organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o525-o526

Crystal structure of 3,9,9-tri­methyl-2,3,3a,4,9,9a-hexa­hydro-1H-cyclo­penta[b]quinolin-4-ium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, B.S. Abdur Rahman University, Chennai 600 048, India, and bDepartment of Chemistry, Sri Sathya Sai Center for Human Excellence, Karnataka 562 101, India
*Correspondence e-mail: sridhargopalrao@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 June 2015; accepted 21 June 2015; online 27 June 2015)

The title mol­ecular salt, C15H22N+·Cl, arose as an unexpected product of the reaction between aniline and melanol in the presence of HCl. The central heterocyclic ring has a half-chair conformation and the five-membered ring has an envelope conformation, with the C atom linked to the N atom as the flap. In the crystal, the ions are linked by N—H⋯Cl hydrogen bonds, generating chains propagating in the [100] direction. The crystal studied was a merohedral twin with a 0.64 (3):0.36 (3) domain ratio.

1. Related literature

For biological background, see: Szymański et al. (2012[Szymański, P., Lázničková, A., Lázniček, M., Bajda, M., Malawska, B., Markowicz, M. & Mikiciuk-Olasik, E. (2012). Int. J. Mol. Sci. 13, 10067-10090.]). For further synthetic details, see: Alaghaz et al. (2014[Alaghaz, A. M. A., Ammar, Y. A., Bayoumi, H. A. & Aldhlmani, S. A. (2014). J. Mol. Struct. 1074, 359-375.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H22N+·Cl

  • Mr = 251.78

  • Orthorhombic, P 21 21 21

  • a = 7.0291 (5) Å

  • b = 10.3313 (8) Å

  • c = 18.9425 (14) Å

  • V = 1375.60 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.30 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • 7372 measured reflections

  • 3334 independent reflections

  • 3013 reflections with I > 2σ(I)

  • Rint = 0.028

  • Standard reflections: 0

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.123

  • S = 0.95

  • 3334 reflections

  • 165 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack x determined using 1165 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.36 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 1.05 (4) 2.07 (4) 3.1201 (19) 173 (3)
N1—H1B⋯Cl1i 0.93 (3) 2.17 (3) 3.0943 (19) 174 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Introduction top

Tacrine was the drug approved by the United States Food and Drug Administration in 1993 for the palliative treatment of Alzheimer's Disease. The derivatives of the title compound, which is a congener of tacrine, has also been reported to be effective anti-alzheimeric agents (Szymanski et al., 2012). In this salt the N atom is protonated with sp3 hybridization and with a tetra­hedral geometry. In the crystal, the molecules are linked via N—H···Cl bonds forming chains propagating along the a axis direction.The five membered ring adopts an envelope conformation, while the six-membered non aromatic ring adopts a twist-chair conformation as evinced from Puckering amplitude θ=46.50 (0.15), Ψ= -91.77(0.26), QT=0.5104 (1).

Experimental top

Synthesis and crystallization top

The quinoline derivative was prepared by the condensation 2,6-di­methyl-5- heptenaldehyde and aniline in 1:1 molar ratio by refluxing in propan-2-ol using HCl as a catalyst. The mixture was left under reflux for 3 h.

The solution was then left at room temperature. The solid product formed was separated by filtration, purified by crystallized with ethanol and washed with acetone and then dried in a vacuum over anhydrous calcium chloride (Alaghaz et al., 2014). The beige coloured product was formed in 80% yield.

Refinement top

The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Related literature top

For biological background, see: Szymański et al. (2012). For further synthetic details, see: Alaghaz et al. (2014).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound drawn at 30% probability
[Figure 2] Fig. 2. Packing diagram of the molecule viewed down 'b' axis
3,9,9-Trimethyl-2,3,3a,4,9,9a-hexahydro-1H-cyclopenta[b]quinolin-4-ium chloride top
Crystal data top
C15H22N+·ClDx = 1.216 Mg m3
Mr = 251.78Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 7.0291 (5) Åθ = 2.0–25°
b = 10.3313 (8) ŵ = 0.26 mm1
c = 18.9425 (14) ÅT = 298 K
V = 1375.60 (18) Å3Block, colourless
Z = 40.35 × 0.30 × 0.30 mm
F(000) = 544
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
Rint = 0.028
ω scansθmax = 28.5°, θmin = 2.2°
7372 measured reflectionsh = 99
3334 independent reflectionsk = 139
3013 reflections with I > 2σ(I)l = 1024
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.26 e Å3
3334 reflectionsΔρmin = 0.23 e Å3
165 parametersAbsolute structure: Flack x determined using 1165 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.36 (3)
Crystal data top
C15H22N+·ClV = 1375.60 (18) Å3
Mr = 251.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0291 (5) ŵ = 0.26 mm1
b = 10.3313 (8) ÅT = 298 K
c = 18.9425 (14) Å0.35 × 0.30 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3013 reflections with I > 2σ(I)
7372 measured reflectionsRint = 0.028
3334 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123Δρmax = 0.26 e Å3
S = 0.95Δρmin = 0.23 e Å3
3334 reflectionsAbsolute structure: Flack x determined using 1165 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
165 parametersAbsolute structure parameter: 0.36 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15461 (9)0.64944 (6)0.56931 (3)0.0429 (2)
N10.4133 (3)0.60045 (17)0.43815 (9)0.0287 (4)
C20.5014 (3)0.4292 (2)0.31431 (12)0.0311 (5)
C30.6364 (3)0.4629 (2)0.37502 (12)0.0306 (4)
H30.69580.54580.36300.037*
C40.3378 (3)0.5258 (2)0.31593 (10)0.0282 (4)
C50.2938 (3)0.6012 (2)0.37467 (11)0.0272 (4)
C60.5333 (3)0.4825 (2)0.44441 (11)0.0284 (4)
H60.45190.40740.45390.034*
C70.1374 (3)0.6827 (2)0.37588 (13)0.0360 (5)
H70.11040.73080.41620.043*
C80.0217 (3)0.6927 (3)0.31749 (14)0.0409 (6)
H80.08350.74730.31810.049*
C90.6887 (4)0.4896 (2)0.49987 (12)0.0377 (5)
H90.74890.57500.49750.045*
C100.7987 (4)0.3694 (3)0.39459 (15)0.0497 (7)
H10A0.76300.28060.38440.060*
H10B0.91330.39010.36840.060*
C110.2179 (3)0.5383 (3)0.25764 (12)0.0375 (5)
H110.24270.48970.21730.045*
C120.0635 (3)0.6210 (3)0.25812 (14)0.0420 (6)
H120.01270.62830.21820.050*
C130.6117 (4)0.4384 (3)0.24472 (13)0.0463 (6)
H13A0.64500.52710.23590.070*
H13B0.53380.40680.20680.070*
H13C0.72540.38730.24790.070*
C140.6223 (4)0.4657 (3)0.57507 (13)0.0518 (7)
H14A0.53010.53000.58790.078*
H14B0.72910.47070.60650.078*
H14C0.56590.38130.57830.078*
C150.4183 (5)0.2923 (2)0.32124 (16)0.0508 (7)
H15A0.52010.23050.32400.076*
H15B0.34070.27360.28080.076*
H15C0.34230.28710.36320.076*
C160.8301 (5)0.3879 (3)0.47281 (15)0.0598 (8)
H16A0.95940.41650.48150.072*
H16B0.81070.30660.49740.072*
H1A0.334 (6)0.613 (4)0.4846 (18)0.079 (11)*
H1B0.490 (4)0.673 (3)0.4388 (16)0.047 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0449 (3)0.0503 (3)0.0335 (3)0.0088 (3)0.0067 (2)0.0008 (3)
N10.0305 (8)0.0319 (8)0.0238 (9)0.0006 (7)0.0019 (7)0.0030 (7)
C20.0361 (10)0.0296 (10)0.0275 (11)0.0002 (8)0.0007 (8)0.0042 (8)
C30.0310 (10)0.0334 (10)0.0275 (11)0.0030 (8)0.0009 (8)0.0018 (8)
C40.0277 (9)0.0315 (9)0.0255 (10)0.0056 (9)0.0017 (8)0.0010 (8)
C50.0273 (9)0.0319 (9)0.0223 (10)0.0029 (7)0.0007 (7)0.0001 (8)
C60.0324 (10)0.0280 (9)0.0247 (10)0.0000 (8)0.0022 (7)0.0014 (8)
C70.0354 (11)0.0402 (11)0.0324 (11)0.0052 (9)0.0016 (9)0.0012 (9)
C80.0300 (10)0.0514 (14)0.0412 (14)0.0054 (10)0.0023 (9)0.0065 (11)
C90.0411 (12)0.0390 (11)0.0330 (11)0.0053 (10)0.0102 (9)0.0005 (10)
C100.0461 (13)0.0571 (16)0.0460 (15)0.0197 (12)0.0060 (11)0.0060 (13)
C110.0375 (11)0.0471 (13)0.0278 (11)0.0064 (10)0.0034 (9)0.0041 (10)
C120.0338 (10)0.0564 (15)0.0358 (12)0.0054 (11)0.0087 (9)0.0064 (11)
C130.0475 (14)0.0614 (16)0.0301 (12)0.0111 (12)0.0061 (10)0.0058 (12)
C140.0647 (17)0.0607 (16)0.0299 (13)0.0123 (14)0.0096 (12)0.0050 (12)
C150.0624 (16)0.0310 (11)0.0591 (19)0.0069 (12)0.0096 (14)0.0063 (12)
C160.0581 (16)0.078 (2)0.0430 (15)0.0322 (17)0.0127 (13)0.0071 (15)
Geometric parameters (Å, º) top
N1—C51.467 (3)C9—C141.519 (3)
N1—C61.487 (3)C9—C161.534 (4)
N1—H1A1.05 (4)C9—H90.9800
N1—H1B0.93 (3)C10—C161.510 (4)
C2—C41.523 (3)C10—H10A0.9700
C2—C31.531 (3)C10—H10B0.9700
C2—C131.532 (3)C11—C121.381 (3)
C2—C151.536 (3)C11—H110.9300
C3—C61.515 (3)C12—H120.9300
C3—C101.540 (3)C13—H13A0.9600
C3—H30.9800C13—H13B0.9600
C4—C51.393 (3)C13—H13C0.9600
C4—C111.395 (3)C14—H14A0.9600
C5—C71.386 (3)C14—H14B0.9600
C6—C91.518 (3)C14—H14C0.9600
C6—H60.9800C15—H15A0.9600
C7—C81.376 (3)C15—H15B0.9600
C7—H70.9300C15—H15C0.9600
C8—C121.378 (4)C16—H16A0.9700
C8—H80.9300C16—H16B0.9700
C5—N1—C6113.23 (16)C6—C9—H9108.8
C5—N1—H1A112 (2)C14—C9—H9108.8
C6—N1—H1A110 (2)C16—C9—H9108.8
C5—N1—H1B109.9 (18)C16—C10—C3105.4 (2)
C6—N1—H1B109.6 (18)C16—C10—H10A110.7
H1A—N1—H1B102 (3)C3—C10—H10A110.7
C4—C2—C3107.70 (17)C16—C10—H10B110.7
C4—C2—C13111.01 (19)C3—C10—H10B110.7
C3—C2—C13108.59 (19)H10A—C10—H10B108.8
C4—C2—C15108.32 (18)C12—C11—C4121.8 (2)
C3—C2—C15112.4 (2)C12—C11—H11119.1
C13—C2—C15108.9 (2)C4—C11—H11119.1
C6—C3—C2112.69 (18)C8—C12—C11120.3 (2)
C6—C3—C10103.27 (18)C8—C12—H12119.8
C2—C3—C10119.81 (19)C11—C12—H12119.8
C6—C3—H3106.8C2—C13—H13A109.5
C2—C3—H3106.8C2—C13—H13B109.5
C10—C3—H3106.8H13A—C13—H13B109.5
C5—C4—C11116.5 (2)C2—C13—H13C109.5
C5—C4—C2123.37 (19)H13A—C13—H13C109.5
C11—C4—C2120.08 (19)H13B—C13—H13C109.5
C7—C5—C4122.0 (2)C9—C14—H14A109.5
C7—C5—N1116.36 (19)C9—C14—H14B109.5
C4—C5—N1121.67 (18)H14A—C14—H14B109.5
N1—C6—C3108.17 (16)C9—C14—H14C109.5
N1—C6—C9115.09 (18)H14A—C14—H14C109.5
C3—C6—C9105.22 (18)H14B—C14—H14C109.5
N1—C6—H6109.4C2—C15—H15A109.5
C3—C6—H6109.4C2—C15—H15B109.5
C9—C6—H6109.4H15A—C15—H15B109.5
C8—C7—C5120.1 (2)C2—C15—H15C109.5
C8—C7—H7120.0H15A—C15—H15C109.5
C5—C7—H7120.0H15B—C15—H15C109.5
C7—C8—C12119.3 (2)C10—C16—C9108.7 (2)
C7—C8—H8120.3C10—C16—H16A110.0
C12—C8—H8120.3C9—C16—H16A110.0
C6—C9—C14114.8 (2)C10—C16—H16B110.0
C6—C9—C16101.64 (19)C9—C16—H16B110.0
C14—C9—C16113.6 (2)H16A—C16—H16B108.3
C4—C2—C3—C648.4 (2)C2—C3—C6—N166.8 (2)
C13—C2—C3—C6168.67 (19)C10—C3—C6—N1162.49 (19)
C15—C2—C3—C670.8 (2)C2—C3—C6—C9169.71 (19)
C4—C2—C3—C10170.1 (2)C10—C3—C6—C939.0 (2)
C13—C2—C3—C1069.6 (3)C4—C5—C7—C81.1 (3)
C15—C2—C3—C1050.9 (3)N1—C5—C7—C8177.7 (2)
C3—C2—C4—C517.9 (3)C5—C7—C8—C120.0 (4)
C13—C2—C4—C5136.7 (2)N1—C6—C9—C1479.9 (3)
C15—C2—C4—C5103.8 (2)C3—C6—C9—C14161.2 (2)
C3—C2—C4—C11164.75 (19)N1—C6—C9—C16157.0 (2)
C13—C2—C4—C1146.0 (3)C3—C6—C9—C1638.0 (2)
C15—C2—C4—C1173.5 (3)C6—C3—C10—C1623.7 (3)
C11—C4—C5—C71.2 (3)C2—C3—C10—C16150.0 (3)
C2—C4—C5—C7176.2 (2)C5—C4—C11—C120.1 (3)
C11—C4—C5—N1177.55 (19)C2—C4—C11—C12177.3 (2)
C2—C4—C5—N15.1 (3)C7—C8—C12—C111.1 (4)
C6—N1—C5—C7159.69 (19)C4—C11—C12—C81.0 (4)
C6—N1—C5—C421.5 (3)C3—C10—C16—C90.4 (3)
C5—N1—C6—C350.1 (2)C6—C9—C16—C1022.9 (3)
C5—N1—C6—C9167.43 (18)C14—C9—C16—C10146.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl11.05 (4)2.07 (4)3.1201 (19)173 (3)
N1—H1B···Cl1i0.93 (3)2.17 (3)3.0943 (19)174 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl11.05 (4)2.07 (4)3.1201 (19)173 (3)
N1—H1B···Cl1i0.93 (3)2.17 (3)3.0943 (19)174 (3)
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

SG acknowledges Dr Sriman Narayanan, Professor & Head, Department of Analytical Chemistry, University of Madras, for fruitful discussions.

References

First citationAlaghaz, A. M. A., Ammar, Y. A., Bayoumi, H. A. & Aldhlmani, S. A. (2014). J. Mol. Struct. 1074, 359–375.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzymański, P., Lázničková, A., Lázniček, M., Bajda, M., Malawska, B., Markowicz, M. & Mikiciuk-Olasik, E. (2012). Int. J. Mol. Sci. 13, 10067–10090.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o525-o526
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds