organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o475-o476

Crystal structure of 4-methyl­benzyl N′-[(thio­phen-2-yl)methyl­­idene]hydrazinecarbodi­thio­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: thahira@upm.edu.my, thahira@upm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 June 2015; accepted 8 June 2015; online 13 June 2015)

In the title compound, C15H16N2S3 {systematic name: [({[(4-methyl­phen­yl)meth­yl]sulfan­yl}methane­thio­yl)amino][1-(thio­phen-2-yl)ethyl­idene]amine}, the central CN2S2 residue is almost planar (r.m.s. deviation = 0.0061 Å) and forms dihedral angles of 7.39 (10) and 64.91 (5)° with the thienyl and p-tolyl rings, respectively; the dihedral angle between these rings is 57.52 (6)°. The non-thione S atoms are syn, and with respect to the thione S atom, the benzyl group is anti. In the crystal, centrosymmetrically related mol­ecules self-associate via eight-membered {⋯HNCS}2 synthons. The dimeric aggregates stack along the a axis and are are consolidated into a three-dimensional architecture via methyl-C—H⋯π(benzene) and benzene-C—H⋯π(thien­yl) inter­actions.

1. Related literature

For the structure of the parent compound, in which the benzyl residue is syn to the thione S atom, see: Chan et al. (2003[Chan, M.-H. E., Crouse, K. A., Tarafder, M. T. H. & Yamin, B. M. (2003). Acta Cryst. E59, o628-o629.]). For the synthesis, see: Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691-2698.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H16N2S3

  • Mr = 320.48

  • Monoclinic, P 21 /c

  • a = 5.6956 (4) Å

  • b = 14.3424 (9) Å

  • c = 18.9255 (11) Å

  • β = 90.263 (5)°

  • V = 1545.98 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.30 mm−1

  • T = 150 K

  • 0.15 × 0.10 × 0.06 mm

2.2. Data collection

  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.774, Tmax = 1.000

  • 8463 measured reflections

  • 2830 independent reflections

  • 2506 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.06

  • 2830 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S3,C3–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2i 0.87 (2) 2.57 (2) 3.4433 (18) 176 (3)
C2′—H2′2⋯Cg2ii 0.98 2.85 3.616 (3) 138
C12—H12⋯Cg1iii 0.95 2.89 3.560 (2) 130
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For the structure of the parent compound, in which the benzyl residue is syn to the thione S atom, see: Chan et al. (2003). For the synthesis, see: Tarafder et al. (2002).

Experimental top

The title compound was prepared as per a reported procedure (Tarafder et al., 2002). The light-yellow precipitate formed was filtered off and recrystallized from its acetonitrile solution as yellow prisms. Yield 56%; M.pt: 175–177 °C. Anal. Calcd for C15H16N2S3: C, 56.21; H, 5.03; N, 8.74. Found: C, 55.97; H, 4.96; N, 8.10. IR (cm-1, FT—IR): 3143 w, 1511 m, 1060 m, 924 s. 1H-NMR: (DMSO-d6, p.p.m.) δ: 12.42 (s, 1H, NH), 7.24–7.55 (multiplet, 4H, Ar–H), 7.03–7.10 (multiplet, 3H, thiophene-H), 4.37 (s, 2H, –SCH2), 2.24, 2.36 (s, 6H, –CH3), 13 C-NMR:(DMSO-d6, p.p.m.) δ: 197.98 (C=S), 159.15 (C=N), 129.32–142.86 (Ar–C), 128.39–129.90 (thiophene-C), 38.23 (SCH2), 15.58, 21.24 (CH3).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). The N—H atom was refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Overlay diagram of the title compound (red image) with the parent compound (blue). The molecules have been overlapped so that the thienyl residues are coincident.
[Figure 3] Fig. 3. A view of the unit-cell contents in projection down the a axis. The N—H···S (orange) and C—H···π (purple) interactions are shown as dashed lines.
[({[(4-Methylphenyl)methyl]sulfanyl}methanethioyl)amino][1-(thiophen-2-yl)ethylidene]amine top
Crystal data top
C15H16N2S3F(000) = 672
Mr = 320.48Dx = 1.377 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54182 Å
a = 5.6956 (4) ÅCell parameters from 3915 reflections
b = 14.3424 (9) Åθ = 3.1–71.3°
c = 18.9255 (11) ŵ = 4.30 mm1
β = 90.263 (5)°T = 150 K
V = 1545.98 (17) Å3Prism, yellow
Z = 40.15 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2830 independent reflections
Radiation source: fine-focus sealed tube2506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1952 pixels mm-1θmax = 71.3°, θmin = 3.9°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1717
Tmin = 0.774, Tmax = 1.000l = 1622
8463 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.9619P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2830 reflectionsΔρmax = 0.49 e Å3
186 parametersΔρmin = 0.33 e Å3
Crystal data top
C15H16N2S3V = 1545.98 (17) Å3
Mr = 320.48Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.6956 (4) ŵ = 4.30 mm1
b = 14.3424 (9) ÅT = 150 K
c = 18.9255 (11) Å0.15 × 0.10 × 0.06 mm
β = 90.263 (5)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
2830 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2506 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 1.000Rint = 0.023
8463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.49 e Å3
2830 reflectionsΔρmin = 0.33 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51174 (9)0.72659 (3)0.42082 (3)0.01620 (16)
S20.71326 (10)0.92093 (3)0.43627 (3)0.02009 (17)
S30.06660 (10)0.60844 (4)0.53247 (3)0.02183 (17)
N10.3513 (3)0.85288 (12)0.50603 (10)0.0179 (4)
H1N0.339 (5)0.9097 (9)0.5222 (13)0.021*
N20.1971 (3)0.78079 (12)0.51907 (10)0.0170 (4)
C10.5185 (4)0.83886 (14)0.45784 (12)0.0171 (4)
C20.0454 (4)0.79016 (15)0.56846 (12)0.0179 (5)
C2'0.0181 (5)0.87383 (16)0.61556 (13)0.0258 (5)
H2'10.17350.89770.62870.039*
H2'20.06750.85590.65830.039*
H2'30.06960.92240.59040.039*
C30.1146 (4)0.71133 (15)0.57733 (12)0.0174 (4)
C40.3185 (4)0.56050 (16)0.56418 (13)0.0237 (5)
H40.37030.49930.55300.028*
C50.4368 (4)0.61936 (17)0.60721 (13)0.0243 (5)
H50.58180.60330.62860.029*
C60.3258 (4)0.70718 (14)0.61767 (12)0.0175 (5)
H60.38340.75570.64700.021*
C70.7561 (4)0.73279 (15)0.35948 (12)0.0184 (5)
H7A0.73410.78560.32650.022*
H7B0.90520.74210.38560.022*
C80.7625 (4)0.64185 (14)0.31920 (11)0.0165 (4)
C90.5788 (4)0.61510 (15)0.27450 (12)0.0186 (5)
H90.44730.65510.26840.022*
C100.5867 (4)0.53072 (15)0.23898 (12)0.0188 (5)
H100.46020.51360.20870.023*
C110.7773 (4)0.47032 (15)0.24688 (11)0.0179 (5)
C11'0.7835 (4)0.37808 (16)0.20945 (14)0.0259 (5)
H11A0.85160.38630.16240.039*
H11B0.62350.35370.20480.039*
H11C0.87950.33410.23670.039*
C120.9610 (4)0.49777 (15)0.29108 (12)0.0179 (5)
H121.09340.45810.29680.022*
C130.9533 (4)0.58213 (15)0.32682 (12)0.0177 (5)
H131.08000.59930.35690.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0185 (3)0.0122 (3)0.0180 (3)0.00068 (18)0.0030 (2)0.00096 (18)
S20.0217 (3)0.0135 (3)0.0251 (3)0.0034 (2)0.0057 (2)0.0019 (2)
S30.0233 (3)0.0177 (3)0.0244 (3)0.0018 (2)0.0013 (2)0.0007 (2)
N10.0208 (10)0.0120 (8)0.0209 (10)0.0019 (7)0.0041 (8)0.0017 (7)
N20.0180 (9)0.0139 (8)0.0192 (9)0.0007 (7)0.0008 (7)0.0009 (7)
C10.0205 (11)0.0131 (10)0.0176 (11)0.0012 (8)0.0015 (9)0.0002 (8)
C20.0188 (11)0.0159 (10)0.0190 (11)0.0000 (8)0.0014 (9)0.0011 (8)
C2'0.0298 (13)0.0226 (11)0.0251 (13)0.0066 (10)0.0095 (10)0.0053 (10)
C30.0186 (11)0.0169 (10)0.0168 (11)0.0001 (8)0.0023 (9)0.0008 (8)
C40.0232 (12)0.0205 (11)0.0272 (13)0.0058 (9)0.0092 (10)0.0064 (9)
C50.0185 (12)0.0320 (13)0.0225 (12)0.0039 (10)0.0024 (9)0.0099 (10)
C60.0182 (11)0.0146 (10)0.0198 (11)0.0005 (8)0.0076 (9)0.0023 (8)
C70.0181 (11)0.0168 (10)0.0204 (11)0.0022 (8)0.0061 (9)0.0006 (8)
C80.0178 (11)0.0160 (10)0.0157 (10)0.0023 (8)0.0052 (8)0.0008 (8)
C90.0169 (11)0.0199 (10)0.0190 (11)0.0026 (8)0.0012 (9)0.0026 (8)
C100.0165 (11)0.0230 (11)0.0167 (11)0.0019 (9)0.0008 (9)0.0002 (9)
C110.0194 (11)0.0179 (10)0.0164 (11)0.0014 (8)0.0038 (9)0.0009 (8)
C11'0.0259 (13)0.0222 (11)0.0296 (13)0.0003 (9)0.0008 (10)0.0073 (10)
C120.0161 (11)0.0179 (10)0.0198 (11)0.0026 (8)0.0003 (9)0.0011 (8)
C130.0154 (11)0.0203 (10)0.0175 (11)0.0016 (8)0.0008 (9)0.0003 (8)
Geometric parameters (Å, º) top
S1—C11.756 (2)C6—H60.9500
S1—C71.818 (2)C7—C81.511 (3)
S2—C11.670 (2)C7—H7A0.9900
S3—C41.703 (2)C7—H7B0.9900
S3—C31.725 (2)C8—C131.391 (3)
N1—C11.337 (3)C8—C91.396 (3)
N1—N21.379 (3)C9—C101.385 (3)
N1—H1N0.874 (10)C9—H90.9500
N2—C21.283 (3)C10—C111.396 (3)
C2—C31.462 (3)C10—H100.9500
C2—C2'1.503 (3)C11—C121.393 (3)
C2'—H2'10.9800C11—C11'1.501 (3)
C2'—H2'20.9800C11'—H11A0.9800
C2'—H2'30.9800C11'—H11B0.9800
C3—C61.429 (3)C11'—H11C0.9800
C4—C51.354 (4)C12—C131.387 (3)
C4—H40.9500C12—H120.9500
C5—C61.423 (3)C13—H130.9500
C5—H50.9500
C1—S1—C7101.21 (10)C8—C7—S1107.47 (14)
C4—S3—C392.08 (12)C8—C7—H7A110.2
C1—N1—N2117.73 (17)S1—C7—H7A110.2
C1—N1—H1N115.8 (18)C8—C7—H7B110.2
N2—N1—H1N125.9 (18)S1—C7—H7B110.2
C2—N2—N1118.90 (18)H7A—C7—H7B108.5
N1—C1—S2122.48 (16)C13—C8—C9118.5 (2)
N1—C1—S1113.31 (16)C13—C8—C7120.0 (2)
S2—C1—S1124.21 (14)C9—C8—C7121.5 (2)
N2—C2—C3115.14 (19)C10—C9—C8120.5 (2)
N2—C2—C2'126.0 (2)C10—C9—H9119.7
C3—C2—C2'118.9 (2)C8—C9—H9119.7
C2—C2'—H2'1109.5C9—C10—C11121.1 (2)
C2—C2'—H2'2109.5C9—C10—H10119.4
H2'1—C2'—H2'2109.5C11—C10—H10119.4
C2—C2'—H2'3109.5C12—C11—C10118.0 (2)
H2'1—C2'—H2'3109.5C12—C11—C11'120.9 (2)
H2'2—C2'—H2'3109.5C10—C11—C11'121.1 (2)
C6—C3—C2128.3 (2)C11—C11'—H11A109.5
C6—C3—S3111.28 (16)C11—C11'—H11B109.5
C2—C3—S3120.31 (17)H11A—C11'—H11B109.5
C5—C4—S3112.48 (18)C11—C11'—H11C109.5
C5—C4—H4123.8H11A—C11'—H11C109.5
S3—C4—H4123.8H11B—C11'—H11C109.5
C4—C5—C6114.4 (2)C13—C12—C11120.9 (2)
C4—C5—H5122.8C13—C12—H12119.5
C6—C5—H5122.8C11—C12—H12119.5
C5—C6—C3109.7 (2)C12—C13—C8120.9 (2)
C5—C6—H6125.1C12—C13—H13119.6
C3—C6—H6125.1C8—C13—H13119.6
C1—N1—N2—C2175.2 (2)C2—C3—C6—C5175.4 (2)
N2—N1—C1—S2179.03 (15)S3—C3—C6—C51.4 (2)
N2—N1—C1—S11.3 (3)C1—S1—C7—C8176.13 (15)
C7—S1—C1—N1179.94 (17)S1—C7—C8—C13115.3 (2)
C7—S1—C1—S20.39 (17)S1—C7—C8—C963.9 (2)
N1—N2—C2—C3178.49 (18)C13—C8—C9—C100.3 (3)
N1—N2—C2—C2'0.5 (3)C7—C8—C9—C10178.9 (2)
N2—C2—C3—C6167.3 (2)C8—C9—C10—C110.1 (3)
C2'—C2—C3—C611.7 (3)C9—C10—C11—C120.6 (3)
N2—C2—C3—S39.2 (3)C9—C10—C11—C11'178.8 (2)
C2'—C2—C3—S3171.73 (17)C10—C11—C12—C130.7 (3)
C4—S3—C3—C60.80 (17)C11'—C11—C12—C13178.7 (2)
C4—S3—C3—C2176.29 (18)C11—C12—C13—C80.3 (3)
C3—S3—C4—C50.04 (19)C9—C8—C13—C120.2 (3)
S3—C4—C5—C60.9 (3)C7—C8—C13—C12179.1 (2)
C4—C5—C6—C31.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S3,C3–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···S2i0.87 (2)2.57 (2)3.4433 (18)176 (3)
C2—H22···Cg2ii0.982.853.616 (3)138
C12—H12···Cg1iii0.952.893.560 (2)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1/2, z1/2; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S3,C3–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···S2i0.874 (15)2.571 (15)3.4433 (18)176 (3)
C2'—H2'2···Cg2ii0.982.853.616 (3)138
C12—H12···Cg1iii0.952.893.560 (2)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The research was funded by Universiti Putra Malaysia (UPM) under Research University Grant Schemes (RUGS No. 9419400), the Fundamental Research Grant Scheme (FRGS No. 5524425) and the Science Fund (Science Fund No. 06-01-04-SF810). SR thanks the UPM for the award of a Graduate Research Fellowship.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChan, M.-H. E., Crouse, K. A., Tarafder, M. T. H. & Yamin, B. M. (2003). Acta Cryst. E59, o628–o629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o475-o476
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds