organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-(1-benzo­furan-2-yl)-3-(4-methyl­phen­yl)-4,5-di­hydro-1,2-oxazol-5-ol

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, and cDepartment of Physics, St. Philomena's College, Mysore, India
*Correspondence e-mail: hcdevarajegowda@ycm.uni-mysore.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 June 2015; accepted 9 June 2015; online 17 June 2015)

In the title compound, C18H15NO3, the isoxazole moiety adopts a shallow envelope conformation, with the C atom bearing the OH group displaced by 0.148 (1) Å from the mean plane through the other four atoms. The mean plane of this ring (all atoms) subtends dihedral angles of 87.19 (6) and 15.51 (7)° with the benzo­furan ring system (r.m.s. deviation = 0.007 Å) and the 4-methylphenyl ring, respectively. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, generating [001] C(5) chains, with adjacent mol­ecules in the chain related by c-glide symmetry. Weak C—H⋯O inter­actions link the chains into a three-dimensional network.

1. Related literature

For the biological and pharmaceutical properties of isoxazoles, see: Eddington et al. (2002[Eddington, N. D., Cox, D. S., Roberts, R. R., Butcher, R. J., Edafiogho, I. O., Stables, J. P., Cooke, N., Goodwin, A. M., Smith, C. A. & Scott, K. R. (2002). Eur. J. Med. Chem. 37, 635-648.]); Lee et al. (2009[Lee, Y., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126-1128.]); Rozman et al. (2002[Rozman, B., Praprotnik, S., Logar, D., Tomsic, M., Hojnik, M., Kos-Golja, M., Accetto, R. & Dolenc, P. (2002). Ann. Rheum. Dis. 61, 567-569.]); Shin et al. (2005[Shin, K. D., Lee, M. Y., Shin, D. S., Lee, S., Son, K. H., Koh, S., Paik, Y. K., Kwon, B. M. & Han, D. C. (2005). J. Biol. Chem. 280, 41439-41448.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H15NO3

  • Mr = 293.31

  • Monoclinic, P 21 /c

  • a = 10.2200 (15) Å

  • b = 14.2289 (19) Å

  • c = 10.2474 (15) Å

  • β = 93.058 (7)°

  • V = 1488.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 23993 measured reflections

  • 3452 independent reflections

  • 2829 reflections with I > 2σ(I)

  • Rint = 0.047

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.03

  • 3452 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N9i 0.82 2.17 2.9352 (15) 156
C2—H2⋯O10ii 0.93 2.46 3.2328 (17) 141
C7—H7C⋯O15iii 0.96 2.58 3.175 (2) 121
C18—H18⋯O10i 0.93 2.54 3.4183 (17) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) -x, -y, -z+3.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isoxazole derivatives bearing various substituents are known to have diverse biological and pharmaceutical activities; such as antiviral (Lee et al., 2009), anti-HIV activities (Shin et al., 2005) and anticonvulsant activity (Eddington et al., 2002). In addition, isoxazole derivative is used for the treatment of rheumatoid arthritis (Rozman et al., 2002). As part of our interest in these compounds, the title compound was chosen for the X-ray structure analysis.

In the molecular structure of the title compound (Fig. 1), the isoxazole moiety makes dihedral angles of 87.19 (6)° and 15.51 (7)° with benzofuran and phenyl ring, respectively. The dihedral angle between the benzofuran and phenyl ring is 81.67 (6)° The central isoxazole moiety adopts a slightly flattened envelope conformation with puckering parameter Q = 0.2406 (12) Å and ϕ = 183.41 (17)° , and the maximum deviation found on the puckered atom at C11 is -0.148 (1) Å. The crystal structure features C—H···O and O—H···N hydrogen bonds. The packing diagram of the molecule when viewed down the a axis as shown in Fig. 2.

Related literature top

For the biological and pharmaceutical properties of isoxazoles, see: Eddington et al. (2002); Lee et al. (2009); Rozman et al. (2002); Shin et al. (2005).

Experimental top

A solution of 2 Eq. of K2CO3 in water (1 ml) was added to the stirred solution of 4 Eq. of N-hydroxyl-4-toluenesulfonamide in MeOH/H2O (5/1 ml). Then 1 Eq. of 1-Benzofuran-2-yl-3-p-tolyl-propenone was added and reaction mixture was allowed to stir at room temperature for overnight. After completion of reaction, the reaction mixture was diluted with EtOAc, washed with water and brine. The organic extract was dried and concentrated under reduced pressure to give crude product, which was further purified using column chromatography (60–120 silica gel) to afford pure product.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atom, with O–H distance is equal to 0.82 Å and C–H distance in the range of 0.93 to 0.97 Å; Uiso(H) = 1.2–1.5Ueq (carrier atom) for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective diagram of the molecule with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecule viewed down the a axis.
5-(1-Benzofuran-2-yl)-3-(4-methylphenyl)-4,5-dihydro-1,2-oxazol-5-ol top
Crystal data top
C18H15NO3F(000) = 616
Mr = 293.31Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3452 reflections
a = 10.2200 (15) Åθ = 2.0–27.6°
b = 14.2289 (19) ŵ = 0.09 mm1
c = 10.2474 (15) ÅT = 293 K
β = 93.058 (7)°Block, light yellow
V = 1488.1 (4) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.047
ω and ϕ scansθmax = 27.6°, θmin = 2.0°
23993 measured reflectionsh = 1313
3452 independent reflectionsk = 1818
2829 reflections with I > 2σ(I)l = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.3174P]
where P = (Fo2 + 2Fc2)/3
3452 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H15NO3V = 1488.1 (4) Å3
Mr = 293.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2200 (15) ŵ = 0.09 mm1
b = 14.2289 (19) ÅT = 293 K
c = 10.2474 (15) Å0.30 × 0.25 × 0.20 mm
β = 93.058 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2829 reflections with I > 2σ(I)
23993 measured reflectionsRint = 0.047
3452 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
3452 reflectionsΔρmin = 0.18 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O100.10420 (9)0.22693 (6)1.16214 (9)0.0469 (3)
O130.01366 (9)0.15474 (6)0.97218 (9)0.0424 (3)
O150.34411 (9)0.12845 (9)1.11345 (9)0.0560 (4)
N90.02005 (11)0.20392 (8)1.26398 (11)0.0442 (3)
C10.10566 (14)0.02593 (9)1.35272 (13)0.0444 (4)
C20.19545 (15)0.06737 (10)1.43143 (14)0.0490 (5)
C30.27405 (13)0.01485 (10)1.50880 (12)0.0425 (4)
C40.25865 (15)0.08194 (11)1.50733 (15)0.0514 (5)
C50.16973 (14)0.12463 (10)1.42932 (15)0.0486 (4)
C60.09233 (11)0.07103 (8)1.34970 (11)0.0351 (3)
C70.37282 (16)0.06253 (12)1.59045 (16)0.0589 (5)
C80.00193 (12)0.11530 (8)1.26170 (11)0.0346 (3)
C110.10936 (12)0.14692 (8)1.07341 (12)0.0352 (3)
C120.07217 (12)0.06513 (8)1.15977 (11)0.0358 (3)
C140.24379 (12)0.14657 (9)1.02232 (12)0.0374 (3)
C160.45719 (14)0.13194 (11)1.04688 (14)0.0498 (5)
C170.42854 (13)0.15256 (9)0.91647 (13)0.0434 (4)
C180.28814 (13)0.16133 (10)0.90353 (13)0.0431 (4)
C190.58217 (16)0.11677 (16)1.09931 (19)0.0757 (7)
C200.68147 (16)0.12359 (15)1.0141 (2)0.0747 (7)
C210.65735 (16)0.14460 (13)0.8845 (2)0.0670 (6)
C220.53186 (17)0.15950 (12)0.83303 (17)0.0608 (6)
H10.054000.063301.301600.0530*
H20.202900.132501.432100.0590*
H40.309200.118901.560000.0620*
H50.161500.189701.430000.0580*
H7A0.444400.085301.534700.0880*
H7B0.405100.018401.651900.0880*
H7C0.331900.114301.636800.0880*
H12A0.017200.020001.111800.0430*
H12B0.149100.033501.198000.0430*
H130.024200.203900.932400.0640*
H180.238000.174700.827400.0520*
H190.598600.102701.187300.0910*
H200.767400.113701.045400.0900*
H210.727200.148900.830200.0800*
H220.516300.173800.745000.0730*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O100.0539 (6)0.0394 (5)0.0492 (5)0.0152 (4)0.0203 (4)0.0082 (4)
O130.0359 (5)0.0471 (5)0.0441 (5)0.0045 (4)0.0002 (4)0.0092 (4)
O150.0352 (5)0.0961 (8)0.0367 (5)0.0054 (5)0.0013 (4)0.0150 (5)
N90.0475 (6)0.0416 (6)0.0451 (6)0.0103 (5)0.0175 (5)0.0081 (4)
C10.0504 (8)0.0395 (7)0.0445 (7)0.0007 (5)0.0132 (6)0.0021 (5)
C20.0581 (9)0.0389 (7)0.0508 (8)0.0041 (6)0.0115 (7)0.0050 (6)
C30.0395 (7)0.0531 (8)0.0351 (6)0.0041 (5)0.0029 (5)0.0083 (5)
C40.0497 (8)0.0542 (8)0.0522 (8)0.0015 (6)0.0213 (7)0.0052 (6)
C50.0519 (8)0.0382 (6)0.0576 (8)0.0040 (6)0.0204 (7)0.0060 (6)
C60.0332 (6)0.0400 (6)0.0322 (6)0.0031 (5)0.0033 (5)0.0007 (5)
C70.0548 (9)0.0719 (10)0.0509 (8)0.0084 (7)0.0120 (7)0.0170 (7)
C80.0340 (6)0.0375 (6)0.0323 (6)0.0035 (5)0.0029 (5)0.0026 (4)
C110.0346 (6)0.0371 (6)0.0340 (6)0.0041 (5)0.0035 (5)0.0021 (4)
C120.0385 (6)0.0357 (6)0.0337 (6)0.0023 (5)0.0064 (5)0.0014 (5)
C140.0348 (6)0.0435 (6)0.0338 (6)0.0034 (5)0.0012 (5)0.0015 (5)
C160.0354 (7)0.0679 (9)0.0464 (8)0.0041 (6)0.0055 (6)0.0068 (6)
C170.0405 (7)0.0481 (7)0.0422 (7)0.0003 (5)0.0085 (6)0.0001 (5)
C180.0394 (7)0.0565 (8)0.0337 (6)0.0036 (6)0.0040 (5)0.0018 (5)
C190.0392 (9)0.1234 (17)0.0637 (11)0.0029 (9)0.0044 (8)0.0191 (11)
C200.0354 (8)0.0994 (14)0.0893 (14)0.0008 (8)0.0036 (8)0.0033 (11)
C210.0447 (9)0.0773 (12)0.0813 (12)0.0022 (7)0.0260 (8)0.0039 (9)
C220.0543 (9)0.0773 (11)0.0528 (9)0.0024 (8)0.0203 (7)0.0011 (8)
Geometric parameters (Å, º) top
O10—N91.4254 (15)C16—C171.384 (2)
O10—C111.4597 (15)C17—C181.4394 (19)
O13—C111.3917 (15)C17—C221.397 (2)
O15—C141.3739 (16)C19—C201.377 (3)
O15—C161.3739 (17)C20—C211.371 (3)
O13—H130.8200C21—C221.377 (2)
N9—C81.2808 (16)C1—H10.9300
C1—C21.385 (2)C2—H20.9300
C1—C61.3869 (17)C4—H40.9300
C2—C31.379 (2)C5—H50.9300
C3—C41.386 (2)C7—H7A0.9600
C3—C71.507 (2)C7—H7B0.9600
C4—C51.383 (2)C7—H7C0.9600
C5—C61.3935 (19)C12—H12A0.9700
C6—C81.4671 (16)C12—H12B0.9700
C8—C121.5028 (17)C18—H180.9300
C11—C141.4961 (18)C19—H190.9300
C11—C121.5225 (17)C20—H200.9300
C14—C181.3380 (18)C21—H210.9300
C16—C191.376 (2)C22—H220.9300
N9—O10—C11108.67 (9)C16—C19—C20116.20 (17)
C14—O15—C16105.83 (10)C19—C20—C21121.95 (16)
C11—O13—H13109.00C20—C21—C22121.36 (16)
O10—N9—C8108.96 (10)C17—C22—C21118.27 (16)
C2—C1—C6120.35 (12)C2—C1—H1120.00
C1—C2—C3121.91 (13)C6—C1—H1120.00
C2—C3—C4117.54 (13)C1—C2—H2119.00
C4—C3—C7122.23 (13)C3—C2—H2119.00
C2—C3—C7120.24 (13)C3—C4—H4119.00
C3—C4—C5121.42 (14)C5—C4—H4119.00
C4—C5—C6120.61 (13)C4—C5—H5120.00
C1—C6—C5118.16 (11)C6—C5—H5120.00
C1—C6—C8120.44 (11)C3—C7—H7A109.00
C5—C6—C8121.38 (11)C3—C7—H7B109.00
N9—C8—C6121.81 (11)C3—C7—H7C109.00
N9—C8—C12112.70 (11)H7A—C7—H7B109.00
C6—C8—C12125.48 (10)H7A—C7—H7C109.00
O10—C11—C12102.46 (9)H7B—C7—H7C109.00
O10—C11—C14106.56 (10)C8—C12—H12A112.00
O10—C11—O13110.77 (9)C8—C12—H12B112.00
O13—C11—C14111.19 (10)C11—C12—H12A112.00
C12—C11—C14117.60 (10)C11—C12—H12B112.00
O13—C11—C12107.88 (10)H12A—C12—H12B109.00
C8—C12—C11101.05 (9)C14—C18—H18127.00
O15—C14—C18111.78 (11)C17—C18—H18127.00
C11—C14—C18132.83 (12)C16—C19—H19122.00
O15—C14—C11115.38 (10)C20—C19—H19122.00
O15—C16—C17110.29 (12)C19—C20—H20119.00
C17—C16—C19123.67 (14)C21—C20—H20119.00
O15—C16—C19126.04 (14)C20—C21—H21119.00
C16—C17—C18105.42 (12)C22—C21—H21119.00
C18—C17—C22136.03 (13)C17—C22—H22121.00
C16—C17—C22118.55 (13)C21—C22—H22121.00
C14—C18—C17106.68 (12)
C11—O10—N9—C813.54 (13)C6—C8—C12—C11161.79 (11)
N9—O10—C11—O1391.49 (11)O10—C11—C12—C823.18 (11)
N9—O10—C11—C1223.35 (12)O13—C11—C12—C893.75 (11)
N9—O10—C11—C14147.45 (9)C14—C11—C12—C8139.58 (11)
C16—O15—C14—C11179.68 (12)O10—C11—C14—O1566.25 (13)
C16—O15—C14—C180.19 (16)O10—C11—C14—C18113.10 (16)
C14—O15—C16—C170.43 (16)O13—C11—C14—O15172.95 (11)
C14—O15—C16—C19179.12 (17)O13—C11—C14—C187.7 (2)
O10—N9—C8—C6175.99 (10)C12—C11—C14—O1547.91 (16)
O10—N9—C8—C123.06 (14)C12—C11—C14—C18132.74 (15)
C6—C1—C2—C30.0 (2)O15—C14—C18—C170.11 (16)
C2—C1—C6—C51.11 (19)C11—C14—C18—C17179.27 (13)
C2—C1—C6—C8177.02 (12)O15—C16—C17—C180.49 (16)
C1—C2—C3—C41.2 (2)O15—C16—C17—C22179.71 (13)
C1—C2—C3—C7178.48 (13)C19—C16—C17—C18179.07 (17)
C2—C3—C4—C51.3 (2)C19—C16—C17—C220.7 (2)
C7—C3—C4—C5178.39 (14)O15—C16—C19—C20179.82 (17)
C3—C4—C5—C60.2 (2)C17—C16—C19—C200.3 (3)
C4—C5—C6—C11.0 (2)C16—C17—C18—C140.36 (16)
C4—C5—C6—C8177.08 (13)C22—C17—C18—C14179.89 (16)
C1—C6—C8—N9174.48 (12)C16—C17—C22—C210.6 (2)
C1—C6—C8—C126.60 (18)C18—C17—C22—C21179.14 (16)
C5—C6—C8—N97.46 (19)C16—C19—C20—C210.2 (3)
C5—C6—C8—C12171.46 (12)C19—C20—C21—C220.3 (3)
N9—C8—C12—C1117.21 (13)C20—C21—C22—C170.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N9i0.822.172.9352 (15)156
C2—H2···O10ii0.932.463.2328 (17)141
C7—H7C···O15iii0.962.583.175 (2)121
C18—H18···O10i0.932.543.4183 (17)158
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+5/2; (iii) x, y, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···N9i0.822.172.9352 (15)156
C2—H2···O10ii0.932.463.2328 (17)141
C7—H7C···O15iii0.962.583.175 (2)121
C18—H18···O10i0.932.543.4183 (17)158
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+5/2; (iii) x, y, z+3.
 

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddington, N. D., Cox, D. S., Roberts, R. R., Butcher, R. J., Edafiogho, I. O., Stables, J. P., Cooke, N., Goodwin, A. M., Smith, C. A. & Scott, K. R. (2002). Eur. J. Med. Chem. 37, 635–648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLee, Y., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126–1128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRozman, B., Praprotnik, S., Logar, D., Tomsic, M., Hojnik, M., Kos-Golja, M., Accetto, R. & Dolenc, P. (2002). Ann. Rheum. Dis. 61, 567–569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, K. D., Lee, M. Y., Shin, D. S., Lee, S., Son, K. H., Koh, S., Paik, Y. K., Kwon, B. M. & Han, D. C. (2005). J. Biol. Chem. 280, 41439–41448.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds