organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-acetyl-4H-chromen-4-one

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 June 2015; accepted 24 June 2015; online 30 June 2015)

In the title compound, C11H8O3, the fused-ring system is almost planar (r.m.s. deviation = 0.020 Å), with the largest deviation from the least-squares plane [0.0462 (17) Å] being for a pyran C atom. The dihedral angle between the plane of the fused-ring system and acetyl plane is 5.149 (16)°. In the crystal, the fused rings are linked by aromatic ππ stacking inter­actions [centroid–centroid distance between the benzene and pyran rings = 3.643 (6) Å] and C—H⋯O hydrogen bonds, generating a three-dimensional network.

1. Related literature

For a related structure, see: Chanda et al. (2014[Chanda, T., Chowdhury, S., Koley, S., Anand, N. & Singh, M. S. (2014). Org. Biomol. Chem. 12, 9216-9222.]). For further synthetic details, see: Yokoe et al. (1994[Yokoe, I., Maruyama, K., Sugita, Y., Harashida, T. & Shirataki, Y. (1994). Chem. Pharm. Bull. 42, 1697-1699.]); Li et al. (2012[Li, G., Zhang, Z. T., Dai, L. Y., Du, Y. L. & Xue, D. (2012). Helv. Chim. Acta, 95, 989-997.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H8O3

  • Mr = 188.18

  • Monoclinic, P 21 /n

  • a = 8.016 (13) Å

  • b = 25.93 (6) Å

  • c = 4.091 (8) Å

  • β = 94.79 (14)°

  • V = 847 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.42 × 0.25 × 0.20 mm

2.2. Data collection

  • Rigaku AFC-7R diffractometer

  • 2377 measured reflections

  • 1962 independent reflections

  • 1510 reflections with F2 > 2.0σ(F2)

  • Rint = 0.018

  • 3 standard reflections every 150 reflections intensity decay: −0.5%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.03

  • 1959 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H5⋯O2i 0.95 2.40 3.292 (6) 155
C1—H1⋯O3ii 0.95 2.31 3.264 (5) 148
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z+3.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla, et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Many derivatives of the title compound are reported because of their chemical, biological and medicinal significance (Yokoe et al. 1994, Chanda et al. 2014).

The mean deviation of the least-square plane for the non-hydrogen atoms of the fused-ring is 0.0201 Å, and the largest deviation from the plane is 0.0462 (17) Å for C2. These mean that these atoms are essentially coplanar (Fig.1). The dihedral angle between the fused-ring and acetyl plane is 5.149 (16) Å.

In the crystal, the molecules are linked by ππ stacking [centroid–centroid distance between the benzene and pyran rings = 3.643 (6) Å], and C–H···O hydrogen bonds form sheets along [0 4 1] and [0 4 1], as shown in Fig.2 and Fig.3.

The crystal structure of a 2,5,6,7-substituted 3-acetylchromone derivative is reported (Chanda et al. 2014).

Related literature top

For a related structure, see: Chanda et al. (2014). For further synthetic details, see: Yokoe et al. (1994); Li et al. (2012).

Experimental top

The title compound was synthesized from 3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-enone (Li et al. 2012) according to the literature method (Yokoe et al. 1994). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the title compound at room temperature.

Refinement top

All hydrogen atoms were placed in geometrical positions [C–H 0.95 and 0.98 Å], and refined using a riding model with Uiso(H) = 1.2Ueq of the parent atoms. The s.u.s for the cell parameters are rather large, possibly due to frost damage to the crystal.

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla, et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the intermolecular interactions of the title compound. C–H···O hydrogen bonds are represented as dashed lines.
[Figure 3] Fig. 3. A view of the title compound down to the a-axis.
3-Acetyl-4H-chromen-4-one top
Crystal data top
C11H8O3F(000) = 392.00
Mr = 188.18Dx = 1.475 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.016 (13) Åθ = 15.2–17.5°
b = 25.93 (6) ŵ = 0.11 mm1
c = 4.091 (8) ÅT = 100 K
β = 94.79 (14)°Prismatic, colorless
V = 847 (3) Å30.42 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.6°
ω scansh = 510
2377 measured reflectionsk = 033
1962 independent reflectionsl = 55
1510 reflections with F2 > 2.0σ(F2)3 standard reflections every 150 reflections
Rint = 0.018 intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.3687P]
where P = (Fo2 + 2Fc2)/3
1959 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.20 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H8O3V = 847 (3) Å3
Mr = 188.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.016 (13) ŵ = 0.11 mm1
b = 25.93 (6) ÅT = 100 K
c = 4.091 (8) Å0.42 × 0.25 × 0.20 mm
β = 94.79 (14)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.018
2377 measured reflections3 standard reflections every 150 reflections
1962 independent reflections intensity decay: 0.5%
1510 reflections with F2 > 2.0σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
1959 reflectionsΔρmin = 0.20 e Å3
128 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18103 (13)0.09136 (4)1.0184 (3)0.0256 (3)
O20.27801 (13)0.14078 (4)0.7749 (3)0.0296 (3)
O30.22177 (14)0.01208 (4)1.3956 (4)0.0352 (3)
C10.03986 (18)0.06711 (6)1.1256 (4)0.0239 (4)
C20.11774 (18)0.08077 (5)1.0636 (4)0.0212 (3)
C30.14176 (18)0.12556 (6)0.8560 (4)0.0210 (3)
C40.01216 (18)0.19777 (6)0.5570 (4)0.0233 (4)
C50.1584 (2)0.22372 (6)0.4646 (4)0.0264 (4)
C60.31159 (19)0.20407 (6)0.5507 (4)0.0268 (4)
C70.31830 (18)0.15967 (6)0.7318 (4)0.0251 (4)
C80.01438 (17)0.15278 (5)0.7452 (4)0.0202 (3)
C90.16842 (18)0.13482 (5)0.8296 (4)0.0212 (3)
C100.25597 (19)0.04850 (6)1.2256 (4)0.0232 (4)
C110.43401 (19)0.06180 (6)1.1822 (5)0.0270 (4)
H10.05100.03741.25810.0286*
H20.09120.21050.49240.0280*
H30.15540.25490.34290.0316*
H40.41240.22170.48260.0322*
H50.42230.14630.78890.0301*
H6A0.50820.03871.31650.0324*
H7B0.45570.09761.25060.0324*
H8C0.45500.05790.95090.0324*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0172 (5)0.0250 (6)0.0351 (6)0.0015 (4)0.0041 (5)0.0048 (5)
O20.0169 (6)0.0302 (6)0.0419 (7)0.0011 (5)0.0043 (5)0.0109 (5)
O30.0269 (6)0.0319 (7)0.0468 (8)0.0004 (5)0.0032 (6)0.0164 (6)
C10.0211 (7)0.0222 (7)0.0282 (8)0.0004 (6)0.0018 (6)0.0013 (6)
C20.0183 (7)0.0202 (7)0.0250 (8)0.0003 (6)0.0018 (6)0.0014 (6)
C30.0175 (7)0.0213 (7)0.0243 (8)0.0013 (6)0.0026 (6)0.0023 (6)
C40.0207 (7)0.0231 (7)0.0261 (8)0.0014 (6)0.0015 (6)0.0012 (6)
C50.0273 (8)0.0234 (8)0.0280 (8)0.0021 (6)0.0001 (7)0.0017 (7)
C60.0205 (8)0.0310 (9)0.0285 (8)0.0056 (6)0.0000 (6)0.0010 (7)
C70.0178 (7)0.0293 (8)0.0283 (8)0.0001 (6)0.0028 (6)0.0031 (7)
C80.0175 (7)0.0204 (7)0.0227 (8)0.0003 (6)0.0017 (6)0.0036 (6)
C90.0192 (7)0.0206 (7)0.0239 (8)0.0007 (6)0.0023 (6)0.0020 (6)
C100.0217 (8)0.0224 (7)0.0253 (8)0.0008 (6)0.0017 (6)0.0001 (6)
C110.0193 (8)0.0288 (8)0.0327 (9)0.0018 (6)0.0011 (6)0.0060 (7)
Geometric parameters (Å, º) top
O1—C11.336 (3)C7—C91.392 (3)
O1—C91.375 (3)C8—C91.390 (3)
O2—C31.233 (3)C10—C111.493 (3)
O3—C101.218 (3)C1—H10.950
C1—C21.356 (3)C4—H20.950
C2—C31.461 (3)C5—H30.950
C2—C101.498 (3)C6—H40.950
C3—C81.475 (3)C7—H50.950
C4—C51.377 (3)C11—H6A0.980
C4—C81.399 (3)C11—H7B0.980
C5—C61.401 (3)C11—H8C0.980
C6—C71.373 (4)
C1—O1—C9118.05 (15)O3—C10—C11120.67 (16)
O1—C1—C2126.32 (18)C2—C10—C11119.82 (17)
C1—C2—C3119.10 (15)O1—C1—H1116.840
C1—C2—C10115.94 (17)C2—C1—H1116.843
C3—C2—C10124.94 (16)C5—C4—H2119.697
O2—C3—C2125.01 (15)C8—C4—H2119.697
O2—C3—C8120.81 (18)C4—C5—H3120.092
C2—C3—C8114.17 (16)C6—C5—H3120.097
C5—C4—C8120.61 (17)C5—C6—H4119.500
C4—C5—C6119.81 (19)C7—C6—H4119.487
C5—C6—C7121.01 (16)C6—C7—H5120.923
C6—C7—C9118.14 (17)C9—C7—H5120.937
C3—C8—C4121.26 (16)C10—C11—H6A109.476
C3—C8—C9120.79 (17)C10—C11—H7B109.464
C4—C8—C9117.95 (15)C10—C11—H8C109.473
O1—C9—C7116.03 (16)H6A—C11—H7B109.469
O1—C9—C8121.52 (15)H6A—C11—H8C109.475
C7—C9—C8122.45 (17)H7B—C11—H8C109.471
O3—C10—C2119.50 (17)
C1—O1—C9—C7178.13 (12)H2—C4—C5—H32.1
C1—O1—C9—C81.35 (19)H2—C4—C8—C32.2
C9—O1—C1—C20.8 (3)H2—C4—C8—C9178.8
C9—O1—C1—H1179.2C4—C5—C6—C71.3 (3)
O1—C1—C2—C31.2 (3)C4—C5—C6—H4178.7
O1—C1—C2—C10177.31 (13)H3—C5—C6—C7178.7
H1—C1—C2—C3178.9H3—C5—C6—H41.3
H1—C1—C2—C102.7C5—C6—C7—C90.4 (3)
C1—C2—C3—O2177.82 (14)C5—C6—C7—H5179.6
C1—C2—C3—C82.4 (2)H4—C6—C7—C9179.6
C1—C2—C10—O31.2 (2)H4—C6—C7—H50.4
C1—C2—C10—C11177.68 (13)C6—C7—C9—O1178.20 (13)
C3—C2—C10—O3179.57 (13)C6—C7—C9—C81.3 (3)
C3—C2—C10—C110.7 (3)H5—C7—C9—O11.8
C10—C2—C3—O23.9 (3)H5—C7—C9—C8178.7
C10—C2—C3—C8175.94 (12)C3—C8—C9—O10.0 (2)
O2—C3—C8—C42.7 (3)C3—C8—C9—C7179.50 (12)
O2—C3—C8—C9178.31 (13)C4—C8—C9—O1178.94 (12)
C2—C3—C8—C4177.09 (12)C4—C8—C9—C70.5 (2)
C2—C3—C8—C91.87 (19)O3—C10—C11—H6A3.2
C5—C4—C8—C3177.81 (13)O3—C10—C11—H7B123.2
C5—C4—C8—C91.2 (2)O3—C10—C11—H8C116.8
C8—C4—C5—C62.0 (3)C2—C10—C11—H6A175.7
C8—C4—C5—H3177.9C2—C10—C11—H7B55.7
H2—C4—C5—C6178.0C2—C10—C11—H8C64.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H5···O2i0.952.403.292 (6)155
C1—H1···O3ii0.952.313.264 (5)148
Symmetry codes: (i) x1, y, z; (ii) x, y, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H5···O2i0.952.403.292 (6)155
C1—H1···O3ii0.952.313.264 (5)148
Symmetry codes: (i) x1, y, z; (ii) x, y, z+3.
 

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChanda, T., Chowdhury, S., Koley, S., Anand, N. & Singh, M. S. (2014). Org. Biomol. Chem. 12, 9216–9222.  CSD CrossRef CAS PubMed Google Scholar
First citationLi, G., Zhang, Z. T., Dai, L. Y., Du, Y. L. & Xue, D. (2012). Helv. Chim. Acta, 95, 989–997.  CrossRef CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYokoe, I., Maruyama, K., Sugita, Y., Harashida, T. & Shirataki, Y. (1994). Chem. Pharm. Bull. 42, 1697–1699.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds