organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o528-o529

Crystal structure of (E)-dodec-2-enoic acid

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 June 2015; accepted 22 June 2015; online 30 June 2015)

The crystal structure of (E)-dodec-2-enoic acid, C12H22O2, an α,β-unsaturated carb­oxy­lic acid with a melting point (295 K) near room temperature, is characterized by carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds. The carb­oxy­lic acid group and the following three carbon atoms of the chain of the (E)-dodec-2-enoic acid mol­ecule lie almost in one plane (r.m.s. deviation for the four C atoms and two O atoms = 0.012 Å), whereas the remaining carbon atoms of the hydro­carbon chain adopt a nearly fully staggered conformation [moduli of torsion angles vary from 174.01 (13) to 179.97 (13)°].

1. Related literature

For the synthesis of unsaturated α,β-carb­oxy­lic acids including the title compound by adapted routes established by Knoevenagel (1898[Knoevenagel, E. (1898). Ber. Dtsch. Chem. Ges. 31, 2596-2619.]) and Doebner (1902[Doebner, O. (1902). Ber. Dtsch. Chem. Ges. 35, 1136-1147.]), see: Shabtai et al. (1981[Shabtai, J., Ney-Igner, E. & Pines, H. (1981). J. Org. Chem. 46, 3795-3802.]). For crystal structure determinations of related α,β-unsaturated carb­oxy­lic acids, see, for acrylic acid: Higgs et al. (1963[Higgs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657-661.]), Chatani et al. (1963[Chatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419-421.]), Boese et al. (1999[Boese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55 IUC9900006.]), or Oswald et al. (2011[Oswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503-4507.]); see, for crotonic acid: Shimizu et al. (1974[Shimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627-1631.]); see, for (E)-pent-2-enoic acid: Peppel et al. (2015a[Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, o316.]); see, for (E)-hex-2-enoic acid: Peppel et al. (2015b[Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, o323.]); see, for (E)-undecen-2-enoic acid: Sonneck et al. (2015[Sonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Acta Cryst. E71, o426-o427.]). For structures of co-crystals containing (E)-hex-2-enoic acid, see: Aakeröy et al. (2003[Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159-165.]), or Stanton & Bak (2008[Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856-3862.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C12H22O2

  • Mr = 198.29

  • Triclinic, [P \overline 1]

  • a = 4.6475 (2) Å

  • b = 5.4169 (2) Å

  • c = 24.7041 (10) Å

  • α = 91.547 (2)°

  • β = 91.788 (2)°

  • γ = 102.3158 (19)°

  • V = 606.96 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 150 K

  • 0.44 × 0.30 × 0.12 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.80, Tmax = 0.94

  • 12048 measured reflections

  • 2117 independent reflections

  • 1964 reflections with I > 2σ(I)

  • Rint = 0.026

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 1.13

  • 2117 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.80 2.6319 (15) 170
Symmetry code: (i) -x+1, -y+3, -z.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXL2014/7; software used to prepare material for publication: SHELXL2014/7.

Supporting information


Synthesis and crystallization top

Malonic acid (25.0 g, 240.2 mmol, 1.0 eq) is dissolved in dry pyridine (38.0 g, 480.5 mmol, 2.0 eq) at room temperature in a three-necked flask equipped with a magnetic stir bar and a reflux condenser under a mild flow of argon. Decanal (37.5 g, 240.2 mmol, 1.0 eq) is then added in one portion and the resulting clear solution is further stirred for 72 h at room temperature under argon. Afterwards, the resulting light yellow to orange solution is brought to an acidic pH value by adding phospho­ric acid at 0 °C (42.5wt. %, 138.5 g, 600.6 mmol, 2.5 eq). The resulting two layers are extracted three times with 150 mL portions of ethyl acetate and reduced to a volume of ca. 150 mL in vacuo. To remove impurities from aldol condensation the raw acid is converted into the corresponding sodium salt by addition of an aqueous solution of sodium carbonate (20.4 g, 192.2 mmol, 0.8 eq in 200 mL). After stirring for 30 minutes the water phase is separated and extracted three times with 150 mL portions of ethyl acetate. The water phase is then acidified with concentrated hydro­chloric acid (37.0wt. %, 35.5 g, 360.4 mmol, 1.5 eq), the organic phase is separated and the water phase is again extracted three times with 150 mL portions of ethyl acetate. The combined organic phases are dried over Na2SO4 and evaporated to dryness under diminished pressure. The resulting raw product is further purified by distillation in vacuo yielding the product in purity >99% (GC). M. p. 22 °C. 1H NMR (400 MHz, CDCl3): δ = 12.15 (br s, 1H, OH); 7.09 (dt, 3J = 15.6 Hz, 3J = 7.0 Hz, 1H, -CH-); 5.82 (dt, 3J = 15.6 Hz, 4J = 1.6 Hz, 1H, -CH-); 2.26-2.19 (m, 2H, -CH2-); 1.50-1.42 (m, 2H, -CH2-); 1.32-1.24 (m, 12H, 6x -CH2-); 0.90-0.86 (m, 3H, -CH3-). 13C NMR (100 MHz, CDCl3): δ = 172.53 (CO); 152.68 (CH); 120.76 (CH); 32.47 (CH2); 32.02 (CH2); 29.61 (CH2), 29.52 (CH2), 29.43 (CH2); 29.29 (CH2); 28.02 (CH2); 22.81 (CH2); 14.23 (CH3). MS (EI, 70eV): m/z = 198 (M+, 0), 99 (16), 98 (12), 97 (17), 96 (14), 95 (11), 86 (17), 84 (18), 83 (16), 82 (12), 81 (20), 73 (34), 71 (13), 70 (15), 69 (21), 68 (18), 67 (20), 57 (29), 56 (22), 55 (47), 54 (11), 53 (20), 45 (14), 43 (70), 42 (19), 41 (100), 40 (14), 39 (52), 29 (58). HRMS (ESI-TOF/MS): calculated for C12H22O2 ([M—H]-) 197.1547, found 197.15481. Elemental analysis for C12H22O2 % (calc.): C 72.53 (72.68); H 11.24 (11.18). Suitable single crystals were grown by slow evaporation of an ethano­lic solution at -30 °C over one week.

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2 and 1.5 Ueq(C) for CH3. The carb­oxy­lic acid group was assigned by examining the C—O distances and H1 was placed using the AFIX 147 instruction (d(O—H) = 0.84 Å, Uiso(H) fixed at 1.5 Ueq(O)).

Related literature top

For the synthesis of unsaturated α,β-carboxylic acids including the title compound by adapted routes established by Knoevenagel (1898) and Doebner (1902), see: Shabtai et al. (1981). For crystal structure determinations of related α,β-unsaturated carboxylic acids, see, for acrylic acid: Higgs et al. (1963), Chatani et al. (1963), Boese et al. (1999), or Oswald et al. (2011); see, for crotonic acid: Shimizu et al. (1974); see, for (E)-pent-2-enoic acid: Peppel et al. (2015a); see, for (E)-hex-2-enoic acid: Peppel et al. (2015b); see, for (E)-undecen-2-enoic acid: Sonneck et al. (2015). For structures of co-crystals containing (E)-hex-2-enoic acid, see: Aakeröy et al. (2003), or Stanton & Bak (2008).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXL2014/7 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Packing diagram showing intermolecular hydrogen bonding.
(E)-dodec-2-enoic acid top
Crystal data top
C12H22O2Z = 2
Mr = 198.29F(000) = 220
Triclinic, P1Dx = 1.085 Mg m3
a = 4.6475 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 5.4169 (2) ÅCell parameters from 6666 reflections
c = 24.7041 (10) Åθ = 3.6–66.9°
α = 91.547 (2)°µ = 0.56 mm1
β = 91.788 (2)°T = 150 K
γ = 102.3158 (19)°Plate, colourless
V = 606.96 (4) Å30.44 × 0.30 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2117 independent reflections
Radiation source: microfocus1964 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.026
Detector resolution: 8.3333 pixels mm-1θmax = 66.0°, θmin = 3.6°
ϕ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 66
Tmin = 0.80, Tmax = 0.94l = 2929
12048 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.282P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2117 reflectionsΔρmax = 0.29 e Å3
129 parametersΔρmin = 0.23 e Å3
Crystal data top
C12H22O2γ = 102.3158 (19)°
Mr = 198.29V = 606.96 (4) Å3
Triclinic, P1Z = 2
a = 4.6475 (2) ÅCu Kα radiation
b = 5.4169 (2) ŵ = 0.56 mm1
c = 24.7041 (10) ÅT = 150 K
α = 91.547 (2)°0.44 × 0.30 × 0.12 mm
β = 91.788 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2117 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1964 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.94Rint = 0.026
12048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.13Δρmax = 0.29 e Å3
2117 reflectionsΔρmin = 0.23 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7187 (3)1.2963 (3)0.03952 (6)0.0277 (4)
C20.8819 (3)1.1356 (3)0.06965 (6)0.0314 (4)
H20.97631.02500.04970.038*
C30.9029 (3)1.1384 (3)0.12290 (6)0.0306 (4)
H30.80921.25170.14210.037*
C41.0622 (4)0.9777 (3)0.15566 (7)0.0332 (4)
H4A1.22301.08810.17780.040*
H4B1.15230.87140.13090.040*
C50.8573 (3)0.8076 (3)0.19299 (6)0.0303 (4)
H5A0.75100.91290.21480.036*
H5B0.70900.68580.17060.036*
C61.0184 (3)0.6615 (3)0.23115 (6)0.0304 (4)
H6A1.13030.56060.20940.036*
H6B1.16180.78320.25450.036*
C70.8121 (4)0.4855 (3)0.26692 (6)0.0311 (4)
H7A0.67010.36310.24350.037*
H7B0.69850.58650.28820.037*
C80.9696 (4)0.3400 (3)0.30579 (6)0.0313 (4)
H8A1.08300.23860.28460.038*
H8B1.11150.46220.32930.038*
C90.7607 (4)0.1648 (3)0.34138 (7)0.0333 (4)
H9A0.61860.04290.31780.040*
H9B0.64740.26640.36260.040*
C100.9160 (4)0.0181 (3)0.38039 (7)0.0341 (4)
H10A1.02570.08660.35920.041*
H10B1.06120.13980.40350.041*
C110.7074 (4)0.1519 (4)0.41657 (8)0.0432 (4)
H11A0.55560.26750.39360.052*
H11B0.60570.04620.43930.052*
C120.8622 (5)0.3083 (4)0.45332 (8)0.0495 (5)
H12A0.96050.41590.43110.074*
H12B0.71690.41450.47550.074*
H12C1.00890.19520.47700.074*
O10.5999 (3)1.4499 (2)0.06736 (5)0.0374 (3)
H10.50411.52510.04640.056*
O20.7029 (3)1.2789 (2)0.01126 (4)0.0363 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0262 (7)0.0246 (8)0.0319 (8)0.0035 (6)0.0022 (6)0.0044 (6)
C20.0306 (8)0.0301 (8)0.0352 (9)0.0100 (7)0.0022 (6)0.0046 (6)
C30.0274 (8)0.0291 (8)0.0358 (9)0.0071 (6)0.0010 (6)0.0042 (6)
C40.0309 (8)0.0359 (9)0.0347 (9)0.0110 (7)0.0009 (6)0.0067 (7)
C50.0300 (8)0.0306 (8)0.0318 (8)0.0104 (7)0.0016 (6)0.0032 (6)
C60.0294 (8)0.0295 (8)0.0334 (8)0.0095 (7)0.0032 (6)0.0030 (6)
C70.0311 (8)0.0301 (8)0.0335 (8)0.0102 (7)0.0021 (6)0.0033 (6)
C80.0311 (8)0.0301 (8)0.0342 (8)0.0098 (7)0.0023 (6)0.0040 (7)
C90.0327 (8)0.0335 (9)0.0347 (9)0.0096 (7)0.0019 (7)0.0051 (7)
C100.0351 (9)0.0342 (9)0.0347 (9)0.0109 (7)0.0010 (7)0.0061 (7)
C110.0415 (10)0.0459 (11)0.0433 (10)0.0103 (8)0.0025 (8)0.0147 (8)
C120.0554 (12)0.0499 (11)0.0450 (11)0.0127 (9)0.0035 (9)0.0192 (9)
O10.0442 (7)0.0364 (7)0.0367 (6)0.0193 (5)0.0013 (5)0.0060 (5)
O20.0453 (7)0.0357 (7)0.0307 (6)0.0143 (5)0.0012 (5)0.0053 (5)
Geometric parameters (Å, º) top
C1—O21.2543 (19)C7—H7B0.9900
C1—O11.2881 (19)C8—C91.524 (2)
C1—C21.473 (2)C8—H8A0.9900
C2—C31.316 (2)C8—H8B0.9900
C2—H20.9500C9—C101.524 (2)
C3—C41.496 (2)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.527 (2)C10—C111.518 (2)
C4—H4A0.9900C10—H10A0.9900
C4—H4B0.9900C10—H10B0.9900
C5—C61.525 (2)C11—C121.523 (2)
C5—H5A0.9900C11—H11A0.9900
C5—H5B0.9900C11—H11B0.9900
C6—C71.522 (2)C12—H12A0.9800
C6—H6A0.9900C12—H12B0.9800
C6—H6B0.9900C12—H12C0.9800
C7—C81.524 (2)O1—H10.8400
C7—H7A0.9900
O2—C1—O1123.37 (14)H7A—C7—H7B107.7
O2—C1—C2119.24 (14)C9—C8—C7113.34 (13)
O1—C1—C2117.38 (13)C9—C8—H8A108.9
C3—C2—C1122.91 (15)C7—C8—H8A108.9
C3—C2—H2118.5C9—C8—H8B108.9
C1—C2—H2118.5C7—C8—H8B108.9
C2—C3—C4125.30 (15)H8A—C8—H8B107.7
C2—C3—H3117.4C8—C9—C10113.76 (13)
C4—C3—H3117.4C8—C9—H9A108.8
C3—C4—C5112.03 (13)C10—C9—H9A108.8
C3—C4—H4A109.2C8—C9—H9B108.8
C5—C4—H4A109.2C10—C9—H9B108.8
C3—C4—H4B109.2H9A—C9—H9B107.7
C5—C4—H4B109.2C11—C10—C9113.50 (14)
H4A—C4—H4B107.9C11—C10—H10A108.9
C6—C5—C4113.32 (13)C9—C10—H10A108.9
C6—C5—H5A108.9C11—C10—H10B108.9
C4—C5—H5A108.9C9—C10—H10B108.9
C6—C5—H5B108.9H10A—C10—H10B107.7
C4—C5—H5B108.9C10—C11—C12113.18 (15)
H5A—C5—H5B107.7C10—C11—H11A108.9
C7—C6—C5113.10 (13)C12—C11—H11A108.9
C7—C6—H6A109.0C10—C11—H11B108.9
C5—C6—H6A109.0C12—C11—H11B108.9
C7—C6—H6B109.0H11A—C11—H11B107.8
C5—C6—H6B109.0C11—C12—H12A109.5
H6A—C6—H6B107.8C11—C12—H12B109.5
C6—C7—C8113.85 (13)H12A—C12—H12B109.5
C6—C7—H7A108.8C11—C12—H12C109.5
C8—C7—H7A108.8H12A—C12—H12C109.5
C6—C7—H7B108.8H12B—C12—H12C109.5
C8—C7—H7B108.8C1—O1—H1109.5
O2—C1—C2—C3178.37 (15)C5—C6—C7—C8179.36 (13)
O1—C1—C2—C31.9 (2)C6—C7—C8—C9179.97 (13)
C1—C2—C3—C4179.24 (14)C7—C8—C9—C10179.96 (13)
C2—C3—C4—C5120.08 (17)C8—C9—C10—C11178.76 (14)
C3—C4—C5—C6174.01 (13)C9—C10—C11—C12176.92 (15)
C4—C5—C6—C7178.05 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.802.6319 (15)170
Symmetry code: (i) x+1, y+3, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.802.6319 (15)170
Symmetry code: (i) x+1, y+3, z.
 

Acknowledgements

The authors thank P. Thiele (University of Rostock) for the DSC measurements and Professor Dr. J. G. de Vries (LIKAT) for helpful support.

References

First citationAakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159–165.  Web of Science CSD CrossRef Google Scholar
First citationBoese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55 IUC9900006.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419–421.  CrossRef Web of Science Google Scholar
First citationDoebner, O. (1902). Ber. Dtsch. Chem. Ges. 35, 1136–1147.  CrossRef CAS Google Scholar
First citationHiggs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657–661.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKnoevenagel, E. (1898). Ber. Dtsch. Chem. Ges. 31, 2596–2619.  CrossRef CAS Google Scholar
First citationOswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503–4507.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, o316.  CSD CrossRef IUCr Journals Google Scholar
First citationPeppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, o323.  CSD CrossRef IUCr Journals Google Scholar
First citationShabtai, J., Ney-Igner, E. & Pines, H. (1981). J. Org. Chem. 46, 3795–3802.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627–1631.  CrossRef CAS Web of Science Google Scholar
First citationSonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Acta Cryst. E71, o426–o427.  CSD CrossRef IUCr Journals Google Scholar
First citationStanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o528-o529
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds