organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o514-o515

Crystal structure of ethyl 2-(2,4,5-tri­meth­­oxy­phen­yl)quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta 577 451, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, and dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 June 2015; accepted 17 June 2015; online 27 June 2015)

In the title compound, C21H21NO5, the dihedral angle between the quinoline ring system (r.m.s. deviation = 0.028 Å) and the tri­meth­oxy­benzene ring is 43.38 (5)°. The C atoms of the meth­oxy groups deviate from their attached benzene ring by −0.396 (2), −0.049 (2) and 0.192 (2) Å for the ortho-, meta- and para-substituents, respectively. The pendant ethyl chain is disordered over two orientations in a 0.527 (5):0.473 (5) ratio. A short intra­molecular C—H⋯O contact closes an S(6) ring. In the crystal, inversion dimers linked by pairs of weak C—H⋯O inter­actions generate R22(6) loops. The dimers are linked by further C—H⋯O inter­actions to generate [1-10] chains.

1. Related literature

For background to quinolines and their properties, see: Beagley et al. (2003[Beagley, P., Blackie, M. A., Chibale, K., Clarkson, C., Meijboom, R., Moss, J. R., Smith, P. J. & Su, H. (2003). Dalton Trans. pp. 3046.]). For our work in this area, see: Pradeep et al. (2014[Pradeep, P. S., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2014). Acta Cryst. E70, o981-o982.]); Shrungesh Kumar et al. (2015[Shrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o121.]); Sunitha et al. (2015[Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341-o342.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H21NO5

  • Mr = 367.39

  • Triclinic, [P \overline 1]

  • a = 8.3444 (3) Å

  • b = 9.3508 (4) Å

  • c = 12.2723 (5) Å

  • α = 104.079 (2)°

  • β = 97.282 (2)°

  • γ = 93.904 (2)°

  • V = 916.43 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 100 K

  • 0.29 × 0.22 × 0.19 mm

2.2. Data collection

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.797, Tmax = 0.813

  • 10087 measured reflections

  • 3008 independent reflections

  • 2601 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.117

  • S = 1.04

  • 3008 reflections

  • 277 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O4 0.93 2.30 2.9073 (18) 123
C9—H9A⋯O3i 0.96 2.53 3.397 (2) 150
C20—H20A⋯O1ii 0.97 2.51 3.304 (5) 139
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: Mercury.

Supporting information


Comment top

Quinolines have been found to possess a wide spectrum of biological activities (Beagley et al., 2003,). Among them, the quinolone-4-ethyl carboxylates have been identified as potent antagonizing agents. Keeping in view of their broad spectrum of medicinal properties and in continuation of our work on new quinoline based therapeutic agents (Pradeep et al., 2014, Shrungesh Kumar et al., 2015, Sunitha et al., 2015), the title compound was synthesized. The compound obtained was characterized spectroscopically and its structure was established by X-ray crystallographic studies.

In the title compound, C21H21O5N, the carboxyl group is disordered. The two rings of the quinoline system are fused almost coaxially, with a dihedral angle between their planes of 2.66°. The dihedral angle between the quinoline ring system mean plane (r.m.s. deviation = 0.0238 Å) and the tri-methoxyphenyl ring is 43.34 (1)°. The structure exhibits both inter and intra-molecular hydrogen bonds of the type C–H···O.

Related literature top

For background to quinolines and their properties, see: Beagley et al. (2003). For our work in this area, see: Pradeep et al. (2014); Shrungesh Kumar et al. (2015); Sunitha et al. (2015).

Experimental top

1H NMR was recorded at 400 MHz in CDCl3 solvent. Mass spectra were recorded on a Jeol SX 102=DA-6000 (10 kV) fast atom bombardment (FAB) mass spectrometer.

A mixture of 2-(2,4,5-trimethoxyphenyl)quinoline-4-carboxylic acid 1.0 g (0.005 mol) and absolute EtOH (15 ml) was stirred at 0–5°C. A catalytic amount of concentrated H2SO4 was added drop wise into the flask until the powdered 2-(2,4,5-trimethoxyphenyl)quinoline-4-carboxylic acid was dissolved. The solution was then refluxed for 15–17 h. The completion of the reaction was monitored by TLC [hexane and ethyl acetate (9:1 v/v)]. The reaction mixture was poured into a crushed ice (100 ml). The precipitate was collected by filtration, washed with water and EtOH, dried under vacuum to obtain the crude product in 85% yield. The crude product was purified by column chromatography using silica gel (60–120 mesh, petroleum ether: ethyl acetate, 9:1 v/v). Colourless rectangular crystals grew after 4 days due to slow evaporation of the solvent. Yield = 85%. M·P. = 100–102 °C.

Refinement top

The hydrogen atoms were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) =1.5Ueq(C-methyl) and = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
Ethyl 2-(2,4,5-trimethoxyphenyl)quinoline-4-carboxylate top
Crystal data top
C21H21NO5Z = 2
Mr = 367.39F(000) = 388
Triclinic, P11H NMR(400 MHz, CdCl3 ): δ = 8.71 (d, J = 8.40 Hz, 1H), 8.52 (s, 1H), 7.76 (t, J = 7.60 Hz, 1H), 7.63 (t, J = 6.00 Hz, 2H), 7.25 (s, 1H), 6.64 (s, 1H), 4.52 (q, J = 6.80 Hz, 2H), 3.97 (d, J = 5.20 Hz, 6H), 3.88 (s, 3H), 1.47 (t, J = 7.20 Hz, 3H) ppm.
MS (70 eV) m/z(%): 368.0(M+).
Hall symbol: -P 1Dx = 1.331 Mg m3
a = 8.3444 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.3508 (4) ÅCell parameters from 2601 reflections
c = 12.2723 (5) Åθ = 6.9–64.4°
α = 104.079 (2)°µ = 0.78 mm1
β = 97.282 (2)°T = 100 K
γ = 93.904 (2)°Rectangular block, colourless
V = 916.43 (6) Å30.29 × 0.22 × 0.19 mm
Data collection top
Bruker X8 Proteum
diffractometer
3008 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2601 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.041
Detector resolution: 18.4 pixels mm-1θmax = 64.4°, θmin = 6.9°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1010
Tmin = 0.797, Tmax = 0.813l = 1414
10087 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.1234P]
where P = (Fo2 + 2Fc2)/3
3008 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H21NO5γ = 93.904 (2)°
Mr = 367.39V = 916.43 (6) Å3
Triclinic, P1Z = 2
a = 8.3444 (3) ÅCu Kα radiation
b = 9.3508 (4) ŵ = 0.78 mm1
c = 12.2723 (5) ÅT = 100 K
α = 104.079 (2)°0.29 × 0.22 × 0.19 mm
β = 97.282 (2)°
Data collection top
Bruker X8 Proteum
diffractometer
3008 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2601 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.813Rint = 0.041
10087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
3008 reflectionsΔρmin = 0.28 e Å3
277 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.85573 (12)0.06460 (10)0.25750 (8)0.0282 (3)
O20.82233 (13)0.11123 (10)0.03839 (8)0.0292 (3)
O30.55682 (13)0.33976 (11)0.05983 (8)0.0315 (4)
O40.22604 (13)0.74517 (12)0.41032 (9)0.0388 (3)
O50.1869 (4)0.5760 (4)0.2445 (2)0.0279 (8)0.527 (5)
N10.73685 (14)0.47119 (12)0.39148 (9)0.0220 (3)
C10.73786 (16)0.17037 (14)0.27663 (12)0.0211 (4)
C20.78484 (16)0.04140 (15)0.21340 (12)0.0215 (4)
C30.76438 (16)0.01469 (15)0.09451 (12)0.0228 (4)
C40.68822 (17)0.11314 (15)0.04271 (12)0.0247 (4)
C50.63437 (16)0.24009 (15)0.10755 (12)0.0226 (4)
C60.66258 (16)0.27241 (14)0.22587 (12)0.0203 (4)
C70.8450 (2)0.05532 (17)0.37384 (13)0.0361 (5)
C80.81347 (19)0.13690 (17)0.08181 (12)0.0315 (5)
C90.5312 (2)0.31046 (18)0.06125 (12)0.0370 (5)
C100.62512 (16)0.41161 (14)0.30220 (11)0.0204 (4)
C110.47701 (17)0.47445 (15)0.28373 (12)0.0222 (4)
C120.44526 (17)0.59953 (14)0.35868 (11)0.0218 (4)
C130.56525 (16)0.67030 (14)0.45409 (12)0.0222 (4)
C140.55434 (18)0.80529 (15)0.53426 (12)0.0257 (4)
C150.67839 (19)0.86451 (16)0.62120 (13)0.0296 (4)
C160.81946 (18)0.79239 (17)0.63317 (13)0.0295 (5)
C170.83567 (18)0.66226 (16)0.55755 (12)0.0263 (4)
C180.70992 (16)0.59871 (14)0.46574 (11)0.0215 (4)
C190.28323 (18)0.65885 (16)0.34077 (12)0.0282 (4)
C200.0230 (6)0.6201 (5)0.2213 (3)0.0326 (12)0.527 (5)
C210.0515 (4)0.5296 (4)0.1068 (3)0.0495 (13)0.527 (5)
C20X0.0784 (5)0.6858 (5)0.1962 (3)0.0279 (11)0.473 (5)
C21X0.0638 (6)0.5817 (5)0.2021 (4)0.0389 (14)0.473 (5)
O5X0.2315 (4)0.6296 (4)0.2276 (3)0.0255 (9)0.473 (5)
H7A0.891800.137500.395000.0540*
H7C0.903000.035800.420200.0540*
H8A0.862700.225400.111100.0470*
H7B0.733100.058100.384800.0540*
H1A0.756700.190400.355500.0250*
H4A0.672800.094500.036100.0300*
H9B0.467500.216600.093000.0550*
H9C0.634100.307800.088500.0550*
H11A0.401100.430100.220100.0270*
H14A0.461700.854300.527700.0310*
H15A0.669300.953500.672900.0360*
H16A0.902400.833600.693100.0350*
H17A0.929400.615200.566300.0320*
H20A0.028800.724700.223300.0390*0.527 (5)
H20B0.041600.602700.278100.0390*0.527 (5)
H21A0.158300.557400.088500.0740*0.527 (5)
H21B0.058700.426600.106300.0740*0.527 (5)
H21C0.014400.546500.051500.0740*0.527 (5)
H8B0.870000.054200.099200.0470*
H8C0.701800.148300.116000.0470*
H9A0.474700.387300.083500.0550*
H20C0.072900.698200.119600.0330*0.473 (5)
H20D0.073400.782100.247100.0330*0.473 (5)
H21D0.163000.618600.177400.0580*0.473 (5)
H21E0.062400.574600.279000.0580*0.473 (5)
H21F0.056900.485500.153800.0580*0.473 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0405 (6)0.0247 (5)0.0224 (6)0.0145 (4)0.0067 (5)0.0076 (4)
O20.0396 (6)0.0251 (5)0.0220 (6)0.0129 (4)0.0073 (4)0.0004 (4)
O30.0467 (7)0.0290 (6)0.0194 (6)0.0160 (5)0.0014 (5)0.0060 (4)
O40.0359 (6)0.0413 (6)0.0347 (6)0.0193 (5)0.0053 (5)0.0032 (5)
O50.0231 (14)0.0331 (16)0.0269 (14)0.0105 (11)0.0050 (10)0.0040 (11)
N10.0230 (6)0.0229 (6)0.0196 (6)0.0028 (5)0.0038 (5)0.0040 (5)
C10.0213 (7)0.0225 (7)0.0198 (7)0.0027 (5)0.0045 (6)0.0050 (6)
C20.0209 (7)0.0214 (7)0.0228 (7)0.0042 (5)0.0029 (6)0.0067 (6)
C30.0233 (7)0.0207 (7)0.0228 (8)0.0031 (5)0.0053 (6)0.0012 (6)
C40.0283 (8)0.0266 (7)0.0180 (7)0.0038 (6)0.0031 (6)0.0036 (6)
C50.0229 (7)0.0233 (7)0.0219 (8)0.0042 (5)0.0021 (6)0.0066 (6)
C60.0180 (6)0.0220 (7)0.0212 (7)0.0023 (5)0.0038 (5)0.0055 (6)
C70.0576 (11)0.0295 (8)0.0277 (9)0.0165 (7)0.0121 (8)0.0134 (7)
C80.0379 (9)0.0317 (8)0.0214 (8)0.0095 (6)0.0070 (6)0.0027 (6)
C90.0579 (11)0.0331 (8)0.0196 (8)0.0135 (7)0.0025 (7)0.0080 (7)
C100.0227 (7)0.0215 (7)0.0194 (7)0.0034 (5)0.0059 (6)0.0082 (6)
C110.0239 (7)0.0237 (7)0.0193 (7)0.0039 (5)0.0033 (6)0.0057 (6)
C120.0256 (7)0.0219 (7)0.0206 (7)0.0054 (5)0.0067 (6)0.0083 (6)
C130.0261 (7)0.0213 (7)0.0211 (7)0.0016 (5)0.0086 (6)0.0069 (6)
C140.0294 (8)0.0236 (7)0.0257 (8)0.0046 (6)0.0105 (6)0.0054 (6)
C150.0375 (8)0.0231 (7)0.0258 (8)0.0009 (6)0.0124 (7)0.0014 (6)
C160.0295 (8)0.0333 (8)0.0220 (8)0.0044 (6)0.0054 (6)0.0011 (6)
C170.0247 (7)0.0309 (8)0.0220 (8)0.0018 (6)0.0053 (6)0.0036 (6)
C180.0249 (7)0.0214 (7)0.0194 (7)0.0015 (5)0.0079 (6)0.0056 (6)
C190.0323 (8)0.0288 (7)0.0239 (8)0.0113 (6)0.0050 (6)0.0046 (6)
C200.022 (2)0.035 (2)0.042 (2)0.0086 (18)0.0069 (19)0.0095 (17)
C210.0295 (18)0.057 (2)0.052 (3)0.0140 (15)0.0062 (16)0.0014 (19)
C20X0.0195 (18)0.034 (2)0.033 (2)0.0086 (15)0.0046 (14)0.0120 (16)
C21X0.024 (2)0.042 (2)0.050 (3)0.0030 (19)0.010 (2)0.010 (2)
O5X0.0205 (15)0.0359 (18)0.0222 (14)0.0111 (12)0.0051 (11)0.0084 (12)
Geometric parameters (Å, º) top
O1—C21.3729 (17)C17—C181.419 (2)
O1—C71.4238 (18)C20—C211.485 (5)
O2—C31.3645 (17)C20X—C21X1.503 (7)
O2—C81.4272 (17)C1—H1A0.9300
O3—C51.3718 (18)C4—H4A0.9300
O3—C91.4291 (17)C7—H7A0.9600
O4—C191.1951 (18)C7—H7B0.9600
O5—C191.368 (3)C7—H7C0.9600
O5—C201.469 (6)C8—H8A0.9600
O5X—C20X1.457 (6)C8—H8B0.9600
O5X—C191.355 (4)C8—H8C0.9600
N1—C181.3648 (17)C9—H9A0.9600
N1—C101.3242 (17)C9—H9B0.9600
C1—C21.377 (2)C9—H9C0.9600
C1—C61.4017 (19)C11—H11A0.9300
C2—C31.405 (2)C14—H14A0.9300
C3—C41.385 (2)C15—H15A0.9300
C4—C51.396 (2)C16—H16A0.9300
C5—C61.395 (2)C17—H17A0.9300
C6—C101.4852 (19)C20—H20A0.9700
C10—C111.420 (2)C20—H20B0.9700
C11—C121.366 (2)C20X—H20C0.9700
C12—C191.507 (2)C20X—H20D0.9700
C12—C131.4307 (19)C21—H21C0.9600
C13—C181.4278 (19)C21—H21A0.9600
C13—C141.416 (2)C21—H21B0.9600
C14—C151.368 (2)C21X—H21D0.9600
C15—C161.405 (2)C21X—H21E0.9600
C16—C171.366 (2)C21X—H21F0.9600
C2—O1—C7115.97 (11)O1—C7—H7B109.00
C3—O2—C8117.06 (11)O1—C7—H7C109.00
C5—O3—C9117.82 (12)H7A—C7—H7B109.00
C19—O5—C20116.5 (3)H7A—C7—H7C109.00
C19—O5X—C20X115.2 (3)H7B—C7—H7C110.00
C10—N1—C18118.72 (12)O2—C8—H8A109.00
C2—C1—C6122.04 (13)O2—C8—H8B109.00
O1—C2—C1125.03 (13)O2—C8—H8C109.00
O1—C2—C3115.89 (12)H8A—C8—H8B109.00
C1—C2—C3119.05 (13)H8A—C8—H8C110.00
O2—C3—C2115.51 (12)H8B—C8—H8C109.00
O2—C3—C4124.83 (13)O3—C9—H9A109.00
C2—C3—C4119.66 (13)O3—C9—H9B109.00
C3—C4—C5120.65 (13)O3—C9—H9C109.00
O3—C5—C6117.12 (12)H9A—C9—H9B109.00
C4—C5—C6120.22 (13)H9A—C9—H9C109.00
O3—C5—C4122.64 (12)H9B—C9—H9C110.00
C1—C6—C5118.19 (13)C10—C11—H11A120.00
C5—C6—C10124.27 (12)C12—C11—H11A120.00
C1—C6—C10117.48 (12)C13—C14—H14A120.00
N1—C10—C6115.55 (12)C15—C14—H14A120.00
C6—C10—C11122.60 (12)C14—C15—H15A120.00
N1—C10—C11121.81 (12)C16—C15—H15A120.00
C10—C11—C12120.52 (13)C15—C16—H16A120.00
C11—C12—C13119.41 (13)C17—C16—H16A120.00
C13—C12—C19121.15 (12)C16—C17—H17A120.00
C11—C12—C19119.44 (12)C18—C17—H17A120.00
C12—C13—C14125.81 (13)O5—C20—H20A110.00
C14—C13—C18118.19 (12)O5—C20—H20B110.00
C12—C13—C18115.97 (12)C21—C20—H20A110.00
C13—C14—C15120.82 (14)C21—C20—H20B110.00
C14—C15—C16120.71 (14)H20A—C20—H20B109.00
C15—C16—C17120.52 (14)O5X—C20X—H20D109.00
C16—C17—C18120.16 (14)C21X—C20X—H20C109.00
N1—C18—C13123.51 (12)C21X—C20X—H20D109.00
N1—C18—C17116.89 (12)H20C—C20X—H20D108.00
C13—C18—C17119.59 (12)O5X—C20X—H20C109.00
O4—C19—C12126.01 (13)H21A—C21—H21C109.00
O4—C19—O5X123.5 (2)H21B—C21—H21C110.00
O4—C19—O5120.22 (19)C20—C21—H21A109.00
O5X—C19—C12108.59 (18)C20—C21—H21B109.00
O5—C19—C12111.91 (18)C20—C21—H21C109.00
O5—C20—C21107.5 (3)H21A—C21—H21B110.00
O5X—C20X—C21X111.1 (4)C20X—C21X—H21D109.00
C2—C1—H1A119.00C20X—C21X—H21E109.00
C6—C1—H1A119.00C20X—C21X—H21F110.00
C3—C4—H4A120.00H21D—C21X—H21E109.00
C5—C4—H4A120.00H21D—C21X—H21F109.00
O1—C7—H7A109.00H21E—C21X—H21F109.00
C7—O1—C2—C114.91 (19)C4—C5—C6—C10173.60 (13)
C7—O1—C2—C3166.87 (12)C1—C6—C10—N139.18 (18)
C8—O2—C3—C2175.94 (12)C1—C6—C10—C11138.53 (14)
C8—O2—C3—C44.6 (2)C5—C6—C10—N1137.83 (14)
C9—O3—C5—C40.0 (2)C5—C6—C10—C1144.5 (2)
C9—O3—C5—C6178.22 (13)N1—C10—C11—C120.1 (2)
C20—O5—C19—O412.1 (4)C6—C10—C11—C12177.43 (13)
C20—O5—C19—C12177.4 (3)C10—C11—C12—C132.3 (2)
C19—O5—C20—C21172.6 (3)C10—C11—C12—C19176.45 (13)
C18—N1—C10—C6179.53 (12)C11—C12—C13—C14175.50 (14)
C18—N1—C10—C111.8 (2)C11—C12—C13—C182.47 (19)
C10—N1—C18—C131.6 (2)C19—C12—C13—C145.7 (2)
C10—N1—C18—C17177.38 (13)C19—C12—C13—C18176.29 (12)
C6—C1—C2—O1178.50 (13)C11—C12—C19—O4162.65 (15)
C6—C1—C2—C33.3 (2)C11—C12—C19—O51.7 (2)
C2—C1—C6—C50.4 (2)C13—C12—C19—O416.1 (2)
C2—C1—C6—C10176.77 (13)C13—C12—C19—O5179.57 (19)
O1—C2—C3—O21.94 (18)C12—C13—C14—C15178.64 (14)
O1—C2—C3—C4177.53 (12)C18—C13—C14—C150.7 (2)
C1—C2—C3—O2176.39 (12)C12—C13—C18—N10.6 (2)
C1—C2—C3—C44.1 (2)C12—C13—C18—C17179.48 (13)
O2—C3—C4—C5179.35 (13)C14—C13—C18—N1177.57 (13)
C2—C3—C4—C51.2 (2)C14—C13—C18—C171.4 (2)
C3—C4—C5—O3179.28 (13)C13—C14—C15—C160.2 (2)
C3—C4—C5—C62.6 (2)C14—C15—C16—C170.5 (2)
O3—C5—C6—C1178.38 (12)C15—C16—C17—C180.2 (2)
O3—C5—C6—C104.6 (2)C16—C17—C18—N1177.90 (13)
C4—C5—C6—C13.4 (2)C16—C17—C18—C131.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O40.932.302.9073 (18)123
C9—H9A···O3i0.962.533.397 (2)150
C20—H20A···O1ii0.972.513.304 (5)139
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O40.932.302.9073 (18)123
C9—H9A···O3i0.962.533.397 (2)150
C20—H20A···O1ii0.972.513.304 (5)139
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z.
 

Acknowledgements

The authors are thankful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffractometer facility.

References

First citationBeagley, P., Blackie, M. A., Chibale, K., Clarkson, C., Meijboom, R., Moss, J. R., Smith, P. J. & Su, H. (2003). Dalton Trans. pp. 3046.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPradeep, P. S., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2014). Acta Cryst. E70, o981–o982.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o121.  CSD CrossRef IUCr Journals Google Scholar
First citationSunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o514-o515
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds