organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o530-o531

Crystal structure of [(E)-({2-[3-(2-{(1E)-[(carbamo­thioyl­amino)­imino]­meth­yl}phen­­oxy)prop­­oxy]phen­yl}methyl­­idene)amino]­thio­urea with an unknown solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bFaculty of Science & Engineering, School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 June 2015; accepted 23 June 2015; online 30 June 2015)

The title mol­ecule, C19H22N6O2S2, has crystallographically imposed C2 symmetry, with the central C atom lying on the rotation axis. The O—C—C—C torsion angle for the central chain is −59.22 (16)° and the dihedral angle between the planes of the benzene rings is 75.20 (7)°. In the crystal, N—H⋯O and N—H⋯S inter­actions link the mol­ecules, forming a three-dimensional network encompassing channels running parallel to the c axis, which account for about 20% of the unit-cell volume. The contribution to the scattering from the highly disordered solvent mol­ecules in these channels was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The stated crystal data for Mr, μ etc. do not take these into account.

1. Related literature

For the various biological activities of bis-thio­semicarbazones, see: Singh et al. (2001[Singh, N. K., Singh, S. B., Shrivastav, A. & Singh, S. M. (2001). J. Chem. Sci. 113, 257-273.]); Offiong & Martelli (1997[Offiong, O. E. & Martelli, S. (1997). Transition Met. Chem. 22, 263-269.]). For general synthesis and assessment of the pharmaceutical properties of thio­semicarbazone scaffold compounds, see: Greenbaum et al. (2004[Greenbaum, D. C., Mackey, Z., Hansell, E., Doyle, P., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212-3219.]); Finch et al. (1999[Finch, R. A., Liu, M. C., Cory, A. H., Cory, J. G. & Sartorelli, A. C. (1999). Adv. Enzyme Regul. 39, 3-12.]); Wilson et al. (1974[Wilson, H. R., Revankar, G. R. & Tolman, R. L. (1974). J. Med. Chem. 17, 760-761.]); Du et al. (2002[Du, X., Guo, C., Hansell, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, F. E. (2002). J. Med. Chem. 45, 2695-2707.]); Desai et al. (1984[Desai, N. C., Shucla, H. K., Parekh, B. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 455-457.]); Shucla et al. (1984[Shucla, H. K., Desai, N. C., Astik, R. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 168-171.]); Vrdoljak et al. (2010[Vrdoljak, V., Đilović, I., Rubčić, M., Kraljević Pavelić, S., Kralj, M., Matković-Čalogović, D., Piantanida, I., Novak, P., Rožman, A. & Cindrić, M. (2010). Eur. J. Med. Chem. 45, 38-48.]); Belicchi-Ferrari et al. (2010[Belicchi-Ferrari, M., Bisceglie, F., Buschini, A., Franzoni, S., Pelosi, G., Pinelli, S., Tarasconi, P. & Tavone, M. (2010). J. Inorg. Biochem. 104, 199-206.]); Marzano et al. (2009[Marzano, C., Pellei, M., Tisato, F. & Santini, C. (2009). Anticancer Agents Med. Chem. 9, 185-211.]). For use of the SQUEEZE routine in PLATON to remove the contribution of disordered solvents, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.], 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H22N6O2S2

  • Mr = 430.55

  • Monoclinic, C 2/c

  • a = 19.3941 (5) Å

  • b = 12.7110 (3) Å

  • c = 10.1450 (3) Å

  • β = 103.306 (2)°

  • V = 2433.79 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.19 mm−1

  • T = 150 K

  • 0.44 × 0.23 × 0.05 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.71, Tmax = 0.91

  • 8997 measured reflections

  • 2365 independent reflections

  • 1886 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.06

  • 2365 reflections

  • 135 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3 0.91 2.27 2.631 (2) 103
N1—H1A⋯S1i 0.91 2.64 3.3393 (16) 135
N1—H1B⋯O1ii 0.91 2.20 3.1046 (19) 176
N2—H2A⋯S1iii 0.91 2.49 3.3909 (16) 171
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Currently, bis-thiosemicarbazones is considerable interest in their biological activity (Singh et al., 2001; Offiong & Martelli, 1997) and have been known for over 50 years. Thiosemicarbazones have been reported to exhibit antivirals and as anticancer therapeutics, as well as for their parasiticidal action against Plasmodium falciparum and Trypanasoma cruzi which are the causative agents of malarya and Chagas' disease, respectively (Greenbaum et al., 2004; Finch et al., 1999; Wilson et al., 1974; Du et al., 2002). In addition, in the last few years there has been a growing attention towards thiosemicarbazones related to their range of biological properties, as antituberculosis activity (Desai et al., 1984; Shucla et al., 1984), antitumor (Vrdoljak et al., 2010), antiproliferative (Belicchi-Ferrari et al., 2010), and anticancer agents (Marzano et al., 2009). Such facts inspired us to synthesis and study the crystal structure determination of the title compound.

The title molecule has crystallographically imposed C2 symmetry (Fig. 1). The dihedral angle between the planes of the benzene rings is 75.20 (7)°. Significant N1—H1B···O1i (i: 1.5 - x, -1/2 + y, 1/2 - z) hydrogen bonds are formed in the crystal as well as weaker N2—H2A···S1ii (ii: 1.5 - x, 1.5 - y, -z) and N1—H1A···S1iii (iii: x 1 - y, 1/2 + z) interactions (Fig. 2). These lead to the formation of channels running parallel to the c axis (Fig. 3).

Related literature top

For the various biological activities of molecules having bis-thiosemicarbazones, see: Singh et al. (2001); Offiong & Martelli (1997). For general synthesis and assessment of the pharmaceutical properties of thiosemicarbazone scaffold compounds, see: Greenbaum et al. (2004); Finch et al. (1999); Wilson et al. (1974); Du et al. (2002); Desai et al. (1984); Shucla et al. (1984); Vrdoljak et al. (2010); Belicchi-Ferrari et al. (2010); Marzano et al. (2009). For use of the SQUEEZE routine in PLATON to remove the contribution of disordered solvents, see: Spek (2009, 2015).

Experimental top

A mixture of 0.5 mmol (142 mg) of 2,2'-[ethane-1,2-diylbis(oxy)]dibenzaldehyde and 1 mmol (91 mg) of thiosemicarbazide in ethanol (10 ml) was heated under reflux for 4 h in the presence of a catalytic amount of acetic acid. After cooling, the reaction mixture was poured into an ice-water. The resulting solid product was then filtered off, washed with water, dried and crystallized from dimethylformamide to afford the title compound. Mp 488 K.

Refinement top

The H-atom (H10A) attached to C10 was located from a difference Fourier map and refined with restraint C—–H = 0.99 (2) Å using a riding model, with Uiso(H) = 1.2 Ueq(C). The other H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. A region of density amounting to the scattering from approximately 1.5 carbon atoms, apparently disordered about the twofold axis and well removed from the main molecule was removed with PLATON SQUEEZE (Spek, 2009) after it proved impossible to identify it with any reasonable solvent or byproduct molecule.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The title molecule with labeling scheme and 50% probability ellipsoids. Atoms with the suffix a are related to their counterparts by the crystallographic twofold axis passing through C10.
[Figure 2] Fig. 2. Packing viewed down the b axis. N—H···O and N—H···S hydrogen bonds are shown, respectively, as blue and purple dotted lines.
[Figure 3] Fig. 3. Packing viewed down the the c axis showing the one-dimensonal channels.
[(E)-({2-[3-(2-{(1E)-[(Carbamothioylamino)imino]methyl}phenoxy)propoxy]phenyl}methylidene)amino]thiourea top
Crystal data top
C19H22N6O2S2F(000) = 904
Mr = 430.55Dx = 1.175 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 5935 reflections
a = 19.3941 (5) Åθ = 4.2–72.3°
b = 12.7110 (3) ŵ = 2.19 mm1
c = 10.1450 (3) ÅT = 150 K
β = 103.306 (2)°Plate, colourless
V = 2433.79 (11) Å30.44 × 0.23 × 0.05 mm
Z = 4
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2365 independent reflections
Radiation source: INCOATEC IµS micro–focus source1886 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.042
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.7°
ω scansh = 2321
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1515
Tmin = 0.71, Tmax = 0.91l = 1211
8997 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.5713P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2365 reflectionsΔρmax = 0.24 e Å3
135 parametersΔρmin = 0.22 e Å3
Crystal data top
C19H22N6O2S2V = 2433.79 (11) Å3
Mr = 430.55Z = 4
Monoclinic, C2/cCu Kα radiation
a = 19.3941 (5) ŵ = 2.19 mm1
b = 12.7110 (3) ÅT = 150 K
c = 10.1450 (3) Å0.44 × 0.23 × 0.05 mm
β = 103.306 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2365 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1886 reflections with I > 2σ(I)
Tmin = 0.71, Tmax = 0.91Rint = 0.042
8997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
2365 reflectionsΔρmin = 0.22 e Å3
135 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16947 (3)0.37583 (4)1.00065 (5)0.0410 (2)
O10.41803 (6)0.15260 (9)0.63827 (14)0.0374 (4)
N10.18026 (8)0.48300 (11)0.78226 (16)0.0378 (5)
N20.24940 (8)0.33630 (12)0.82840 (15)0.0362 (5)
N30.27239 (8)0.35523 (11)0.71219 (16)0.0355 (4)
C10.20151 (9)0.40093 (13)0.86192 (18)0.0338 (5)
C20.31703 (9)0.28864 (13)0.68644 (18)0.0343 (5)
C30.34370 (10)0.29762 (13)0.56355 (19)0.0356 (5)
C40.31914 (10)0.37535 (16)0.4677 (2)0.0437 (6)
C50.34321 (11)0.38278 (17)0.3499 (2)0.0493 (7)
C60.39290 (12)0.31119 (18)0.3267 (2)0.0499 (7)
C70.41864 (11)0.23341 (16)0.4199 (2)0.0443 (6)
C80.39431 (10)0.22645 (13)0.53912 (19)0.0358 (5)
C90.47639 (10)0.08725 (14)0.6228 (2)0.0421 (6)
C100.500000.0236 (2)0.750000.0468 (9)
H1A0.199000.494800.709200.0450*
H1B0.153100.533800.808300.0450*
H20.333000.232700.748000.0410*
H2A0.266500.275300.870400.0430*
H40.285000.424500.483500.0520*
H50.325900.436400.285600.0590*
H60.409400.315700.245700.0600*
H70.452800.184700.403100.0530*
H9A0.515900.131500.607800.0500*
H9B0.461300.040000.543800.0500*
H10A0.4614 (9)0.0236 (16)0.755 (2)0.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0497 (3)0.0379 (3)0.0406 (3)0.0112 (2)0.0209 (2)0.0037 (2)
O10.0372 (7)0.0318 (6)0.0488 (8)0.0044 (5)0.0212 (6)0.0030 (5)
N10.0403 (9)0.0350 (8)0.0413 (9)0.0098 (6)0.0161 (7)0.0036 (6)
N20.0410 (9)0.0330 (7)0.0378 (9)0.0080 (6)0.0158 (7)0.0024 (6)
N30.0367 (8)0.0332 (7)0.0393 (8)0.0023 (6)0.0146 (7)0.0007 (6)
C10.0325 (9)0.0315 (8)0.0385 (10)0.0019 (7)0.0107 (7)0.0044 (7)
C20.0339 (9)0.0283 (8)0.0418 (10)0.0015 (7)0.0110 (8)0.0017 (7)
C30.0353 (9)0.0333 (9)0.0399 (10)0.0033 (7)0.0121 (7)0.0043 (7)
C40.0433 (11)0.0426 (11)0.0467 (11)0.0020 (8)0.0134 (9)0.0004 (8)
C50.0510 (12)0.0548 (12)0.0437 (11)0.0029 (9)0.0143 (9)0.0068 (9)
C60.0555 (13)0.0580 (13)0.0411 (11)0.0120 (10)0.0215 (9)0.0062 (9)
C70.0452 (11)0.0439 (10)0.0493 (12)0.0058 (8)0.0224 (9)0.0119 (9)
C80.0361 (9)0.0316 (9)0.0415 (10)0.0068 (7)0.0128 (8)0.0078 (7)
C90.0348 (10)0.0339 (9)0.0626 (13)0.0007 (7)0.0217 (9)0.0127 (8)
C100.0335 (14)0.0252 (12)0.086 (2)0.00000.0227 (14)0.0000
Geometric parameters (Å, º) top
S1—C11.6945 (19)C5—C61.384 (3)
O1—C81.375 (2)C6—C71.380 (3)
O1—C91.441 (2)C7—C81.399 (3)
N1—C11.326 (2)C9—C101.503 (2)
N2—N31.374 (2)C2—H20.9500
N2—C11.341 (2)C4—H40.9500
N3—C21.280 (2)C5—H50.9500
N1—H1A0.9100C6—H60.9500
N1—H1B0.9100C7—H70.9500
C2—C31.460 (3)C9—H9A0.9900
N2—H2A0.9100C9—H9B0.9900
C3—C41.391 (3)C10—H10A0.970 (19)
C3—C81.398 (3)C10—H10Ai0.970 (19)
C4—C51.383 (3)
C8—O1—C9116.91 (14)O1—C9—C10107.97 (14)
N3—N2—C1119.38 (15)C9—C10—C9i114.84 (19)
N2—N3—C2115.31 (15)N3—C2—H2120.00
S1—C1—N1122.17 (14)C3—C2—H2120.00
S1—C1—N2120.20 (13)C3—C4—H4119.00
N1—C1—N2117.62 (16)C5—C4—H4119.00
H1A—N1—H1B119.00C4—C5—H5120.00
C1—N1—H1B120.00C6—C5—H5120.00
C1—N1—H1A120.00C5—C6—H6120.00
C1—N2—H2A127.00C7—C6—H6120.00
N3—N2—H2A113.00C6—C7—H7120.00
N3—C2—C3120.78 (16)C8—C7—H7120.00
C4—C3—C8118.49 (17)O1—C9—H9A110.00
C2—C3—C8120.12 (16)O1—C9—H9B110.00
C2—C3—C4121.38 (17)C10—C9—H9A110.00
C3—C4—C5121.55 (19)C10—C9—H9B110.00
C4—C5—C6119.26 (19)H9A—C9—H9B108.00
C5—C6—C7120.71 (19)C9—C10—H10A107.0 (12)
C6—C7—C8119.81 (19)C9—C10—H10Ai112.0 (12)
O1—C8—C3116.25 (16)C9i—C10—H10A112.0 (12)
C3—C8—C7120.18 (17)H10A—C10—H10Ai103.6 (17)
O1—C8—C7123.57 (17)C9i—C10—H10Ai107.0 (12)
C9—O1—C8—C3172.46 (16)C2—C3—C8—O12.2 (3)
C9—O1—C8—C76.8 (3)C2—C3—C8—C7178.46 (18)
C8—O1—C9—C10172.29 (14)C4—C3—C8—O1178.61 (16)
C1—N2—N3—C2178.70 (16)C4—C3—C8—C70.7 (3)
N3—N2—C1—S1177.07 (13)C3—C4—C5—C60.0 (3)
N3—N2—C1—N12.2 (2)C4—C5—C6—C70.3 (3)
N2—N3—C2—C3177.81 (16)C5—C6—C7—C80.1 (3)
N3—C2—C3—C43.1 (3)C6—C7—C8—O1178.85 (18)
N3—C2—C3—C8177.76 (17)C6—C7—C8—C30.4 (3)
C2—C3—C4—C5178.67 (18)O1—C9—C10—C9i59.22 (16)
C8—C3—C4—C50.5 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.912.272.631 (2)103
N1—H1A···S1ii0.912.643.3393 (16)135
N1—H1B···O1iii0.912.203.1046 (19)176
N2—H2A···S1iv0.912.493.3909 (16)171
Symmetry codes: (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.91002.27002.631 (2)103
N1—H1A···S1i0.91002.64003.3393 (16)135
N1—H1B···O1ii0.91002.20003.1046 (19)176
N2—H2A···S1iii0.91002.49003.3909 (16)171
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+2.
 

Acknowledgements

The support of NSF–MRI (grant No. 1228232) for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBelicchi-Ferrari, M., Bisceglie, F., Buschini, A., Franzoni, S., Pelosi, G., Pinelli, S., Tarasconi, P. & Tavone, M. (2010). J. Inorg. Biochem. 104, 199–206.  PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, N. C., Shucla, H. K., Parekh, B. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 455–457.  CAS Google Scholar
First citationDu, X., Guo, C., Hansell, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrow, J. H. & Cohen, F. E. (2002). J. Med. Chem. 45, 2695–2707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinch, R. A., Liu, M. C., Cory, A. H., Cory, J. G. & Sartorelli, A. C. (1999). Adv. Enzyme Regul. 39, 3–12.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGreenbaum, D. C., Mackey, Z., Hansell, E., Doyle, P., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212–3219.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarzano, C., Pellei, M., Tisato, F. & Santini, C. (2009). Anticancer Agents Med. Chem. 9, 185–211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOffiong, O. E. & Martelli, S. (1997). Transition Met. Chem. 22, 263–269.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShucla, H. K., Desai, N. C., Astik, R. R. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 168–171.  Google Scholar
First citationSingh, N. K., Singh, S. B., Shrivastav, A. & Singh, S. M. (2001). J. Chem. Sci. 113, 257–273.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVrdoljak, V., Đilović, I., Rubčić, M., Kraljević Pavelić, S., Kralj, M., Matković–Čalogović, D., Piantanida, I., Novak, P., Rožman, A. & Cindrić, M. (2010). Eur. J. Med. Chem. 45, 38–48.  CSD CrossRef PubMed CAS Google Scholar
First citationWilson, H. R., Revankar, G. R. & Tolman, R. L. (1974). J. Med. Chem. 17, 760–761.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o530-o531
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds