C61—C661.404 (2)
O62—H62A0.8405C61—C621.411 (2)
O67—C671.2413 (19)C61—C671.473 (2)
N4—C91.364 (2)C62—C631.397 (2)
N4—C31.396 (2)C63—C641.376 (2)
N4—C51.4298 (19)C63—H620.9500
N8—C91.327 (2)C64—C651.397 (2)
N8—C71.3503 (19)C64—H640.9500
C2—C31.339 (2)C65—C661.384 (2)
C2—H20.9500C65—H650.9500
C3—H30.9500C66—H660.9500
C5—C61.429 (2)
C9—S1—C290.74 (7)N4—C9—S1110.78 (11)
C62—O62—H62A109.3C66—C61—C62118.53 (14)
C9—N4—C3113.61 (13)C66—C61—C67121.59 (14)
C9—N4—C5122.40 (13)C62—C61—C67119.65 (14)
C3—N4—C5123.91 (13)O62—C62—C63117.85 (14)
C9—N8—C7113.80 (14)O62—C62—C61122.18 (14)
C3—C2—S1112.14 (12)C63—C62—C61119.97 (15)
C3—C2—H2123.9C64—C63—C62120.06 (15)
S1—C2—H2123.9C64—C63—H62120.0
C2—C3—N4112.72 (15)C62—C63—H62120.0
C2—C3—H3123.6C63—C64—C65121.00 (15)
N4—C3—H3123.6C63—C64—H64119.5
O5—C5—N4118.75 (14)C65—C64—H64119.5
O5—C5—C6129.54 (14)C66—C65—C64119.14 (15)
N4—C5—C6111.69 (13)C66—C65—H65120.4
C7—C6—C5120.26 (14)C64—C65—H65120.4
C7—C6—C67117.84 (14)C65—C66—C61121.21 (15)
C5—C6—C67121.81 (13)C65—C66—H66119.4
N8—C7—C6126.02 (15)C61—C66—H66119.4
N8—C7—H7117.0O67—C67—C61120.99 (14)
C6—C7—H7117.0O67—C67—C6118.38 (14)
N8—C9—N4125.30 (14)C61—C67—C6120.53 (13)
N8—C9—S1123.91 (12)
C9—S1—C2—C30.18 (13)C2—S1—C9—N8179.59 (14)
S1—C2—C3—N40.97 (18)C2—S1—C9—N40.67 (12)
C9—N4—C3—C21.52 (19)C66—C61—C62—O62176.96 (15)
C5—N4—C3—C2178.23 (13)C67—C61—C62—O622.4 (2)
C9—N4—C5—O5171.08 (14)C66—C61—C62—C633.3 (2)
C3—N4—C5—O55.4 (2)C67—C61—C62—C63177.80 (14)
C9—N4—C5—C67.34 (19)O62—C62—C63—C64177.45 (15)
C3—N4—C5—C6176.23 (13)C61—C62—C63—C642.8 (2)
O5—C5—C6—C7170.03 (16)C62—C63—C64—C650.1 (3)
N4—C5—C6—C78.2 (2)C63—C64—C65—C661.9 (2)
O5—C5—C6—C676.4 (3)C64—C65—C66—C611.4 (2)
N4—C5—C6—C67175.39 (13)C62—C61—C66—C651.2 (2)
C9—N8—C7—C60.0 (2)C67—C61—C66—C65175.63 (14)
C5—C6—C7—N85.1 (2)C66—C61—C67—O67161.58 (15)
C67—C6—C7—N8178.29 (14)C62—C61—C67—O6712.8 (2)
C7—N8—C9—N41.1 (2)C66—C61—C67—C614.7 (2)
C7—N8—C9—S1177.67 (11)C62—C61—C67—C6170.93 (14)
C3—N4—C9—N8179.75 (14)C7—C6—C67—O6740.9 (2)
C5—N4—C9—N83.0 (2)C5—C6—C67—O67135.67 (15)
C3—N4—C9—S11.35 (16)C7—C6—C67—C61135.52 (15)
C5—N4—C9—S1178.12 (10)C5—C6—C67—C6148.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O62—H62A···O670.841.872.5906 (16)144
C2—H2···O5i0.952.293.146 (2)150
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(2) 6-(2-Hydroxybenzoyl)-2-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one top
Crystal data top
C14H10N2O3SF(000) = 296
Mr = 286.30Dx = 1.582 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
a = 3.931 (2) ÅCell parameters from 1337 reflections
b = 10.459 (6) Åθ = 2.4–31.1°
c = 14.657 (8) ŵ = 0.28 mm1
β = 94.201 (14)°T = 100 K
V = 601.0 (6) Å3Block, yellow
Z = 20.26 × 0.13 × 0.09 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
3175 independent reflections
Radiation source: Rotating Anode2808 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.023
Detector resolution: 28.5714 pixels mm-1θmax = 31.2°, θmin = 2.4°
profile data from ω–scansh = 55
Absorption correction: multi-scan
CrystalClear-SM Expert (Rigaku, 2012)
k = 1414
Tmin = 0.931, Tmax = 0.975l = 1820
4859 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0296P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.35 e Å3
3175 reflectionsΔρmin = 0.33 e Å3
183 parametersAbsolute structure: Flack x determined using 981 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.03 (4)
Crystal data top
C14H10N2O3SV = 601.0 (6) Å3
Mr = 286.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 3.931 (2) ŵ = 0.28 mm1
b = 10.459 (6) ÅT = 100 K
c = 14.657 (8) Å0.26 × 0.13 × 0.09 mm
β = 94.201 (14)°
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
3175 independent reflections
Absorption correction: multi-scan
CrystalClear-SM Expert (Rigaku, 2012)
2808 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.975Rint = 0.023
4859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.35 e Å3
S = 1.04Δρmin = 0.33 e Å3
3175 reflectionsAbsolute structure: Flack x determined using 981 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
183 parametersAbsolute structure parameter: 0.03 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15253 (13)0.38511 (5)0.04641 (4)0.01618 (13)
O620.9984 (4)1.04996 (14)0.34842 (12)0.0214 (4)
H30.98141.03010.29270.032*
O50.8745 (4)0.55020 (15)0.29853 (11)0.0183 (3)
O670.8149 (4)0.91654 (14)0.20714 (11)0.0197 (4)
N40.4972 (4)0.49139 (17)0.17956 (13)0.0138 (4)
N80.2366 (5)0.63883 (18)0.07249 (13)0.0159 (4)
C20.3438 (5)0.2885 (2)0.13351 (16)0.0155 (4)
C30.5170 (5)0.3595 (2)0.19717 (15)0.0155 (5)
H3A0.64120.32410.24920.019*
C50.6695 (5)0.5856 (2)0.23699 (16)0.0146 (4)
C60.5742 (5)0.7132 (2)0.20851 (15)0.0129 (4)
C70.3746 (5)0.7315 (2)0.12859 (16)0.0156 (4)
H70.32880.81750.11080.019*
C90.3047 (5)0.5225 (2)0.10207 (15)0.0143 (4)
C210.3011 (6)0.1472 (2)0.13112 (17)0.0196 (5)
H21A0.41770.10970.18610.029*
H21B0.39970.11280.07670.029*
H21C0.05780.12600.12890.029*
C610.7116 (5)0.8455 (2)0.35577 (15)0.0142 (4)
C620.8621 (5)0.9562 (2)0.39773 (16)0.0157 (5)
C630.8759 (5)0.9700 (2)0.49229 (17)0.0177 (5)
H630.98291.04290.52050.021*
C640.7340 (5)0.8779 (2)0.54512 (15)0.0182 (4)
H640.74640.88780.60970.022*
C650.5725 (5)0.7705 (2)0.50554 (16)0.0174 (5)
H650.47210.70870.54270.021*
C660.5602 (5)0.7550 (2)0.41204 (15)0.0151 (4)
H660.44830.68240.38490.018*
C670.7112 (5)0.8297 (2)0.25681 (15)0.0150 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0175 (2)0.0166 (3)0.0143 (2)0.0011 (2)0.00033 (18)0.0012 (2)
O620.0274 (8)0.0165 (8)0.0203 (9)0.0060 (7)0.0026 (7)0.0000 (7)
O50.0213 (8)0.0179 (8)0.0148 (8)0.0035 (7)0.0049 (7)0.0009 (7)
O670.0249 (8)0.0161 (9)0.0182 (8)0.0015 (6)0.0026 (6)0.0025 (6)
N40.0149 (8)0.0143 (10)0.0121 (9)0.0016 (7)0.0009 (7)0.0007 (7)
N80.0173 (9)0.0180 (10)0.0124 (9)0.0006 (8)0.0001 (7)0.0003 (8)
C20.0154 (10)0.0164 (11)0.0150 (11)0.0002 (9)0.0032 (8)0.0009 (9)
C30.0165 (9)0.0159 (12)0.0144 (11)0.0029 (8)0.0025 (8)0.0032 (8)
C50.0138 (9)0.0173 (11)0.0131 (11)0.0003 (9)0.0026 (8)0.0023 (9)
C60.0157 (9)0.0119 (10)0.0114 (11)0.0004 (8)0.0033 (8)0.0001 (8)
C70.0178 (10)0.0147 (11)0.0144 (11)0.0016 (9)0.0027 (8)0.0010 (8)
C90.0124 (9)0.0179 (11)0.0123 (11)0.0008 (9)0.0000 (8)0.0023 (9)
C210.0220 (11)0.0163 (11)0.0204 (13)0.0019 (10)0.0011 (9)0.0017 (10)
C610.0138 (9)0.0138 (11)0.0150 (11)0.0020 (8)0.0008 (8)0.0002 (8)
C620.0144 (9)0.0134 (11)0.0193 (12)0.0009 (8)0.0009 (8)0.0001 (8)
C630.0168 (10)0.0145 (11)0.0215 (12)0.0003 (9)0.0018 (9)0.0048 (9)
C640.0189 (9)0.0211 (11)0.0144 (10)0.0038 (12)0.0006 (8)0.0022 (11)
C650.0188 (10)0.0142 (11)0.0191 (11)0.0017 (9)0.0015 (9)0.0016 (9)
C660.0168 (10)0.0117 (10)0.0166 (11)0.0012 (8)0.0006 (8)0.0012 (8)
C670.0148 (10)0.0142 (10)0.0160 (11)0.0029 (8)0.0011 (9)0.0030 (9)
Geometric parameters (Å, º) top
S1—C91.737 (2)C6—C671.490 (3)
S1—C21.754 (2)C7—H70.9500
O62—C621.352 (3)C21—H21A0.9800
O62—H30.8400C21—H21B0.9800
O5—C51.222 (3)C21—H21C0.9800
O67—C671.251 (3)C61—C661.415 (3)
N4—C91.357 (3)C61—C621.419 (3)
N4—C31.404 (3)C61—C671.460 (3)
N4—C51.434 (3)C62—C631.391 (3)
N8—C91.313 (3)C63—C641.379 (3)
N8—C71.358 (3)C63—H630.9500
C2—C31.339 (3)C64—C651.396 (3)
C2—C211.487 (3)C64—H640.9500
C3—H3A0.9500C65—C661.377 (3)
C5—C61.439 (3)C65—H650.9500
C6—C71.375 (3)C66—H660.9500
C9—S1—C291.17 (12)H21A—C21—H21B109.5
C62—O62—H3109.5C2—C21—H21C109.5
C9—N4—C3114.16 (19)H21A—C21—H21C109.5
C9—N4—C5122.48 (18)H21B—C21—H21C109.5
C3—N4—C5123.4 (2)C66—C61—C62118.2 (2)
C9—N8—C7113.5 (2)C66—C61—C67122.2 (2)
C3—C2—C21128.2 (2)C62—C61—C67119.57 (19)
C3—C2—S1110.87 (17)O62—C62—C63118.0 (2)
C21—C2—S1120.92 (18)O62—C62—C61121.9 (2)
C2—C3—N4113.5 (2)C63—C62—C61120.10 (19)
C2—C3—H3A123.3C64—C63—C62119.9 (2)
N4—C3—H3A123.3C64—C63—H63120.0
O5—C5—N4118.9 (2)C62—C63—H63120.0
O5—C5—C6129.7 (2)C63—C64—C65121.3 (2)
N4—C5—C6111.41 (19)C63—C64—H64119.4
C7—C6—C5119.8 (2)C65—C64—H64119.4
C7—C6—C67117.0 (2)C66—C65—C64119.3 (2)
C5—C6—C67122.88 (19)C66—C65—H65120.3
N8—C7—C6126.4 (2)C64—C65—H65120.3
N8—C7—H7116.8C65—C66—C61121.1 (2)
C6—C7—H7116.8C65—C66—H66119.5
N8—C9—N4125.9 (2)C61—C66—H66119.5
N8—C9—S1123.84 (17)O67—C67—C61121.3 (2)
N4—C9—S1110.26 (16)O67—C67—C6116.06 (19)
C2—C21—H21A109.5C61—C67—C6122.63 (18)
C2—C21—H21B109.5
C9—S1—C2—C31.90 (17)C5—N4—C9—S1176.89 (15)
C9—S1—C2—C21177.56 (18)C2—S1—C9—N8177.19 (19)
C21—C2—C3—N4178.26 (19)C2—S1—C9—N42.17 (15)
S1—C2—C3—N41.1 (2)C66—C61—C62—O62176.97 (19)
C9—N4—C3—C20.5 (3)C67—C61—C62—O621.8 (3)
C5—N4—C3—C2178.30 (19)C66—C61—C62—C633.7 (3)
C9—N4—C5—O5170.18 (19)C67—C61—C62—C63177.5 (2)
C3—N4—C5—O58.6 (3)O62—C62—C63—C64178.71 (19)
C9—N4—C5—C67.7 (3)C61—C62—C63—C641.9 (3)
C3—N4—C5—C6173.54 (18)C62—C63—C64—C650.6 (3)
O5—C5—C6—C7170.2 (2)C63—C64—C65—C661.2 (3)
N4—C5—C6—C77.4 (3)C64—C65—C66—C610.7 (3)
O5—C5—C6—C673.2 (4)C62—C61—C66—C653.1 (3)
N4—C5—C6—C67179.16 (18)C67—C61—C66—C65178.16 (19)
C9—N8—C7—C61.3 (3)C66—C61—C67—O67172.6 (2)
C5—C6—C7—N83.4 (3)C62—C61—C67—O676.1 (3)
C67—C6—C7—N8177.25 (19)C66—C61—C67—C64.5 (3)
C7—N8—C9—N41.1 (3)C62—C61—C67—C6176.78 (18)
C7—N8—C9—S1178.13 (16)C7—C6—C67—O6740.7 (3)
C3—N4—C9—N8177.37 (19)C5—C6—C67—O67133.0 (2)
C5—N4—C9—N83.8 (3)C7—C6—C67—C61136.6 (2)
C3—N4—C9—S12.0 (2)C5—C6—C67—C6149.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O62—H3···O670.841.812.557 (2)146
C64—H64···O5i0.952.573.217 (3)125
Symmetry code: (i) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
O62—H62A···O670.841.872.5906 (16)144
C2—H2···O5i0.952.293.146 (2)150
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
O62—H3···O670.841.812.557 (2)146
C64—H64···O5i0.952.573.217 (3)125
Symmetry code: (i) x+2, y+1/2, z+1.

Experimental details

(1)(2)
Crystal data
Chemical formulaC13H8N2O3SC14H10N2O3S
Mr272.27286.30
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21
Temperature (K)100100
a, b, c (Å)7.5563 (5), 15.3187 (11), 10.1229 (7)3.931 (2), 10.459 (6), 14.657 (8)
β (°) 99.49 (2) 94.201 (14)
V3)1155.70 (15)601.0 (6)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.280.28
Crystal size (mm)0.33 × 0.21 × 0.040.26 × 0.13 × 0.09
Data collection
DiffractometerRigaku Saturn724+ (2x2 bin mode)
diffractometer
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
CrystalClear-SM Expert (Rigaku, 2012)
Multi-scan
CrystalClear-SM Expert (Rigaku, 2012)
Tmin, Tmax0.912, 0.9890.931, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7713, 2632, 2135 4859, 3175, 2808
Rint0.0400.023
(sin θ/λ)max1)0.6490.729
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.02 0.031, 0.067, 1.04
No. of reflections26323175
No. of parameters172183
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.220.35, 0.33
Absolute structure?Flack x determined using 981 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter?0.03 (4)

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXS (Sheldrick, 2008), PLATON (Spek, 2009) and Flipper 25 (Oszlányi & Sütő, 2004), OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006), OSCAIL (McArdle et al., 2004) and SHELXL2014 (Sheldrick, 2015), OSCAIL (McArdle et al., 2004), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice, (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]) and the Foundation for Science and Technology (FCT) of Portugal (QUI/UI0081/2015). FC (SFRH/BPD/74491/2010) is supported by FCT grant.

References

First citationAbd El-Galil, E. A., Salwa, F. M., Eman, M. F. & Abd El-Shafy, D. N. (2010). Eur J Med Chem. 45, 149–1501.  Web of Science PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAwadallah, F. M. (2008). Sci. Pharm. 76, 415–438.  CrossRef CAS Google Scholar
First citationBalkan, A., Uma, S., Ertan, M. & Wiegrebe, W. (1992). Pharmazie, 47, 687–688.  PubMed CAS Web of Science Google Scholar
First citationBekhit, A. A., Fahmy, H. T. Y., Rostom, S. A. F. & Baraka, A. M. (2003). Eur. J. Med. Chem. 38, 27–36.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernhardt, P. V. & Wentrup, C. (2012). Aust. J. Chem. 65, 371–375.  CAS Google Scholar
First citationChi, K.-W., Kim, H.-A., Lee, W., Park, T.-H., Lee, U. & Furin, G. G. (2002). Bull. Korean Chem. Soc. 23, 1017–1020.  CAS Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationElokhina, V. N., Nakhmanovich, A. S., Stepanova, Z. V., Lopyrev, V. A., Bannikova, O. V., Struchkov, Y. T. & Shishkin, O. V. (1996). Izv. Akad. Nauk SSSR, Ser. Khim. 45, 2189–2191.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, Z., Wang, Y., Wang, W., Wang, S., Xu, B., Fan, G., Dong, G., Liu, Y., Yao, J., Miao, Z., Zhang, W. & Sheng, C. (2013). Eur. J. Med. Chem. 64, 16–22.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm. 6, 30–309.  Web of Science CSD CrossRef Google Scholar
First citationMishra, C. B., Kumari, S. & Tiwari, M. (2015). Eur J Med Chem. 92, DOI: 10.1016/j. ejmech. 2014.12.031.  Web of Science CrossRef Google Scholar
First citationMulwad, V. V., Parmar, H. T. & Mir, A. A. (2010). J. Korean Chem. Soc. 54, 9–12.  CrossRef CAS Google Scholar
First citationOszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPerrone, M. G., Vitale, P., Malerba, P., Altomare, A., Rizzi, R., Lavecchia, A., Di Giovanni, C., Novellino, E. & Scilimati, A. (2012). ChemMedChem, 7, 629–641.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTroisi, L., Ronzini, L., Granito, C., Pindinelli, E., Troisi, A. & Pilati, T. (2006). Tetrahedron, 62, 12064–12070.  Web of Science CSD CrossRef CAS Google Scholar
First citationVolovenko, Y. M. G. G., Dubinina, G. G. & Chernega, A. N. (2004). Khim. Get. Soedin. SSSR, pp. 100–106.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 766-771
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds