organic compounds
E)-dodec-2-enoic acid
of (aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de
The E)-dodec-2-enoic acid, C12H22O2, an α,β-unsaturated carboxylic acid with a melting point (295 K) near room temperature, is characterized by carboxylic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds. The carboxylic acid group and the following three carbon atoms of the chain of the (E)-dodec-2-enoic acid molecule lie almost in one plane (r.m.s. deviation for the four C atoms and two O atoms = 0.012 Å), whereas the remaining carbon atoms of the hydrocarbon chain adopt a nearly fully [moduli of torsion angles vary from 174.01 (13) to 179.97 (13)°].
of (CCDC reference: 1407997
1. Related literature
For the synthesis of unsaturated α,β-carboxylic acids including the title compound by adapted routes established by Knoevenagel (1898) and Doebner (1902), see: Shabtai et al. (1981). For determinations of related α,β-unsaturated carboxylic acids, see, for acrylic acid: Higgs et al. (1963), Chatani et al. (1963), Boese et al. (1999), or Oswald et al. (2011); see, for crotonic acid: Shimizu et al. (1974); see, for (E)-pent-2-enoic acid: Peppel et al. (2015a); see, for (E)-hex-2-enoic acid: Peppel et al. (2015b); see, for (E)-undecen-2-enoic acid: Sonneck et al. (2015). For structures of co-crystals containing (E)-hex-2-enoic acid, see: Aakeröy et al. (2003), or Stanton & Bak (2008).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2014); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXL2014/7; software used to prepare material for publication: SHELXL2014/7.
Supporting information
CCDC reference: 1407997
10.1107/S2056989015011937/hb7452sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015011937/hb7452Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015011937/hb7452Isup3.cml
Malonic acid (25.0 g, 240.2 mmol, 1.0 eq) is dissolved in dry pyridine (38.0 g, 480.5 mmol, 2.0 eq) at room temperature in a three-necked flask equipped with a magnetic stir bar and a reflux condenser under a mild flow of argon. Decanal (37.5 g, 240.2 mmol, 1.0 eq) is then added in one portion and the resulting clear solution is further stirred for 72 h at room temperature under argon. Afterwards, the resulting light yellow to orange solution is brought to an acidic pH value by adding phosphoric acid at 0 °C (42.5wt. %, 138.5 g, 600.6 mmol, 2.5 eq). The resulting two layers are extracted three times with 150 mL portions of ethyl acetate and reduced to a volume of ca. 150 mL in vacuo. To remove impurities from aldol condensation the raw acid is converted into the corresponding sodium salt by addition of an aqueous solution of sodium carbonate (20.4 g, 192.2 mmol, 0.8 eq in 200 mL). After stirring for 30 minutes the water phase is separated and extracted three times with 150 mL portions of ethyl acetate. The water phase is then acidified with concentrated hydrochloric acid (37.0wt. %, 35.5 g, 360.4 mmol, 1.5 eq), the organic phase is separated and the water phase is again extracted three times with 150 mL portions of ethyl acetate. The combined organic phases are dried over Na2SO4 and evaporated to dryness under diminished pressure. The resulting raw product is further purified by distillation in vacuo yielding the product in purity >99% (GC). M. p. 22 °C. 1H NMR (400 MHz, CDCl3): δ = 12.15 (br s, 1H, OH); 7.09 (dt, 3J = 15.6 Hz, 3J = 7.0 Hz, 1H, -CH-); 5.82 (dt, 3J = 15.6 Hz, 4J = 1.6 Hz, 1H, -CH-); 2.26-2.19 (m, 2H, -CH2-); 1.50-1.42 (m, 2H, -CH2-); 1.32-1.24 (m, 12H, 6x -CH2-); 0.90-0.86 (m, 3H, -CH3-). 13C NMR (100 MHz, CDCl3): δ = 172.53 (CO); 152.68 (CH); 120.76 (CH); 32.47 (CH2); 32.02 (CH2); 29.61 (CH2), 29.52 (CH2), 29.43 (CH2); 29.29 (CH2); 28.02 (CH2); 22.81 (CH2); 14.23 (CH3). MS (EI, 70eV): m/z = 198 (M+, 0), 99 (16), 98 (12), 97 (17), 96 (14), 95 (11), 86 (17), 84 (18), 83 (16), 82 (12), 81 (20), 73 (34), 71 (13), 70 (15), 69 (21), 68 (18), 67 (20), 57 (29), 56 (22), 55 (47), 54 (11), 53 (20), 45 (14), 43 (70), 42 (19), 41 (100), 40 (14), 39 (52), 29 (58). HRMS (ESI-TOF/MS): calculated for C12H22O2 ([M—H]-) 197.1547, found 197.15481. Elemental analysis for C12H22O2 % (calc.): C 72.53 (72.68); H 11.24 (11.18). Suitable single crystals were grown by slow evaporation of an ethanolic solution at -30 °C over one week.
H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2 and 1.5 Ueq(C) for CH3. The carboxylic acid group was assigned by examining the C—O distances and H1 was placed using the AFIX 147 instruction (d(O—H) = 0.84 Å, Uiso(H) fixed at 1.5 Ueq(O)).
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXL2014/7 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).Fig. 1. Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 50% probability level. | |
Fig. 2. Packing diagram showing intermolecular hydrogen bonding. |
C12H22O2 | Z = 2 |
Mr = 198.29 | F(000) = 220 |
Triclinic, P1 | Dx = 1.085 Mg m−3 |
a = 4.6475 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 5.4169 (2) Å | Cell parameters from 6666 reflections |
c = 24.7041 (10) Å | θ = 3.6–66.9° |
α = 91.547 (2)° | µ = 0.56 mm−1 |
β = 91.788 (2)° | T = 150 K |
γ = 102.3158 (19)° | Plate, colourless |
V = 606.96 (4) Å3 | 0.44 × 0.30 × 0.12 mm |
Bruker APEXII CCD diffractometer | 2117 independent reflections |
Radiation source: microfocus | 1964 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.026 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 66.0°, θmin = 3.6° |
ϕ and ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −6→6 |
Tmin = 0.80, Tmax = 0.94 | l = −29→29 |
12048 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0529P)2 + 0.282P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
2117 reflections | Δρmax = 0.29 e Å−3 |
129 parameters | Δρmin = −0.23 e Å−3 |
C12H22O2 | γ = 102.3158 (19)° |
Mr = 198.29 | V = 606.96 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.6475 (2) Å | Cu Kα radiation |
b = 5.4169 (2) Å | µ = 0.56 mm−1 |
c = 24.7041 (10) Å | T = 150 K |
α = 91.547 (2)° | 0.44 × 0.30 × 0.12 mm |
β = 91.788 (2)° |
Bruker APEXII CCD diffractometer | 2117 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 1964 reflections with I > 2σ(I) |
Tmin = 0.80, Tmax = 0.94 | Rint = 0.026 |
12048 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.131 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.29 e Å−3 |
2117 reflections | Δρmin = −0.23 e Å−3 |
129 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7187 (3) | 1.2963 (3) | 0.03952 (6) | 0.0277 (4) | |
C2 | 0.8819 (3) | 1.1356 (3) | 0.06965 (6) | 0.0314 (4) | |
H2 | 0.9763 | 1.0250 | 0.0497 | 0.038* | |
C3 | 0.9029 (3) | 1.1384 (3) | 0.12290 (6) | 0.0306 (4) | |
H3 | 0.8092 | 1.2517 | 0.1421 | 0.037* | |
C4 | 1.0622 (4) | 0.9777 (3) | 0.15566 (7) | 0.0332 (4) | |
H4A | 1.2230 | 1.0881 | 0.1778 | 0.040* | |
H4B | 1.1523 | 0.8714 | 0.1309 | 0.040* | |
C5 | 0.8573 (3) | 0.8076 (3) | 0.19299 (6) | 0.0303 (4) | |
H5A | 0.7510 | 0.9129 | 0.2148 | 0.036* | |
H5B | 0.7090 | 0.6858 | 0.1706 | 0.036* | |
C6 | 1.0184 (3) | 0.6615 (3) | 0.23115 (6) | 0.0304 (4) | |
H6A | 1.1303 | 0.5606 | 0.2094 | 0.036* | |
H6B | 1.1618 | 0.7832 | 0.2545 | 0.036* | |
C7 | 0.8121 (4) | 0.4855 (3) | 0.26692 (6) | 0.0311 (4) | |
H7A | 0.6701 | 0.3631 | 0.2435 | 0.037* | |
H7B | 0.6985 | 0.5865 | 0.2882 | 0.037* | |
C8 | 0.9696 (4) | 0.3400 (3) | 0.30579 (6) | 0.0313 (4) | |
H8A | 1.0830 | 0.2386 | 0.2846 | 0.038* | |
H8B | 1.1115 | 0.4622 | 0.3293 | 0.038* | |
C9 | 0.7607 (4) | 0.1648 (3) | 0.34138 (7) | 0.0333 (4) | |
H9A | 0.6186 | 0.0429 | 0.3178 | 0.040* | |
H9B | 0.6474 | 0.2664 | 0.3626 | 0.040* | |
C10 | 0.9160 (4) | 0.0181 (3) | 0.38039 (7) | 0.0341 (4) | |
H10A | 1.0257 | −0.0866 | 0.3592 | 0.041* | |
H10B | 1.0612 | 0.1398 | 0.4035 | 0.041* | |
C11 | 0.7074 (4) | −0.1519 (4) | 0.41657 (8) | 0.0432 (4) | |
H11A | 0.5556 | −0.2675 | 0.3936 | 0.052* | |
H11B | 0.6057 | −0.0462 | 0.4393 | 0.052* | |
C12 | 0.8622 (5) | −0.3083 (4) | 0.45332 (8) | 0.0495 (5) | |
H12A | 0.9605 | −0.4159 | 0.4311 | 0.074* | |
H12B | 0.7169 | −0.4145 | 0.4755 | 0.074* | |
H12C | 1.0089 | −0.1952 | 0.4770 | 0.074* | |
O1 | 0.5999 (3) | 1.4499 (2) | 0.06736 (5) | 0.0374 (3) | |
H1 | 0.5041 | 1.5251 | 0.0464 | 0.056* | |
O2 | 0.7029 (3) | 1.2789 (2) | −0.01126 (4) | 0.0363 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0262 (7) | 0.0246 (8) | 0.0319 (8) | 0.0035 (6) | 0.0022 (6) | 0.0044 (6) |
C2 | 0.0306 (8) | 0.0301 (8) | 0.0352 (9) | 0.0100 (7) | 0.0022 (6) | 0.0046 (6) |
C3 | 0.0274 (8) | 0.0291 (8) | 0.0358 (9) | 0.0071 (6) | 0.0010 (6) | 0.0042 (6) |
C4 | 0.0309 (8) | 0.0359 (9) | 0.0347 (9) | 0.0110 (7) | −0.0009 (6) | 0.0067 (7) |
C5 | 0.0300 (8) | 0.0306 (8) | 0.0318 (8) | 0.0104 (7) | −0.0016 (6) | 0.0032 (6) |
C6 | 0.0294 (8) | 0.0295 (8) | 0.0334 (8) | 0.0095 (7) | −0.0032 (6) | 0.0030 (6) |
C7 | 0.0311 (8) | 0.0301 (8) | 0.0335 (8) | 0.0102 (7) | −0.0021 (6) | 0.0033 (6) |
C8 | 0.0311 (8) | 0.0301 (8) | 0.0342 (8) | 0.0098 (7) | −0.0023 (6) | 0.0040 (7) |
C9 | 0.0327 (8) | 0.0335 (9) | 0.0347 (9) | 0.0096 (7) | −0.0019 (7) | 0.0051 (7) |
C10 | 0.0351 (9) | 0.0342 (9) | 0.0347 (9) | 0.0109 (7) | −0.0010 (7) | 0.0061 (7) |
C11 | 0.0415 (10) | 0.0459 (11) | 0.0433 (10) | 0.0103 (8) | 0.0025 (8) | 0.0147 (8) |
C12 | 0.0554 (12) | 0.0499 (11) | 0.0450 (11) | 0.0127 (9) | 0.0035 (9) | 0.0192 (9) |
O1 | 0.0442 (7) | 0.0364 (7) | 0.0367 (6) | 0.0193 (5) | 0.0013 (5) | 0.0060 (5) |
O2 | 0.0453 (7) | 0.0357 (7) | 0.0307 (6) | 0.0143 (5) | −0.0012 (5) | 0.0053 (5) |
C1—O2 | 1.2543 (19) | C7—H7B | 0.9900 |
C1—O1 | 1.2881 (19) | C8—C9 | 1.524 (2) |
C1—C2 | 1.473 (2) | C8—H8A | 0.9900 |
C2—C3 | 1.316 (2) | C8—H8B | 0.9900 |
C2—H2 | 0.9500 | C9—C10 | 1.524 (2) |
C3—C4 | 1.496 (2) | C9—H9A | 0.9900 |
C3—H3 | 0.9500 | C9—H9B | 0.9900 |
C4—C5 | 1.527 (2) | C10—C11 | 1.518 (2) |
C4—H4A | 0.9900 | C10—H10A | 0.9900 |
C4—H4B | 0.9900 | C10—H10B | 0.9900 |
C5—C6 | 1.525 (2) | C11—C12 | 1.523 (2) |
C5—H5A | 0.9900 | C11—H11A | 0.9900 |
C5—H5B | 0.9900 | C11—H11B | 0.9900 |
C6—C7 | 1.522 (2) | C12—H12A | 0.9800 |
C6—H6A | 0.9900 | C12—H12B | 0.9800 |
C6—H6B | 0.9900 | C12—H12C | 0.9800 |
C7—C8 | 1.524 (2) | O1—H1 | 0.8400 |
C7—H7A | 0.9900 | ||
O2—C1—O1 | 123.37 (14) | H7A—C7—H7B | 107.7 |
O2—C1—C2 | 119.24 (14) | C9—C8—C7 | 113.34 (13) |
O1—C1—C2 | 117.38 (13) | C9—C8—H8A | 108.9 |
C3—C2—C1 | 122.91 (15) | C7—C8—H8A | 108.9 |
C3—C2—H2 | 118.5 | C9—C8—H8B | 108.9 |
C1—C2—H2 | 118.5 | C7—C8—H8B | 108.9 |
C2—C3—C4 | 125.30 (15) | H8A—C8—H8B | 107.7 |
C2—C3—H3 | 117.4 | C8—C9—C10 | 113.76 (13) |
C4—C3—H3 | 117.4 | C8—C9—H9A | 108.8 |
C3—C4—C5 | 112.03 (13) | C10—C9—H9A | 108.8 |
C3—C4—H4A | 109.2 | C8—C9—H9B | 108.8 |
C5—C4—H4A | 109.2 | C10—C9—H9B | 108.8 |
C3—C4—H4B | 109.2 | H9A—C9—H9B | 107.7 |
C5—C4—H4B | 109.2 | C11—C10—C9 | 113.50 (14) |
H4A—C4—H4B | 107.9 | C11—C10—H10A | 108.9 |
C6—C5—C4 | 113.32 (13) | C9—C10—H10A | 108.9 |
C6—C5—H5A | 108.9 | C11—C10—H10B | 108.9 |
C4—C5—H5A | 108.9 | C9—C10—H10B | 108.9 |
C6—C5—H5B | 108.9 | H10A—C10—H10B | 107.7 |
C4—C5—H5B | 108.9 | C10—C11—C12 | 113.18 (15) |
H5A—C5—H5B | 107.7 | C10—C11—H11A | 108.9 |
C7—C6—C5 | 113.10 (13) | C12—C11—H11A | 108.9 |
C7—C6—H6A | 109.0 | C10—C11—H11B | 108.9 |
C5—C6—H6A | 109.0 | C12—C11—H11B | 108.9 |
C7—C6—H6B | 109.0 | H11A—C11—H11B | 107.8 |
C5—C6—H6B | 109.0 | C11—C12—H12A | 109.5 |
H6A—C6—H6B | 107.8 | C11—C12—H12B | 109.5 |
C6—C7—C8 | 113.85 (13) | H12A—C12—H12B | 109.5 |
C6—C7—H7A | 108.8 | C11—C12—H12C | 109.5 |
C8—C7—H7A | 108.8 | H12A—C12—H12C | 109.5 |
C6—C7—H7B | 108.8 | H12B—C12—H12C | 109.5 |
C8—C7—H7B | 108.8 | C1—O1—H1 | 109.5 |
O2—C1—C2—C3 | −178.37 (15) | C5—C6—C7—C8 | −179.36 (13) |
O1—C1—C2—C3 | 1.9 (2) | C6—C7—C8—C9 | 179.97 (13) |
C1—C2—C3—C4 | 179.24 (14) | C7—C8—C9—C10 | 179.96 (13) |
C2—C3—C4—C5 | −120.08 (17) | C8—C9—C10—C11 | 178.76 (14) |
C3—C4—C5—C6 | −174.01 (13) | C9—C10—C11—C12 | 176.92 (15) |
C4—C5—C6—C7 | −178.05 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.84 | 1.80 | 2.6319 (15) | 170 |
Symmetry code: (i) −x+1, −y+3, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.84 | 1.80 | 2.6319 (15) | 170 |
Symmetry code: (i) −x+1, −y+3, −z. |
Acknowledgements
The authors thank P. Thiele (University of Rostock) for the DSC measurements and Professor Dr. J. G. de Vries (LIKAT) for helpful support.
References
Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159–165. Web of Science CSD CrossRef Google Scholar
Boese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55 IUC9900006. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419–421. CrossRef Web of Science Google Scholar
Doebner, O. (1902). Ber. Dtsch. Chem. Ges. 35, 1136–1147. CrossRef CAS Google Scholar
Higgs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657–661. CSD CrossRef IUCr Journals Web of Science Google Scholar
Knoevenagel, E. (1898). Ber. Dtsch. Chem. Ges. 31, 2596–2619. CrossRef CAS Google Scholar
Oswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503–4507. Web of Science CSD CrossRef CAS Google Scholar
Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, o316. CSD CrossRef IUCr Journals Google Scholar
Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, o323. CSD CrossRef IUCr Journals Google Scholar
Shabtai, J., Ney-Igner, E. & Pines, H. (1981). J. Org. Chem. 46, 3795–3802. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627–1631. CrossRef CAS Web of Science Google Scholar
Sonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Acta Cryst. E71, o426–o427. CSD CrossRef IUCr Journals Google Scholar
Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856–3862. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.