organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(hy­dr­oxy­meth­yl)chromone

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 June 2015; accepted 16 June 2015; online 20 June 2015)

In the title compound, C10H8O3 (systematic name 3-hy­droxy­methyl-4H-chromen-4-one), the fused-ring system is slightly puckered [dihedral angle between the rings = 3.84 (11)°]. The hy­droxy O atom deviates from the heterocyclic ring by 1.422 (1) Å. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(12) loops. The dimers are linked by aromatic ππ stacking [shortest centroid–centroid distance = 3.580 (3) Å], and C—H⋯O hydrogen bonds, generating a three-dimensional network.

1. Related literature

For the biological activities of related compounds, see: Sun et al. (2009[Sun, W., Carroll, P. J., Soprano, D. R. & Canney, D. J. (2009). Bioorg. Med. Chem. Lett. 19, 4339-4342.]); Helguera et al. (2013[Helguera, A. M., Pérez-Garrido, A., Gaspar, A., Reis, J., Cagide, F., Vina, D., Cordeiro, M. N. & Borges, F. (2013). Eur. J. Med. Chem. 59, 75-90.]); Venkateswararao et al. (2014[Venkateswararao, E., Sharma, V. K., Manickam, M., Yun, J. & Jung, S. H. (2014). Bioorg. Med. Chem. Lett. 24, 5256-5259.]). For the synthesis of the title compound, see: Araya-Maturana et al. (2003[Araya-Maturana, R., Heredia-Moya, J., Pessoa-Mahana, H. & Weiss-López, B. (2003). Synth. Commun. 33, 3225-3231.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H8O3

  • Mr = 176.17

  • Triclinic, [P \overline 1]

  • a = 6.756 (4) Å

  • b = 7.988 (6) Å

  • c = 7.991 (6) Å

  • α = 94.48 (6)°

  • β = 108.27 (5)°

  • γ = 103.31 (5)°

  • V = 393.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.32 × 0.32 × 0.16 mm

2.2. Data collection

  • Rigaku AFC-7R diffractometer

  • 2219 measured reflections

  • 1805 independent reflections

  • 1537 reflections with F2 > 2.0σ(F2)

  • Rint = 0.089

  • 3 standard reflections every 150 reflections intensity decay: 0.1%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.202

  • S = 1.06

  • 1805 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H8⋯O2i 0.84 1.94 2.757 (3) 165
C1—H1⋯O2ii 0.95 2.58 3.283 (4) 131
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Many derivatives of the title compound (3-hydroxymethylchromone) are reported as retinoic acid receptor binders (Sun et al. (2009)), human monoamine oxidase inhibitors (Helguera et al. (2013)) and anti-proliferative agents (Venkateswararao et al. (2014)).

The mean deviation of the least-square planes for the non-hydrogen atoms except hydroxy O3 atom is 0.0479 Å, and the largest deviation is 0.146 (2) Å for C10. These mean that these atoms are essentially coplanar (Fig.1). The dihedral angle of C3–C2–C10–O3 is 70.6 (2). In the crystal, the pyran rings are stacked [centroid–centroid distance between the pyran rings of the 4H-chromene units = 3.894 (3) Å], and C–H···O hydrogen bonds are formed to give dimers running along the c direction, as shown in Fig.2.

Related literature top

For the biological activities of related compounds, see: Sun et al. (2009); Helguera et al. (2013); Venkateswararao et al. (2014). For the synthesis of the title compound, see: Araya-Maturana et al. (2003).

Experimental top

The title compound was synthesized from 3-formylchromone according to the literature method (Araya-Maturana et al. 2003). Colourless blocks were obtained by slow evaporation of an ethyl acetate solution of the title compound at room temperature.

Refinement top

All hydrogen atoms were placed in geometrical positions [C–H 0.95 Å and O–H 0.84 Å], and refined using a riding model with Uiso(H) = 1.2Ueq of the parent atoms.

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound. O—H···O hydrogen bonds are represented as dashed lines.
3-(Hydroxymethyl)-4H-chromen-4-one top
Crystal data top
C10H8O3Z = 2
Mr = 176.17F(000) = 184.00
Triclinic, P1Dx = 1.488 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.756 (4) ÅCell parameters from 25 reflections
b = 7.988 (6) Åθ = 15.5–17.3°
c = 7.991 (6) ŵ = 0.11 mm1
α = 94.48 (6)°T = 100 K
β = 108.27 (5)°Block, colorless
γ = 103.31 (5)°0.32 × 0.32 × 0.16 mm
V = 393.2 (5) Å3
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 48
2219 measured reflectionsk = 1010
1805 independent reflectionsl = 109
1537 reflections with F2 > 2.0σ(F2)3 standard reflections every 150 reflections
Rint = 0.089 intensity decay: 0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1399P)2 + 0.1723P]
where P = (Fo2 + 2Fc2)/3
1805 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.49 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H8O3γ = 103.31 (5)°
Mr = 176.17V = 393.2 (5) Å3
Triclinic, P1Z = 2
a = 6.756 (4) ÅMo Kα radiation
b = 7.988 (6) ŵ = 0.11 mm1
c = 7.991 (6) ÅT = 100 K
α = 94.48 (6)°0.32 × 0.32 × 0.16 mm
β = 108.27 (5)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.089
2219 measured reflections3 standard reflections every 150 reflections
1805 independent reflections intensity decay: 0.1%
1537 reflections with F2 > 2.0σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
1805 reflectionsΔρmin = 0.49 e Å3
119 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72779 (19)1.01991 (17)0.70911 (18)0.0179 (4)
O21.19522 (19)0.80874 (17)0.63213 (18)0.0190 (4)
O30.7925 (2)0.48525 (17)0.56522 (17)0.0195 (4)
C10.6785 (3)0.8666 (3)0.6006 (3)0.0167 (4)
C20.8224 (3)0.7871 (3)0.5707 (3)0.0146 (4)
C31.0527 (3)0.8696 (3)0.6575 (3)0.0133 (4)
C41.3221 (3)1.1214 (3)0.8824 (3)0.0168 (4)
C51.3681 (3)1.2688 (3)1.0053 (3)0.0209 (5)
C61.1985 (3)1.3325 (3)1.0269 (3)0.0218 (5)
C70.9868 (3)1.2504 (3)0.9255 (3)0.0200 (5)
C81.1070 (3)1.0325 (3)0.7810 (3)0.0147 (4)
C90.9416 (3)1.0995 (3)0.8033 (3)0.0153 (4)
C100.7477 (3)0.6132 (3)0.4539 (3)0.0165 (4)
H10.52940.81010.54030.0201*
H21.43691.07980.86650.0202*
H31.51391.32721.07510.0251*
H41.23061.43331.11230.0262*
H50.87291.29550.93820.0240*
H6A0.59050.58550.38700.0198*
H7B0.82470.61450.36690.0198*
H80.82000.40520.50930.0234*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0130 (6)0.0202 (7)0.0240 (7)0.0070 (5)0.0090 (5)0.0043 (5)
O20.0112 (6)0.0225 (7)0.0252 (7)0.0067 (5)0.0075 (5)0.0032 (6)
O30.0195 (7)0.0188 (7)0.0236 (7)0.0069 (5)0.0104 (6)0.0052 (5)
C10.0110 (8)0.0212 (9)0.0193 (9)0.0041 (7)0.0061 (7)0.0073 (7)
C20.0108 (8)0.0202 (9)0.0144 (8)0.0046 (7)0.0050 (6)0.0067 (7)
C30.0115 (8)0.0168 (9)0.0129 (8)0.0043 (6)0.0052 (6)0.0053 (6)
C40.0158 (8)0.0179 (9)0.0168 (8)0.0054 (7)0.0044 (7)0.0050 (7)
C50.0205 (9)0.0212 (10)0.0174 (9)0.0040 (7)0.0021 (7)0.0055 (7)
C60.0302 (10)0.0184 (9)0.0171 (9)0.0071 (8)0.0077 (8)0.0042 (7)
C70.0264 (9)0.0198 (9)0.0212 (9)0.0113 (8)0.0136 (8)0.0068 (7)
C80.0144 (8)0.0179 (9)0.0140 (8)0.0055 (7)0.0061 (7)0.0071 (7)
C90.0149 (8)0.0191 (9)0.0144 (8)0.0055 (7)0.0068 (7)0.0069 (7)
C100.0101 (8)0.0204 (9)0.0178 (9)0.0026 (7)0.0039 (6)0.0038 (7)
Geometric parameters (Å, º) top
O1—C11.352 (3)C6—C71.375 (3)
O1—C91.371 (2)C7—C91.400 (3)
O2—C31.236 (3)C8—C91.396 (3)
O3—C101.429 (3)O3—H80.840
C1—C21.346 (3)C1—H10.950
C2—C31.455 (3)C4—H20.950
C2—C101.495 (3)C5—H30.950
C3—C81.468 (3)C6—H40.950
C4—C51.381 (3)C7—H50.950
C4—C81.404 (3)C10—H6A0.990
C5—C61.407 (4)C10—H7B0.990
C1—O1—C9117.98 (17)O3—C10—C2108.17 (15)
O1—C1—C2125.63 (15)C10—O3—H8109.472
C1—C2—C3119.38 (17)O1—C1—H1117.186
C1—C2—C10120.66 (15)C2—C1—H1117.188
C3—C2—C10119.93 (18)C5—C4—H2119.761
O2—C3—C2123.48 (17)C8—C4—H2119.765
O2—C3—C8121.37 (15)C4—C5—H3120.061
C2—C3—C8115.15 (18)C6—C5—H3120.064
C5—C4—C8120.5 (2)C5—C6—H4119.658
C4—C5—C6119.88 (16)C7—C6—H4119.653
C5—C6—C7120.69 (19)C6—C7—H5120.506
C6—C7—C9119.0 (3)C9—C7—H5120.503
C3—C8—C4121.64 (19)O3—C10—H6A110.064
C3—C8—C9119.77 (15)O3—C10—H7B110.063
C4—C8—C9118.56 (17)C2—C10—H6A110.069
O1—C9—C7116.70 (19)C2—C10—H7B110.064
O1—C9—C8121.91 (17)H6A—C10—H7B108.407
C7—C9—C8121.38 (16)
C1—O1—C9—C7174.88 (15)C5—C4—C8—C3176.20 (17)
C1—O1—C9—C84.2 (3)C5—C4—C8—C91.9 (3)
C9—O1—C1—C22.8 (3)C8—C4—C5—C61.2 (3)
C9—O1—C1—H1177.2C8—C4—C5—H3178.8
H8—O3—C10—C2148.1H2—C4—C5—C6178.8
H8—O3—C10—H6A91.6H2—C4—C5—H31.2
H8—O3—C10—H7B27.8H2—C4—C8—C33.8
O1—C1—C2—C31.0 (3)H2—C4—C8—C9178.1
O1—C1—C2—C10177.18 (16)C4—C5—C6—C70.7 (3)
H1—C1—C2—C3179.0C4—C5—C6—H4179.3
H1—C1—C2—C102.8H3—C5—C6—C7179.3
C1—C2—C3—O2177.19 (17)H3—C5—C6—H40.7
C1—C2—C3—C83.3 (3)C5—C6—C7—C91.6 (3)
C1—C2—C10—O3107.56 (19)C5—C6—C7—H5178.4
C1—C2—C10—H6A12.7H4—C6—C7—C9178.4
C1—C2—C10—H7B132.2H4—C6—C7—H51.6
C3—C2—C10—O370.6 (2)C6—C7—C9—O1178.25 (17)
C3—C2—C10—H6A169.1C6—C7—C9—C80.8 (3)
C3—C2—C10—H7B49.7H5—C7—C9—O11.8
C10—C2—C3—O24.6 (3)H5—C7—C9—C8179.2
C10—C2—C3—C8174.93 (15)C3—C8—C9—O11.8 (3)
O2—C3—C8—C43.4 (3)C3—C8—C9—C7177.23 (16)
O2—C3—C8—C9178.52 (16)C4—C8—C9—O1179.96 (16)
C2—C3—C8—C4176.19 (15)C4—C8—C9—C70.9 (3)
C2—C3—C8—C91.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H8···O2i0.841.942.757 (3)165
C1—H1···O2ii0.952.583.283 (4)131
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H8···O2i0.841.942.757 (3)165
C1—H1···O2ii0.952.583.283 (4)131
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

References

First citationAraya-Maturana, R., Heredia-Moya, J., Pessoa-Mahana, H. & Weiss-López, B. (2003). Synth. Commun. 33, 3225–3231.  CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHelguera, A. M., Pérez-Garrido, A., Gaspar, A., Reis, J., Cagide, F., Vina, D., Cordeiro, M. N. & Borges, F. (2013). Eur. J. Med. Chem. 59, 75–90.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W., Carroll, P. J., Soprano, D. R. & Canney, D. J. (2009). Bioorg. Med. Chem. Lett. 19, 4339–4342.  CSD CrossRef PubMed CAS Google Scholar
First citationVenkateswararao, E., Sharma, V. K., Manickam, M., Yun, J. & Jung, S. H. (2014). Bioorg. Med. Chem. Lett. 24, 5256–5259.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds