research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 772-775

Crystal structure of a mono-bridged calix[4]arene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 8 May 2015; accepted 5 June 2015; online 13 June 2015)

The title compound, 52-[(5-bromo­pent­yl)­oxy]-12,114,35,55-tetra-tert-butyl-17,18,19,110-tetra­hydro-16H,116H-1(4,12)-dibenzo[b,e][1,7]dioxa­cyclo­dodecina-3,5(1,3)-dibenzena­cyclo­hexa­phan-32-ol, C54H73BrO4, was synthesized from the reaction of tert-butyl­calix[4]arene with 1,5-di­bromo­pentane using K2CO3 in CH3CN. The structure consists of a calixarene unit with a five-carbon bridge connecting two proximal phenolic O atoms, and with a bromo­pent­oxy chain on one of the remaining phenolic O atoms. The calixarene unit was found to have a flattened cone conformation with no solvent (or other guest) mol­ecule observed in the cavity. Two of the opposite phenyl rings lean outwards with fold angles of 136.2 (1) and 133.0 (1)° between the rings and the plane of the bridging methyl­ene C atoms, while the other two opposite rings form fold angles of 83.27 (9) and 105.46 (9)°. There is considerable disorder in this mol­ecule. One of the tert-butyl groups is disordered over two conformations with occupancies of 0.527 (5) and 0.473 (5). The bromo­pent­oxy chain is disordered over three configurations with occupancies of 0.418, 0.332 and 0.250. The five-carbon bridge connecting two proximal phenolic O atoms is disordered over two conformations with occupancies of 0.537 (7) and 0.463 (7).

1. Chemical context

Calixarenes are macrocyclic mol­ecules made up of phenol and methyl­ene units, and are useful as host mol­ecules and as building blocks for larger systems. (Ikeda & Shinkai, 1997[Ikeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713-1734.]; Gutsche, 2008[Gutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddard. Cambridge: The Royal Society of Chemistry.]). Calix[4]arenes exist in four well-defined conformations, and conformational inter­conversion (by rotation around the methyl­ene bridges) is inhibited when the phenolic oxygen atoms are alkyl­ated with sufficiently large groups (Ikeda & Shinkai, 1997[Ikeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713-1734.]). Calix[4]arenes in the cone conformation, which are tetra-O-alkyl­ated with bulky groups, generally adopt a flattened conformation (flattened or pinched cone, approximate C2v symmetry) in the solid state; in solution they experience conformational mobility between flattened cones (Conner et al., 1991[Conner, M., Janout, V. & Regen, S. L. (1991). J. Am. Chem. Soc. 113, 9670-9671.]; Arduini et al., 1995[Arduini, A., Fabbi, M., Mantovani, M., Mirone, L., Pochini, A., Secchi, A. & Ungaro, R. (1995). J. Org. Chem. 60, 1454-1457.], 1996b[Arduini, A., McGregor, W. M., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996b). J. Org. Chem. 61, 6881-6887.]; Drew et al., 1997[Drew, M. G. B., Beer, P. D. & Ogden, M. I. (1997). Acta Cryst. C53, 472-474.]; Hudrlik et al., 2007[Hudrlik, P. F., Hudrlik, A. M., Zhang, L., Arasho, W. D. & Cho, J. (2007). J. Org. Chem. 72, 7858-7862.], 2013[Hudrlik, P. F., Hailu, S. T., Hudrlik, A. M. & Butcher, R. J. (2013). J. Mol. Struct. 1054-1055, 271-281.]; Hailu et al., 2012[Hailu, S. T., Butcher, R. J., Hudrlik, P. F. & Hudrlik, A. M. (2012). Acta Cryst. E68, o1833-o1834.], 2013[Hailu, S. T., Butcher, R. J., Hudrlik, P. F. & Hudrlik, A. M. (2013). Acta Cryst. E69, o1001-o1002.]). Rigidified cone calixarenes (approximate C4v symmetry) have been prepared by forming di­ethyl­ene glycol ether bridges between proximal phenolic oxygen atoms (Arduini et al., 1995[Arduini, A., Fabbi, M., Mantovani, M., Mirone, L., Pochini, A., Secchi, A. & Ungaro, R. (1995). J. Org. Chem. 60, 1454-1457.]). In an effort to make a rigid cone calix[4]arene, we sought a strategy that would enable bridging of the phenolic oxygen atoms by the reactions of a calix[4]arene with 1,5-di­bromo­pentane. The reaction, using K2CO3 in CH3CN, gave a mixture consisting primarily of a bis-calixarene and a mono-bridged calixarene (Hudrlik et al., 2013[Hudrlik, P. F., Hailu, S. T., Hudrlik, A. M. & Butcher, R. J. (2013). J. Mol. Struct. 1054-1055, 271-281.]). In the present work, the X-ray crystal structure of the mono-bridged calixarene, the title compound, is described.

[Scheme 1]

2. Structural commentary

The structure consists of a flattened-cone calix[4]arene having a five-carbon bridge joining two proximal phenolic oxygen atoms, and a bromo­pent­oxy chain attached to one of the remaining oxygen atoms. The mol­ecule (Fig. 1[link]) has a relatively rigid framework with a semi-flexible bridge and a flexible side chain. The mol­ecule is inherently chiral, but crystallizes in a centrosymmetric space group; therefore both enanti­omers have to be present in the unit cell in equal amounts. However, the mol­ecule is disordered such that both enanti­omers involving the conformation adopted by the bridging atoms are present in the asymmetric unit. In one of the two enanti­omers, the bridging group links O3 and O2, and O3 and O4 in the other. The flexible side chain is disordered over three conformations. The diagrams show only the major component for the disordered regions.

[Figure 1]
Figure 1
Diagram showing the atomic arrangement and atom-numbering scheme in the major component. Atomic displacement ellipsoids are drawn at the 30% level. H atoms are omitted for clarity.

The flattening of the calixarene cone could be observed by comparing distances between para carbon atoms of opposite phenolic rings. The distance between C4 and C27 is 5.698 (5) Å, while that between C16 and C38 is 9.390 (6) Å. The structure of a cone calix[4]arene is frequently described (Arduini et al., 1996b[Arduini, A., McGregor, W. M., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996b). J. Org. Chem. 61, 6881-6887.]; Drew et al., 1997[Drew, M. G. B., Beer, P. D. & Ogden, M. I. (1997). Acta Cryst. C53, 472-474.]) using the dihedral angles of the phenol rings with the plane of the bridging methyl­ene groups (C11, C22, C33, and C44). For the title compound, the aromatic rings attached to O2 and O4 are inclined outward, making fold angles of 136.2 (1) and 133.0 (1)°, respectively, while those attached to O1 and O3 are almost perpendicular to this plane, making dihedral angles of 83.27 (9) and 105.46 (9)°, respectively.

The fold angles reported here for the title compound are similar to those reported for other flattened cone calixarenes as referenced above. The joining of two proximal phenolic oxygen atoms by one five-carbon bridge does not appear to prevent flattening of the cone structure in the title compound. By contrast, a calix[4]arene having both sets of proximal phenolic oxygen atoms joined by five-atom bridges (di­ethyl­ene glycol derivatives) (and with a simple guest) had equivalent fold angles of about 115–118° (Arduini et al., 1996a[Arduini, A., McGregor, W. M., Paganuzzi, D., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996a). J. Chem. Soc. Perkin Trans. 2, pp. 839-846.]).

In the mol­ecule there are several weak intra­molecular C—H⋯O inter­actions (Table 1[link]). In addition, there is a weak intra­molecular C—H⋯Br inter­action.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C48A—H48A⋯Br1Ai 0.99 2.95 3.612 (11) 125
C48B—H48D⋯O1 0.99 2.57 3.227 (16) 124
C51A—H51A⋯O4 0.99 2.66 3.588 (10) 157
C51B—H51C⋯O2 0.99 2.65 3.597 (10) 161
C51B—H51D⋯Br1B 0.99 2.99 3.939 (8) 162
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

3. Supra­molecular features

The bromine atoms in the disordered bromo­pent­oxy chain also participate in weak inter­molecular inter­actions, which link the mol­ecules into loosely associated dimers. Other than that, there are no close contacts between mol­ecules nor are there any significant inter­molecular or intra­molecular ππ inter­actions, possibly as a result of the conformation adopted by the calixarene skeleton due to the pentyl bridge between adjacent O atoms. A view of the packing is shown in Fig. 2[link].

[Figure 2]
Figure 2
Packing diagram for the title compound, viewed along the b axis.

4. Database survey

For the properties and conformational isomers of calix[4]arenes, see: Ikeda & Shinkai (1997[Ikeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713-1734.]); Gutsche (2008[Gutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddard. Cambridge: The Royal Society of Chemistry.]). For crystal structures of flattened-cone conformations of calix[4]arenes, see: Arduini et al. (1996b[Arduini, A., McGregor, W. M., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996b). J. Org. Chem. 61, 6881-6887.]); Drew et al. (1997[Drew, M. G. B., Beer, P. D. & Ogden, M. I. (1997). Acta Cryst. C53, 472-474.]); Hailu et al. (2012[Hailu, S. T., Butcher, R. J., Hudrlik, P. F. & Hudrlik, A. M. (2012). Acta Cryst. E68, o1833-o1834.], 2013[Hailu, S. T., Butcher, R. J., Hudrlik, P. F. & Hudrlik, A. M. (2013). Acta Cryst. E69, o1001-o1002.]); Hudrlik et al. (2013[Hudrlik, P. F., Hailu, S. T., Hudrlik, A. M. & Butcher, R. J. (2013). J. Mol. Struct. 1054-1055, 271-281.]). For other (solution) flattened-cone calix[4]arenes, see: Conner et al. (1991[Conner, M., Janout, V. & Regen, S. L. (1991). J. Am. Chem. Soc. 113, 9670-9671.]); Arduini et al. (1995[Arduini, A., Fabbi, M., Mantovani, M., Mirone, L., Pochini, A., Secchi, A. & Ungaro, R. (1995). J. Org. Chem. 60, 1454-1457.]); Hudrlik et al. (2007[Hudrlik, P. F., Hudrlik, A. M., Zhang, L., Arasho, W. D. & Cho, J. (2007). J. Org. Chem. 72, 7858-7862.]). For rigidified cone conformations of calix[4]arenes, see: Arduini et al. (1995[Arduini, A., Fabbi, M., Mantovani, M., Mirone, L., Pochini, A., Secchi, A. & Ungaro, R. (1995). J. Org. Chem. 60, 1454-1457.]); Arduini et al. (1996a[Arduini, A., McGregor, W. M., Paganuzzi, D., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996a). J. Chem. Soc. Perkin Trans. 2, pp. 839-846.]).

5. Synthesis and crystallization

The synthesis of the title compound was reported in the literature (Hudrlik et al., 2013[Hudrlik, P. F., Hailu, S. T., Hudrlik, A. M. & Butcher, R. J. (2013). J. Mol. Struct. 1054-1055, 271-281.]). Crystals for X-ray diffraction were obtained as follows. Approximately 10 mg of the white powdered solid compound was dissolved in a minimum amount of di­chloro­methane. The solution was filtered into a micro beaker and then methanol was added dropwise (final volume ratio about 4:1 methanol: di­chloro­methane). The beaker was covered loosely to allow slow evaporation of solvent. After a number of days, crystals suitable for X-ray analysis were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. There is considerable disorder in this mol­ecule. One of the t-butyl groups is disordered over two conformations with occupancies of 0.527 (5) and 0.473 (5) and each are constrained to the usual tert-butyl geometry. The bromo­pent­oxy chain is disordered over three conformations with occupancies of each conformer constrained to values of 0.418, 0.332 and 0.250 (total occupancy 1.000) which are similar to values of 0.417 (1), 0.331 (1) and 0.249 (1) obtained using the SAME command in SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). The five-carbon bridge connecting two proximal phenolic oxygen atoms is disordered over two conformations with occupancies of 0.537 (7) and 0.463 (7), such that one conformer links O2 and O3 while the other conformer links O3 and O4 and each conformer is constrained to have similar metric parameters as above. All hydrogen atoms attached to carbon atoms were refined using a riding model with idealized geometries (C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms).

Table 2
Experimental details

Crystal data
Chemical formula C54H72BrO4
Mr 865.02
Crystal system, space group Monoclinic, C2/c
Temperature (K) 123
a, b, c (Å) 34.730 (5), 14.7386 (7), 25.903 (4)
β (°) 132.36 (2)
V3) 9797 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.46
Crystal size (mm) 0.46 × 0.33 × 0.10
 
Data collection
Diffractometer Agilent Xcalibur Ruby Gemini
Absorption correction Analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.801, 0.948
No. of measured, independent and observed [I > 2σ(I)] reflections 20219, 9873, 6973
Rint 0.030
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.109, 0.337, 1.05
No. of reflections 9873
No. of parameters 649
No. of restraints 188
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.27, −1.17
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

Calixarenes are macrocyclic molecules made up of phenol and methyl­ene units, and are useful as host molecules and as building blocks for larger systems. (Ikeda & Shinkai, 1997; Gutsche, 2008). Calix[4]arenes exist in four well-defined conformations, and conformational inter­conversion (by rotation around the methyl­ene bridges) is inhibited when the phenolic oxygens are alkyl­ated with sufficiently large groups (Ikeda & Shinkai, 1997). Calix[4]arenes in the cone conformation, which are tetra-O-alkyl­ated with bulky groups, generally adopt a flattened conformation (flattened or pinched cone, approximate C2v symmetry) in the solid state; in solution they experience conformational mobility between flattened cones (Conner et al., 1991; Arduini et al., 1995, 1996b; Drew et al., 1997; Hudrlik et al., 2007, 2013; Hailu et al., 2012, 2013). Rigidified cone calixarenes (approximate C4v symmetry) have been prepared by forming di­ethyl­ene glycol ether bridges between proximal phenolic oxygens (Arduini et al., 1995). In an effort to make a rigid cone calix[4]arene, we sought a strategy that would enable bridging of the phenolic oxygens by the reactions of a calix[4]arene with 1,5-di­bromo­pentane. The reaction, using K2CO3 in CH3CN, gave a mixture consisting primarily of a bis-calixarene and a mono-bridged calixarene (Hudrlik et al., 2013). In the present work, the X-ray crystal structure of the mono-bridged calixarene, the title compound, is described.

Structural commentary top

The structure consists of a flattened-cone calix[4]arene having a five-carbon bridge joining two proximal phenolic oxygens, and a bromo­pent­oxy chain on one of the remaining oxygens. The molecule has a relatively rigid framework with a semi-flexible bridge and a flexible side chain. The molecule is inherently chiral, but crystallizes in a centrosymmetric space group; therefore both enanti­omers have to be present in the unit cell. However, the molecule is disordered such that both enanti­omers involving the conformation adopted by the bridging atoms are present in the asymmetric unit. In one of the two enanti­omers, the bridging group links O3 and O2, and O3 and O4 in the other. The flexible side chain is disordered over three conformations. The diagrams show only the major component for the disordered regions.

The flattening of the calixarene cone could be observed by comparing distances between para carbons of opposite phenolic rings. The distance between C4 and C27 is 5.698 (5) Å, while that between C16 and C38 is 9.390 (6) Å. The structure of a cone calix[4]arene is frequently described (Arduini et al., 1996b; Drew et al., 1997) using the dihedral angles of the phenol rings with the plane of the bridging methyl­ene groups (C11, C22, C33, and C44). For the title compound, the aromatic rings attached to O2 and O4 are inclined outward, making dihedral angles of 136.2 (1) and 133.0 (1)°, respectively, while those attached to O1 and O3 are almost perpendicular to this plane, making dihedral angles of 83.27 (9) and 105.46 (9)°, respectively.

The dihedral angles reported here for the title compound are similar to those reported for other flattened cone calixarenes as referenced above. The joining of two proximal phenolic oxygens by one five-carbon bridge does not appear to prevent flattening of the cone structure in the title compound. By contrast, a calix[4]arene having both sets of proximal phenolic oxygens joined by five-atom bridges (di­ethyl­ene glycol derivatives) (and with a simple guest) had equivalent dihedral angles of about 115–118° (Arduini et al., 1996a).

Supra­molecular features top

In the molecule there are several weak intra­molecular C—H···O inter­actions (Table 1). In addition, there is a weak intra­molecular C—H···Br inter­action. The bromine atoms in the disordered bromo­pent­oxy chain also participate in weak inter­molecular inter­actions, which link the molecules into loosely associated dimers. Other than that, there are no close contacts between molecules nor are there any significant inter­molecular or intra­molecular π–·π inter­actions, probably as a result of the conformation adopted by the calixarene skeleton due to the pentyl bridge between adjacent O atoms.

Database survey top

For the properties and conformational isomers of calix[4]arenes, see: Ikeda & Shinkai (1997); Gutsche (2008). For crystal structures of flattened-cone conformations of calix[4]arenes, see: Arduini et al. (1996b); Drew et al. (1997); Hailu et al. (2012, 2013); Hudrlik et al. (2013). For other (solution) flattened-cone calix[4]arenes, see: Conner et al. (1991); Arduini et al. (1995); Hudrlik et al. (2007). For rigidified cone conformations of calix[4]arenes, see: Arduini et al. (1995); Arduini et al. (1996a).

Synthesis and crystallization top

The synthesis of the title compound was reported in the literature (Hudrlik et al., 2013). Crystals for X-ray diffraction were obtained as follows. Approximately 10 mg of the white powdered solid compound was dissolved in a minimum amount of di­chloro­methane. The solution was filtered into a micro beaker and then methanol was added dropwise (final volume ratio about 4:1 methanol: di­chloro­methane). The beaker was covered loosely to allow slow evaporation of solvent. After a number of days, crystals suitable for X-ray analysis were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. There is considerable disorder in this molecule. One of the t-butyl groups is disordered over two conformations with occupancies of 0.527 (5) and 0.473 (5) and each are constrained to the usual t-butyl geometry. The bromo­pent­oxy chain is disordered over three conformations with occupancies of each conformer constrained to values of 0.418, 0.332 and 0.250 (total occupancy 1.000) which are similar to values of 0.417 (1), 0.331 (1) and 0.249 (1)obtained using the SAME command in SHELXL2014 (Sheldrick, 2008). The five-carbon bridge connecting two proximal phenolic oxygens is disordered over two conformations with occupancies of 0.537 (7) and 0.463 (7), such that one conformer links O2 and O3 while the other conformer links O3 and O4 and each conformer is constrained to have similar metric parameters as above. All hydrogens attached to carbon atoms were refined using a riding model with idealized geometries (C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms).

Related literature top

For related literature, see: Arduini et al. (1995, 1996a, 1996b); Conner et al. (1991); Drew et al. (1997); Gutsche (2008); Hailu et al. (2012, 2013); Hudrlik et al. (2007, 2013); Ikeda & Shinkai (1997); Sheldrick (2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram showing the atomic arrangement and atom-numbering scheme in the major component. Atomic displacement ellipsoids are drawn at the 30% level.
[Figure 2] Fig. 2. Packing diagram for the title compound, viewed along the b axis.
52-[(5-Bromopentyl)oxy]-12,114,35,55-tetra-tert-butyl-17,18,19,110-tetrahydro-16H,116H-1(4,12)-dibenzo[b,e][1,7]dioxacyclododecina-3,5(1,3)-dibenzenacyclohexaphan-32-ol top
Crystal data top
C54H72BrO4F(000) = 3704
Mr = 865.02Dx = 1.173 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 34.730 (5) ÅCell parameters from 5121 reflections
b = 14.7386 (7) Åθ = 3.4–75.5°
c = 25.903 (4) ŵ = 1.46 mm1
β = 132.36 (2)°T = 123 K
V = 9797 (3) Å3Prism, colorless
Z = 80.46 × 0.33 × 0.10 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
6973 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.030
ω scansθmax = 75.7°, θmin = 3.4°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
h = 4343
Tmin = 0.801, Tmax = 0.948k = 1813
20219 measured reflectionsl = 2832
9873 independent reflections
Refinement top
Refinement on F2188 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.109H-atom parameters constrained
wR(F2) = 0.337 w = 1/[σ2(Fo2) + (0.1859P)2 + 21.3411P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
9873 reflectionsΔρmax = 1.27 e Å3
649 parametersΔρmin = 1.17 e Å3
Crystal data top
C54H72BrO4V = 9797 (3) Å3
Mr = 865.02Z = 8
Monoclinic, C2/cCu Kα radiation
a = 34.730 (5) ŵ = 1.46 mm1
b = 14.7386 (7) ÅT = 123 K
c = 25.903 (4) Å0.46 × 0.33 × 0.10 mm
β = 132.36 (2)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
9873 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
6973 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.948Rint = 0.030
20219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.109188 restraints
wR(F2) = 0.337H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1859P)2 + 21.3411P]
where P = (Fo2 + 2Fc2)/3
9873 reflectionsΔρmax = 1.27 e Å3
649 parametersΔρmin = 1.17 e Å3
Special details top

Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2012) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.09438 (10)0.75660 (17)0.20459 (14)0.0492 (6)
O20.06851 (11)0.5807 (2)0.25782 (15)0.0575 (7)
O30.15164 (14)0.5521 (3)0.39836 (16)0.0735 (10)
O40.19201 (11)0.67837 (19)0.36417 (15)0.0572 (7)
C10.10989 (13)0.6837 (2)0.18839 (18)0.0433 (7)
C20.16175 (13)0.6790 (2)0.21800 (19)0.0429 (7)
C30.17639 (13)0.6063 (2)0.20057 (18)0.0432 (7)
H3A0.21130.60350.21990.052*
C40.14227 (13)0.5372 (2)0.15601 (17)0.0420 (7)
C50.09167 (13)0.5429 (3)0.12914 (18)0.0433 (7)
H5A0.06760.49610.09900.052*
C60.07494 (13)0.6148 (2)0.14485 (18)0.0430 (7)
C70.16228 (14)0.4522 (3)0.14695 (19)0.0470 (8)
C80.1990 (3)0.4754 (4)0.1355 (4)0.0903 (19)
H8A0.23020.50540.17730.135*
H8B0.18130.51610.09530.135*
H8C0.20910.41960.12670.135*
C90.1921 (3)0.3975 (4)0.2137 (3)0.099 (2)
H9A0.16840.37980.22030.149*
H9B0.22050.43430.25340.149*
H9C0.20650.34290.21040.149*
C100.11894 (19)0.3945 (4)0.0855 (3)0.0880 (18)
H10A0.09550.37530.09200.132*
H10B0.13390.34090.08230.132*
H10C0.09940.43000.04230.132*
C110.02081 (13)0.6100 (3)0.1203 (2)0.0497 (8)
H11A0.01620.66050.14100.060*
H11B0.00630.61540.06880.060*
C120.01559 (13)0.5207 (3)0.1430 (2)0.0495 (9)
C130.04382 (14)0.5066 (3)0.2147 (2)0.0538 (9)
C140.04785 (15)0.4207 (3)0.2397 (2)0.0594 (11)
C150.02253 (16)0.3493 (3)0.1929 (2)0.0597 (11)
H15A0.02570.29040.21040.072*
C160.00736 (15)0.3597 (3)0.1216 (2)0.0541 (9)
C170.01004 (14)0.4469 (3)0.0979 (2)0.0494 (8)
H17A0.03010.45610.04950.059*
C180.03370 (18)0.2789 (3)0.0726 (3)0.0674 (11)
C190.0115 (5)0.2784 (8)0.0351 (6)0.093 (3)0.527 (5)
H19A0.02030.33580.01010.140*0.527 (5)
H19B0.02700.22790.00190.140*0.527 (5)
H19C0.02640.27120.07030.140*0.527 (5)
C200.0175 (5)0.1931 (7)0.1107 (6)0.092 (3)0.527 (5)
H20A0.02040.18660.14200.138*0.527 (5)
H20B0.03460.14260.07750.138*0.527 (5)
H20C0.02750.19270.13820.138*0.527 (5)
C210.0899 (4)0.2994 (8)0.0187 (6)0.096 (3)0.527 (5)
H21A0.09480.35920.00160.144*0.527 (5)
H21B0.10490.29950.04000.144*0.527 (5)
H21C0.10730.25320.01810.144*0.527 (5)
C19A0.0037 (5)0.2041 (9)0.0900 (7)0.093 (3)0.473 (5)
H19D0.02300.22360.07670.140*0.473 (5)
H19E0.01600.14900.06410.140*0.473 (5)
H19F0.02820.19170.14020.140*0.473 (5)
C20A0.0706 (5)0.2282 (8)0.0814 (7)0.092 (3)0.473 (5)
H20D0.04950.21030.13030.138*0.473 (5)
H20E0.08630.17420.05160.138*0.473 (5)
H20F0.09820.26970.06770.138*0.473 (5)
C21A0.0718 (5)0.2989 (8)0.0055 (6)0.096 (3)0.473 (5)
H21D0.05230.31680.01890.144*0.473 (5)
H21E0.09510.34830.01630.144*0.473 (5)
H21F0.09230.24440.03160.144*0.473 (5)
C220.08159 (18)0.4024 (4)0.3173 (2)0.0717 (14)
H22A0.07540.45060.33760.086*
H22B0.07100.34390.32330.086*
C230.13924 (16)0.3989 (3)0.3572 (2)0.0579 (10)
C240.17214 (16)0.4717 (3)0.3974 (2)0.0545 (10)
C250.22459 (16)0.4690 (3)0.43219 (18)0.0496 (8)
C260.24365 (16)0.3908 (3)0.42592 (19)0.0497 (8)
H26A0.27960.38800.44990.060*
C270.21240 (17)0.3169 (3)0.38625 (19)0.0549 (9)
C280.16030 (17)0.3226 (3)0.3527 (2)0.0577 (10)
H28A0.13820.27250.32560.069*
C290.23631 (19)0.2323 (3)0.3819 (2)0.0678 (12)
C300.2775 (3)0.2597 (4)0.3771 (4)0.105 (2)
H30A0.28720.20610.36570.158*
H30B0.30850.28460.42210.158*
H30C0.26240.30560.34060.158*
C310.2659 (3)0.1788 (4)0.4476 (3)0.103 (2)
H31A0.24210.15900.45360.155*
H31B0.29350.21660.48740.155*
H31C0.28140.12550.44500.155*
C320.1961 (3)0.1803 (5)0.3149 (4)0.128 (3)
H32A0.17460.14400.31910.192*
H32B0.21370.14000.30630.192*
H32C0.17390.22290.27600.192*
C330.26056 (17)0.5490 (3)0.4735 (2)0.0560 (10)
H33A0.29320.52760.51930.067*
H33B0.24370.59250.48220.067*
C340.27321 (15)0.5967 (3)0.43464 (19)0.0494 (8)
C350.23768 (13)0.6570 (2)0.38004 (19)0.0451 (8)
C360.24670 (13)0.6931 (2)0.33937 (19)0.0459 (8)
C370.29204 (14)0.6694 (2)0.3540 (2)0.0489 (8)
H37A0.29820.69410.32630.059*
C380.32866 (14)0.6103 (3)0.4086 (2)0.0515 (9)
C390.31812 (15)0.5757 (3)0.4480 (2)0.0534 (9)
H39A0.34280.53600.48560.064*
C400.37833 (16)0.5821 (3)0.4243 (2)0.0599 (10)
C410.4254 (2)0.6240 (6)0.4939 (3)0.110 (2)
H41A0.42420.60910.52970.165*
H41B0.42460.69000.48890.165*
H41C0.45750.59970.50780.165*
C420.3789 (2)0.6145 (4)0.3687 (3)0.0833 (15)
H42A0.37480.68060.36400.125*
H42B0.35020.58600.32380.125*
H42C0.41210.59770.38260.125*
C430.3818 (3)0.4784 (4)0.4270 (4)0.099 (2)
H43A0.38420.45600.46470.149*
H43B0.41280.45960.43570.149*
H43C0.35060.45320.38230.149*
C440.20332 (14)0.7457 (2)0.2734 (2)0.0471 (8)
H44A0.21750.77920.25630.057*
H44B0.18790.79020.28370.057*
Br1A0.10640 (7)1.07038 (13)0.35595 (9)0.0948 (4)0.4179
C45A0.0713 (8)0.8223 (12)0.1525 (9)0.054 (2)0.4179
H45A0.03670.79990.11010.064*0.4179
H45B0.09300.83020.14080.064*0.4179
C46A0.0642 (5)0.9145 (8)0.1717 (6)0.063 (2)0.4179
H46A0.09790.94730.20170.075*0.4179
H46B0.03880.95050.12860.075*0.4179
C47A0.0456 (4)0.9071 (7)0.2090 (5)0.099 (3)0.4179
H47A0.07630.89820.25930.119*0.4179
H47B0.02390.85170.19210.119*0.4179
C48A0.0148 (4)0.9845 (10)0.2022 (6)0.148 (6)0.4179
H48A0.01650.96070.19150.177*0.4179
H48B0.00301.02320.16260.177*0.4179
C49A0.0461 (4)1.0419 (8)0.2682 (5)0.088 (3)0.4179
H49A0.02301.03630.27780.106*0.4179
H49B0.03771.10260.24650.106*0.4179
Br1B0.06398 (9)0.97616 (15)0.34750 (11)0.0948 (4)0.3322
C45B0.0774 (8)0.8327 (15)0.1554 (10)0.054 (2)0.3322
H45C0.04690.81560.10660.064*0.3322
H45D0.10600.85350.15840.064*0.3322
C46B0.0633 (4)0.9044 (10)0.1826 (5)0.063 (2)0.3322
H46C0.03830.94780.14460.075*0.3322
H46D0.04580.87470.19640.075*0.3322
C47B0.1095 (5)0.9549 (9)0.2434 (5)0.099 (3)0.3322
H47C0.09871.01830.24050.119*0.3322
H47D0.13560.95660.23880.119*0.3322
C48B0.1357 (4)0.9196 (13)0.3143 (5)0.148 (6)0.3322
H48C0.17350.93200.34620.177*0.3322
H48D0.13090.85300.31180.177*0.3322
C49B0.1144 (4)0.9623 (13)0.3443 (6)0.127 (8)0.3322
H49C0.11931.02690.33940.153*0.3322
H49D0.14420.94910.39430.153*0.3322
Br1C0.11088 (12)1.1110 (2)0.37883 (16)0.0948 (4)0.2499
C45C0.0792 (7)0.8409 (19)0.1686 (10)0.054 (2)0.2499
H45E0.05720.82920.11810.064*0.2499
H45F0.11070.87390.18550.064*0.2499
C46C0.0492 (5)0.9001 (12)0.1795 (5)0.063 (2)0.2499
H46E0.03180.94970.14460.075*0.2499
H46F0.02180.86310.17150.075*0.2499
C47C0.0833 (5)0.9400 (12)0.2506 (6)0.099 (3)0.2499
H47E0.08391.00650.24610.119*0.2499
H47F0.11920.91760.27720.119*0.2499
C48C0.0693 (7)0.9216 (9)0.2929 (7)0.148 (6)0.2499
H48E0.08480.86290.31740.177*0.2499
H48F0.03100.91630.26120.177*0.2499
C49C0.0884 (8)0.9958 (7)0.3464 (7)0.088 (3)0.2499
H49E0.11720.96230.38920.106*0.2499
H49F0.05990.99330.34630.106*0.2499
C50A0.0401 (5)0.6425 (10)0.2710 (7)0.094 (4)0.463 (7)
H50A0.01050.67180.22630.113*0.463 (7)
H50B0.02540.60400.28550.113*0.463 (7)
C51A0.0727 (4)0.7159 (7)0.3253 (5)0.074 (3)0.463 (7)
H51A0.10450.72490.33300.088*0.463 (7)
H51B0.05270.77340.30660.088*0.463 (7)
C52A0.0886 (5)0.6968 (9)0.3942 (6)0.090 (4)0.463 (7)
H52A0.07740.74880.40560.108*0.463 (7)
H52B0.06880.64300.38830.108*0.463 (7)
C53A0.1442 (5)0.6802 (10)0.4550 (6)0.080 (5)0.463 (7)
H53A0.15160.69670.49800.096*0.463 (7)
H53B0.16530.72030.45170.096*0.463 (7)
C54A0.1609 (5)0.5817 (8)0.4611 (7)0.067 (4)0.463 (7)
H54A0.19840.57550.50320.081*0.463 (7)
H54B0.14120.54170.46700.081*0.463 (7)
C50B0.1903 (4)0.7516 (6)0.3988 (6)0.072 (3)0.537 (7)
H50C0.19150.80950.38060.087*0.537 (7)
H50D0.22180.74870.44920.087*0.537 (7)
C51B0.1430 (4)0.7525 (6)0.3906 (5)0.071 (3)0.537 (7)
H51C0.11530.71580.34900.085*0.537 (7)
H51D0.13010.81560.38130.085*0.537 (7)
C52B0.1516 (6)0.7168 (8)0.4524 (8)0.082 (4)0.537 (7)
H52C0.14470.76660.47090.098*0.537 (7)
H52D0.18870.69960.48950.098*0.537 (7)
C53B0.1183 (4)0.6360 (6)0.4372 (5)0.067 (3)0.537 (7)
H53C0.11120.63830.46830.080*0.537 (7)
H53D0.08450.64000.38840.080*0.537 (7)
C54B0.1439 (4)0.5463 (7)0.4473 (5)0.054 (2)0.537 (7)
H54C0.17750.53950.49600.065*0.537 (7)
H54D0.12090.49470.43570.065*0.537 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (13)0.0459 (13)0.0536 (14)0.0097 (11)0.0313 (12)0.0066 (11)
O20.0475 (14)0.0757 (19)0.0552 (15)0.0000 (13)0.0370 (13)0.0013 (14)
O30.089 (2)0.099 (2)0.0540 (16)0.0335 (19)0.0573 (17)0.0165 (16)
O40.0504 (14)0.0546 (16)0.0563 (15)0.0092 (12)0.0318 (13)0.0037 (12)
C10.0392 (16)0.0428 (17)0.0449 (17)0.0076 (14)0.0271 (15)0.0098 (14)
C20.0387 (16)0.0412 (17)0.0474 (18)0.0036 (13)0.0284 (15)0.0102 (14)
C30.0367 (15)0.0484 (19)0.0441 (17)0.0044 (14)0.0270 (14)0.0095 (15)
C40.0402 (16)0.0463 (18)0.0399 (16)0.0072 (14)0.0272 (14)0.0105 (14)
C50.0381 (16)0.0483 (18)0.0406 (16)0.0038 (14)0.0253 (14)0.0050 (15)
C60.0362 (16)0.0484 (18)0.0397 (16)0.0083 (14)0.0236 (14)0.0098 (14)
C70.0457 (18)0.0503 (19)0.0499 (19)0.0083 (15)0.0342 (16)0.0056 (16)
C80.106 (4)0.077 (3)0.143 (6)0.014 (3)0.106 (5)0.024 (4)
C90.154 (6)0.080 (4)0.087 (4)0.063 (4)0.090 (4)0.037 (3)
C100.060 (3)0.078 (3)0.102 (4)0.001 (2)0.045 (3)0.036 (3)
C110.0343 (16)0.055 (2)0.0488 (19)0.0059 (15)0.0236 (15)0.0035 (16)
C120.0337 (15)0.067 (2)0.0501 (19)0.0026 (16)0.0291 (15)0.0044 (17)
C130.0374 (17)0.079 (3)0.050 (2)0.0047 (18)0.0316 (16)0.0036 (19)
C140.0419 (18)0.090 (3)0.057 (2)0.002 (2)0.0377 (18)0.014 (2)
C150.0471 (19)0.075 (3)0.069 (3)0.001 (2)0.044 (2)0.015 (2)
C160.0462 (19)0.064 (2)0.062 (2)0.0034 (17)0.0404 (19)0.0053 (19)
C170.0372 (16)0.064 (2)0.0477 (19)0.0041 (16)0.0289 (15)0.0044 (17)
C180.061 (2)0.066 (3)0.074 (3)0.005 (2)0.045 (2)0.000 (2)
C190.087 (5)0.083 (5)0.101 (6)0.000 (4)0.060 (5)0.022 (4)
C200.104 (6)0.069 (5)0.088 (5)0.031 (4)0.059 (5)0.004 (4)
C210.091 (6)0.077 (5)0.104 (7)0.025 (5)0.059 (5)0.036 (5)
C19A0.087 (5)0.083 (5)0.101 (6)0.000 (4)0.060 (5)0.022 (4)
C20A0.104 (6)0.069 (5)0.088 (5)0.031 (4)0.059 (5)0.004 (4)
C21A0.091 (6)0.077 (5)0.104 (7)0.025 (5)0.059 (5)0.036 (5)
C220.062 (2)0.108 (4)0.061 (3)0.002 (3)0.048 (2)0.019 (3)
C230.057 (2)0.084 (3)0.0407 (18)0.000 (2)0.0358 (18)0.0148 (19)
C240.063 (2)0.072 (3)0.0410 (18)0.011 (2)0.0396 (18)0.0130 (18)
C250.062 (2)0.053 (2)0.0363 (16)0.0036 (17)0.0344 (17)0.0053 (15)
C260.055 (2)0.050 (2)0.0378 (17)0.0030 (16)0.0286 (16)0.0046 (15)
C270.062 (2)0.053 (2)0.0349 (17)0.0052 (18)0.0264 (17)0.0068 (15)
C280.062 (2)0.061 (2)0.0402 (18)0.0037 (19)0.0306 (18)0.0098 (17)
C290.077 (3)0.053 (2)0.047 (2)0.008 (2)0.031 (2)0.0017 (18)
C300.161 (6)0.084 (4)0.130 (5)0.037 (4)0.122 (6)0.021 (4)
C310.151 (5)0.096 (4)0.095 (4)0.056 (4)0.096 (4)0.044 (3)
C320.109 (5)0.105 (5)0.125 (6)0.008 (4)0.061 (5)0.051 (5)
C330.063 (2)0.056 (2)0.0367 (17)0.0066 (19)0.0290 (17)0.0010 (16)
C340.0466 (18)0.0436 (19)0.0416 (18)0.0026 (15)0.0231 (15)0.0068 (15)
C350.0390 (16)0.0395 (17)0.0442 (18)0.0017 (14)0.0229 (15)0.0060 (14)
C360.0401 (17)0.0359 (17)0.0445 (18)0.0022 (13)0.0214 (15)0.0015 (14)
C370.0439 (18)0.0408 (18)0.052 (2)0.0029 (15)0.0280 (16)0.0017 (15)
C380.0408 (18)0.0409 (18)0.052 (2)0.0031 (14)0.0224 (16)0.0082 (16)
C390.0454 (19)0.0411 (19)0.0454 (19)0.0010 (15)0.0191 (16)0.0006 (15)
C400.044 (2)0.058 (2)0.058 (2)0.0086 (17)0.0266 (18)0.0007 (19)
C410.045 (2)0.155 (7)0.089 (4)0.002 (3)0.029 (3)0.029 (4)
C420.060 (3)0.093 (4)0.092 (4)0.015 (3)0.049 (3)0.004 (3)
C430.106 (5)0.068 (3)0.133 (6)0.029 (3)0.084 (4)0.018 (3)
C440.0427 (17)0.0382 (17)0.054 (2)0.0040 (14)0.0303 (16)0.0082 (15)
Br1A0.0980 (8)0.0980 (9)0.0863 (8)0.0286 (7)0.0613 (7)0.0016 (6)
C45A0.063 (4)0.038 (4)0.044 (4)0.009 (3)0.030 (3)0.000 (3)
C46A0.097 (5)0.060 (4)0.076 (4)0.030 (4)0.077 (4)0.031 (3)
C47A0.112 (6)0.098 (5)0.087 (5)0.027 (4)0.066 (4)0.000 (4)
C48A0.152 (7)0.147 (8)0.148 (7)0.008 (5)0.103 (6)0.001 (5)
C49A0.075 (5)0.089 (6)0.105 (6)0.016 (4)0.062 (5)0.027 (5)
Br1B0.0980 (8)0.0980 (9)0.0863 (8)0.0286 (7)0.0613 (7)0.0016 (6)
C45B0.063 (4)0.038 (4)0.044 (4)0.009 (3)0.030 (3)0.000 (3)
C46B0.097 (5)0.060 (4)0.076 (4)0.030 (4)0.077 (4)0.031 (3)
C47B0.112 (6)0.098 (5)0.087 (5)0.027 (4)0.066 (4)0.000 (4)
C48B0.152 (7)0.147 (8)0.148 (7)0.008 (5)0.103 (6)0.001 (5)
C49B0.121 (11)0.163 (13)0.121 (11)0.036 (8)0.091 (9)0.006 (8)
Br1C0.0980 (8)0.0980 (9)0.0863 (8)0.0286 (7)0.0613 (7)0.0016 (6)
C45C0.063 (4)0.038 (4)0.044 (4)0.009 (3)0.030 (3)0.000 (3)
C46C0.097 (5)0.060 (4)0.076 (4)0.030 (4)0.077 (4)0.031 (3)
C47C0.112 (6)0.098 (5)0.087 (5)0.027 (4)0.066 (4)0.000 (4)
C48C0.152 (7)0.147 (8)0.148 (7)0.008 (5)0.103 (6)0.001 (5)
C49C0.075 (5)0.089 (6)0.105 (6)0.016 (4)0.062 (5)0.027 (5)
C50A0.069 (5)0.118 (8)0.110 (7)0.016 (5)0.066 (5)0.043 (6)
C51A0.064 (6)0.071 (6)0.094 (8)0.011 (5)0.057 (6)0.031 (6)
C52A0.099 (9)0.095 (9)0.103 (10)0.002 (8)0.079 (9)0.023 (8)
C53A0.089 (9)0.105 (13)0.086 (8)0.052 (10)0.075 (8)0.057 (9)
C54A0.086 (8)0.081 (9)0.064 (7)0.029 (6)0.062 (7)0.024 (6)
C50B0.069 (5)0.055 (4)0.096 (6)0.008 (4)0.057 (4)0.018 (4)
C51B0.081 (6)0.047 (4)0.107 (7)0.009 (4)0.072 (6)0.001 (4)
C52B0.081 (7)0.081 (9)0.104 (9)0.024 (7)0.070 (7)0.041 (7)
C53B0.067 (5)0.085 (7)0.068 (5)0.005 (5)0.054 (5)0.022 (5)
C54B0.069 (6)0.065 (6)0.042 (4)0.001 (4)0.043 (4)0.007 (4)
Geometric parameters (Å, º) top
O1—C11.388 (4)C33—H33A0.9900
O1—C45A1.39 (2)C33—H33B0.9900
O1—C45C1.42 (3)C34—C391.386 (6)
O1—C45B1.49 (3)C34—C351.401 (5)
O2—C131.372 (5)C35—C361.391 (6)
O2—C50A1.543 (11)C36—C371.393 (5)
O3—C241.391 (5)C36—C441.523 (5)
O3—C54B1.466 (9)C37—C381.397 (5)
O3—C54A1.494 (12)C37—H37A0.9500
O4—C351.380 (4)C38—C391.391 (6)
O4—C50B1.430 (9)C38—C401.539 (6)
C1—C61.389 (5)C39—H39A0.9500
C1—C21.405 (5)C40—C411.527 (7)
C2—C31.386 (5)C40—C421.530 (7)
C2—C441.523 (5)C40—C431.530 (7)
C3—C41.389 (5)C41—H41A0.9800
C3—H3A0.9500C41—H41B0.9800
C4—C51.390 (5)C41—H41C0.9800
C4—C71.526 (5)C42—H42A0.9800
C4—C275.698 (5)C42—H42B0.9800
C5—C61.395 (5)C42—H42C0.9800
C5—H5A0.9500C43—H43A0.9800
C6—C111.528 (5)C43—H43B0.9800
C7—C101.515 (6)C43—H43C0.9800
C7—C91.516 (6)C44—H44A0.9900
C7—C81.531 (6)C44—H44B0.9900
C8—H8A0.9800Br1A—C49A1.821 (8)
C8—H8B0.9800C45A—C46A1.523 (7)
C8—H8C0.9800C45A—H45A0.9900
C9—H9A0.9800C45A—H45B0.9900
C9—H9B0.9800C46A—C47A1.484 (8)
C9—H9C0.9800C46A—H46A0.9900
C10—H10A0.9800C46A—H46B0.9900
C10—H10B0.9800C47A—C48A1.490 (9)
C10—H10C0.9800C47A—H47A0.9900
C11—C121.502 (6)C47A—H47B0.9900
C11—H11A0.9900C48A—C49A1.522 (9)
C11—H11B0.9900C48A—H48A0.9900
C12—C171.392 (6)C48A—H48B0.9900
C12—C131.413 (6)C49A—H49A0.9900
C13—C141.387 (7)C49A—H49B0.9900
C14—C151.383 (7)Br1B—C49B1.821 (8)
C14—C221.521 (6)C45B—C46B1.523 (7)
C15—C161.390 (6)C45B—H45C0.9900
C15—H15A0.9500C45B—H45D0.9900
C16—C171.399 (6)C46B—C47B1.484 (8)
C16—C181.517 (7)C46B—H46C0.9900
C16—C389.390 (6)C46B—H46D0.9900
C17—H17A0.9500C47B—C48B1.490 (9)
C18—C201.463 (10)C47B—H47C0.9900
C18—C211.476 (10)C47B—H47D0.9900
C18—C19A1.522 (10)C48B—C49B1.522 (9)
C18—C21A1.524 (11)C48B—H48C0.9900
C18—C191.595 (10)C48B—H48D0.9900
C18—C20A1.627 (10)C49B—H49C0.9900
C19—H19A0.9800C49B—H49D0.9900
C19—H19B0.9800Br1C—C49C1.821 (8)
C19—H19C0.9800C45C—C46C1.523 (7)
C20—H20A0.9800C45C—H45E0.9900
C20—H20B0.9800C45C—H45F0.9900
C20—H20C0.9800C46C—C47C1.484 (8)
C21—H21A0.9800C46C—H46E0.9900
C21—H21B0.9800C46C—H46F0.9900
C21—H21C0.9800C47C—C48C1.490 (9)
C19A—H19D0.9800C47C—H47E0.9900
C19A—H19E0.9800C47C—H47F0.9900
C19A—H19F0.9800C48C—C49C1.522 (9)
C20A—H20D0.9800C48C—H48E0.9900
C20A—H20E0.9800C48C—H48F0.9900
C20A—H20F0.9800C49C—H49E0.9900
C21A—H21D0.9800C49C—H49F0.9900
C21A—H21E0.9800C50A—C51A1.510 (12)
C21A—H21F0.9800C50A—H50A0.9900
C22—C231.514 (6)C50A—H50B0.9900
C22—H22A0.9900C51A—C52A1.497 (13)
C22—H22B0.9900C51A—H51A0.9900
C23—C281.388 (7)C51A—H51B0.9900
C23—C241.393 (7)C52A—C53A1.472 (14)
C24—C251.386 (6)C52A—H52A0.9900
C25—C261.393 (6)C52A—H52B0.9900
C25—C331.515 (6)C53A—C54A1.531 (15)
C26—C271.385 (6)C53A—H53A0.9900
C26—H26A0.9500C53A—H53B0.9900
C27—C281.385 (6)C54A—H54A0.9900
C27—C291.543 (6)C54A—H54B0.9900
C28—H28A0.9500C50B—C51B1.508 (10)
C29—C311.490 (6)C50B—H50C0.9900
C29—C321.511 (7)C50B—H50D0.9900
C29—C301.567 (8)C51B—C52B1.512 (13)
C30—H30A0.9800C51B—H51C0.9900
C30—H30B0.9800C51B—H51D0.9900
C30—H30C0.9800C52B—C53B1.515 (11)
C31—H31A0.9800C52B—H52C0.9900
C31—H31B0.9800C52B—H52D0.9900
C31—H31C0.9800C53B—C54B1.514 (11)
C32—H32A0.9800C53B—H53C0.9900
C32—H32B0.9800C53B—H53D0.9900
C32—H32C0.9800C54B—H54C0.9900
C33—C341.515 (6)C54B—H54D0.9900
C1—O1—C45A109.5 (4)C36—C37—C38121.6 (4)
C1—O1—C45C121.7 (6)C36—C37—H37A119.2
C1—O1—C45B109.6 (6)C38—C37—H37A119.2
C13—O2—C50A120.6 (5)C39—C38—C37117.4 (4)
C24—O3—C54B111.1 (5)C39—C38—C40120.6 (4)
C24—O3—C54A122.0 (5)C37—C38—C40122.0 (4)
C35—O4—C50B120.7 (4)C39—C38—C1668.7 (2)
O1—C1—C6120.4 (3)C37—C38—C1669.3 (2)
O1—C1—C2119.2 (3)C40—C38—C16132.6 (2)
C6—C1—C2120.3 (3)C34—C39—C38122.9 (4)
C3—C2—C1118.5 (3)C34—C39—H39A118.5
C3—C2—C44118.9 (3)C38—C39—H39A118.5
C1—C2—C44122.3 (3)C41—C40—C42107.6 (5)
C2—C3—C4122.9 (3)C41—C40—C43111.2 (5)
C2—C3—H3A118.6C42—C40—C43107.7 (5)
C4—C3—H3A118.6C41—C40—C38108.6 (4)
C3—C4—C5117.0 (3)C42—C40—C38113.0 (4)
C3—C4—C7120.5 (3)C43—C40—C38108.7 (4)
C5—C4—C7121.7 (3)C40—C41—H41A109.5
C3—C4—C2791.4 (2)C40—C41—H41B109.5
C5—C4—C2793.6 (2)H41A—C41—H41B109.5
C7—C4—C2777.01 (19)C40—C41—H41C109.5
C4—C5—C6122.3 (3)H41A—C41—H41C109.5
C4—C5—H5A118.8H41B—C41—H41C109.5
C6—C5—H5A118.8C40—C42—H42A109.5
C1—C6—C5119.0 (3)C40—C42—H42B109.5
C1—C6—C11121.9 (3)H42A—C42—H42B109.5
C5—C6—C11118.8 (3)C40—C42—H42C109.5
C10—C7—C9109.4 (5)H42A—C42—H42C109.5
C10—C7—C4112.9 (3)H42B—C42—H42C109.5
C9—C7—C4107.0 (3)C40—C43—H43A109.5
C10—C7—C8106.8 (4)C40—C43—H43B109.5
C9—C7—C8108.8 (4)H43A—C43—H43B109.5
C4—C7—C8111.8 (3)C40—C43—H43C109.5
C7—C8—H8A109.5H43A—C43—H43C109.5
C7—C8—H8B109.5H43B—C43—H43C109.5
H8A—C8—H8B109.5C36—C44—C2108.8 (3)
C7—C8—H8C109.5C36—C44—H44A109.9
H8A—C8—H8C109.5C2—C44—H44A109.9
H8B—C8—H8C109.5C36—C44—H44B109.9
C7—C9—H9A109.5C2—C44—H44B109.9
C7—C9—H9B109.5H44A—C44—H44B108.3
H9A—C9—H9B109.5O1—C45A—C46A114.7 (8)
C7—C9—H9C109.5O1—C45A—H45A108.6
H9A—C9—H9C109.5C46A—C45A—H45A108.6
H9B—C9—H9C109.5O1—C45A—H45B108.6
C7—C10—H10A109.5C46A—C45A—H45B108.6
C7—C10—H10B109.5H45A—C45A—H45B107.6
H10A—C10—H10B109.5C47A—C46A—C45A112.6 (7)
C7—C10—H10C109.5C47A—C46A—H46A109.1
H10A—C10—H10C109.5C45A—C46A—H46A109.1
H10B—C10—H10C109.5C47A—C46A—H46B109.1
C12—C11—C6108.5 (3)C45A—C46A—H46B109.1
C12—C11—H11A110.0H46A—C46A—H46B107.8
C6—C11—H11A110.0C46A—C47A—C48A117.3 (8)
C12—C11—H11B110.0C46A—C47A—H47A108.0
C6—C11—H11B110.0C48A—C47A—H47A108.0
H11A—C11—H11B108.4C46A—C47A—H47B108.0
C17—C12—C13118.2 (4)C48A—C47A—H47B108.0
C17—C12—C11122.3 (4)H47A—C47A—H47B107.2
C13—C12—C11118.9 (4)C47A—C48A—C49A112.4 (7)
O2—C13—C14122.3 (4)C47A—C48A—H48A109.1
O2—C13—C12116.9 (4)C49A—C48A—H48A109.1
C14—C13—C12120.7 (4)C47A—C48A—H48B109.1
C15—C14—C13118.8 (4)C49A—C48A—H48B109.1
C15—C14—C22119.5 (4)H48A—C48A—H48B107.9
C13—C14—C22121.7 (5)C48A—C49A—Br1A151.7 (6)
C14—C15—C16123.0 (4)C48A—C49A—H49A98.7
C14—C15—H15A118.5Br1A—C49A—H49A98.7
C16—C15—H15A118.5C48A—C49A—H49B98.7
C15—C16—C17116.9 (4)Br1A—C49A—H49B98.7
C15—C16—C18121.0 (4)H49A—C49A—H49B103.9
C17—C16—C18122.1 (4)O1—C45B—C46B101.1 (15)
C15—C16—C3864.8 (2)O1—C45B—H45C111.6
C17—C16—C3870.5 (2)C46B—C45B—H45C111.6
C18—C16—C38134.3 (2)O1—C45B—H45D111.6
C12—C17—C16122.3 (4)C46B—C45B—H45D111.6
C12—C17—H17A118.9H45C—C45B—H45D109.4
C16—C17—H17A118.9C47B—C46B—C45B112.5 (7)
C20—C18—C21118.5 (7)C47B—C46B—H46C109.1
C20—C18—C16111.9 (6)C45B—C46B—H46C109.1
C21—C18—C16107.3 (5)C47B—C46B—H46D109.1
C16—C18—C19A114.0 (6)C45B—C46B—H46D109.1
C16—C18—C21A116.9 (6)H46C—C46B—H46D107.8
C19A—C18—C21A109.7 (8)C46B—C47B—C48B117.3 (8)
C20—C18—C19106.5 (7)C46B—C47B—H47C108.0
C21—C18—C19107.4 (7)C48B—C47B—H47C108.0
C16—C18—C19104.3 (5)C46B—C47B—H47D108.0
C16—C18—C20A109.3 (6)C48B—C47B—H47D108.0
C19A—C18—C20A102.9 (7)H47C—C47B—H47D107.2
C21A—C18—C20A102.4 (7)C47B—C48B—C49B112.4 (7)
C18—C19—H19A109.5C47B—C48B—H48C109.1
C18—C19—H19B109.5C49B—C48B—H48C109.1
H19A—C19—H19B109.5C47B—C48B—H48D109.1
C18—C19—H19C109.5C49B—C48B—H48D109.1
H19A—C19—H19C109.5H48C—C48B—H48D107.9
H19B—C19—H19C109.5C48B—C49B—Br1B151.9 (7)
C18—C20—H20A109.5C48B—C49B—H49C98.6
C18—C20—H20B109.5Br1B—C49B—H49C98.6
H20A—C20—H20B109.5C48B—C49B—H49D98.6
C18—C20—H20C109.5Br1B—C49B—H49D98.6
H20A—C20—H20C109.5H49C—C49B—H49D103.8
H20B—C20—H20C109.5O1—C45C—C46C112 (2)
C18—C21—H21A109.5O1—C45C—H45E109.2
C18—C21—H21B109.5C46C—C45C—H45E109.2
H21A—C21—H21B109.5O1—C45C—H45F109.2
C18—C21—H21C109.5C46C—C45C—H45F109.2
H21A—C21—H21C109.5H45E—C45C—H45F107.9
H21B—C21—H21C109.5C47C—C46C—C45C112.6 (7)
C18—C19A—H19D109.5C47C—C46C—H46E109.1
C18—C19A—H19E109.5C45C—C46C—H46E109.1
H19D—C19A—H19E109.5C47C—C46C—H46F109.1
C18—C19A—H19F109.5C45C—C46C—H46F109.1
H19D—C19A—H19F109.5H46E—C46C—H46F107.8
H19E—C19A—H19F109.5C46C—C47C—C48C117.3 (8)
C18—C20A—H20D109.5C46C—C47C—H47E108.0
C18—C20A—H20E109.5C48C—C47C—H47E108.0
H20D—C20A—H20E109.5C46C—C47C—H47F108.0
C18—C20A—H20F109.5C48C—C47C—H47F108.0
H20D—C20A—H20F109.5H47E—C47C—H47F107.2
H20E—C20A—H20F109.5C47C—C48C—C49C112.4 (7)
C18—C21A—H21D109.5C47C—C48C—H48E109.1
C18—C21A—H21E109.5C49C—C48C—H48E109.1
H21D—C21A—H21E109.5C47C—C48C—H48F109.1
C18—C21A—H21F109.5C49C—C48C—H48F109.1
H21D—C21A—H21F109.5H48E—C48C—H48F107.9
H21E—C21A—H21F109.5C48C—C49C—Br1C151.4 (7)
C23—C22—C14113.2 (3)C48C—C49C—H49E98.8
C23—C22—H22A108.9Br1C—C49C—H49E98.8
C14—C22—H22A108.9C48C—C49C—H49F98.8
C23—C22—H22B108.9Br1C—C49C—H49F98.8
C14—C22—H22B108.9H49E—C49C—H49F103.9
H22A—C22—H22B107.8C51A—C50A—O2116.0 (8)
C28—C23—C24118.3 (4)C51A—C50A—H50A108.3
C28—C23—C22120.0 (4)O2—C50A—H50A108.3
C24—C23—C22121.6 (5)C51A—C50A—H50B108.3
C25—C24—O3118.5 (4)O2—C50A—H50B108.3
C25—C24—C23121.4 (4)H50A—C50A—H50B107.4
O3—C24—C23119.9 (4)C52A—C51A—C50A114.7 (10)
C24—C25—C26117.9 (4)C52A—C51A—H51A108.6
C24—C25—C33122.3 (4)C50A—C51A—H51A108.6
C26—C25—C33119.8 (4)C52A—C51A—H51B108.6
C27—C26—C25122.8 (4)C50A—C51A—H51B108.6
C27—C26—H26A118.6H51A—C51A—H51B107.6
C25—C26—H26A118.6C53A—C52A—C51A118.1 (10)
C28—C27—C26117.2 (4)C53A—C52A—H52A107.8
C28—C27—C29122.9 (4)C51A—C52A—H52A107.8
C26—C27—C29119.9 (4)C53A—C52A—H52B107.8
C28—C27—C481.5 (2)C51A—C52A—H52B107.8
C26—C27—C484.1 (2)H52A—C52A—H52B107.1
C29—C27—C4104.8 (2)C52A—C53A—C54A113.6 (10)
C27—C28—C23122.4 (4)C52A—C53A—H53A108.8
C27—C28—H28A118.8C54A—C53A—H53A108.8
C23—C28—H28A118.8C52A—C53A—H53B108.8
C31—C29—C32115.8 (6)C54A—C53A—H53B108.8
C31—C29—C27109.5 (4)H53A—C53A—H53B107.7
C32—C29—C27111.6 (4)O3—C54A—C53A112.1 (9)
C31—C29—C30105.3 (5)O3—C54A—H54A109.2
C32—C29—C30103.1 (5)C53A—C54A—H54A109.2
C27—C29—C30111.2 (4)O3—C54A—H54B109.2
C29—C30—H30A109.5C53A—C54A—H54B109.2
C29—C30—H30B109.5H54A—C54A—H54B107.9
H30A—C30—H30B109.5O4—C50B—C51B114.8 (7)
C29—C30—H30C109.5O4—C50B—H50C108.6
H30A—C30—H30C109.5C51B—C50B—H50C108.6
H30B—C30—H30C109.5O4—C50B—H50D108.6
C29—C31—H31A109.5C51B—C50B—H50D108.6
C29—C31—H31B109.5H50C—C50B—H50D107.5
H31A—C31—H31B109.5C50B—C51B—C52B115.4 (9)
C29—C31—H31C109.5C50B—C51B—H51C108.4
H31A—C31—H31C109.5C52B—C51B—H51C108.4
H31B—C31—H31C109.5C50B—C51B—H51D108.4
C29—C32—H32A109.5C52B—C51B—H51D108.4
C29—C32—H32B109.5H51C—C51B—H51D107.5
H32A—C32—H32B109.5C51B—C52B—C53B115.2 (10)
C29—C32—H32C109.5C51B—C52B—H52C108.5
H32A—C32—H32C109.5C53B—C52B—H52C108.5
H32B—C32—H32C109.5C51B—C52B—H52D108.5
C25—C33—C34111.2 (3)C53B—C52B—H52D108.5
C25—C33—H33A109.4H52C—C52B—H52D107.5
C34—C33—H33A109.4C54B—C53B—C52B112.7 (9)
C25—C33—H33B109.4C54B—C53B—H53C109.0
C34—C33—H33B109.4C52B—C53B—H53C109.0
H33A—C33—H33B108.0C54B—C53B—H53D109.0
C39—C34—C35118.1 (4)C52B—C53B—H53D109.0
C39—C34—C33120.9 (4)H53C—C53B—H53D107.8
C35—C34—C33120.8 (4)O3—C54B—C53B103.1 (6)
O4—C35—C36119.2 (3)O3—C54B—H54C111.1
O4—C35—C34119.9 (4)C53B—C54B—H54C111.1
C36—C35—C34120.8 (3)O3—C54B—H54D111.1
C35—C36—C37119.2 (3)C53B—C54B—H54D111.1
C35—C36—C44119.1 (3)H54C—C54B—H54D109.1
C37—C36—C44121.1 (4)
C45A—O1—C1—C685.4 (10)O3—C24—C25—C26174.6 (3)
C45C—O1—C1—C698.2 (11)C23—C24—C25—C260.3 (5)
C45B—O1—C1—C694.2 (10)O3—C24—C25—C332.7 (5)
C45A—O1—C1—C296.2 (10)C23—C24—C25—C33177.1 (3)
C45C—O1—C1—C283.4 (11)C24—C25—C26—C270.6 (5)
C45B—O1—C1—C287.4 (10)C33—C25—C26—C27176.9 (3)
O1—C1—C2—C3179.2 (3)C25—C26—C27—C280.8 (6)
C6—C1—C2—C32.4 (5)C25—C26—C27—C29179.9 (4)
O1—C1—C2—C446.7 (5)C25—C26—C27—C476.5 (3)
C6—C1—C2—C44171.7 (3)C26—C27—C28—C230.8 (6)
C1—C2—C3—C41.0 (5)C29—C27—C28—C23179.8 (4)
C44—C2—C3—C4173.3 (3)C4—C27—C28—C2378.1 (3)
C2—C3—C4—C50.6 (5)C24—C23—C28—C270.5 (5)
C2—C3—C4—C7171.1 (3)C22—C23—C28—C27177.9 (3)
C2—C3—C4—C2795.4 (3)C28—C27—C29—C31102.4 (5)
C3—C4—C5—C60.8 (5)C26—C27—C29—C3176.6 (6)
C7—C4—C5—C6171.2 (3)C4—C27—C29—C31168.2 (4)
C27—C4—C5—C694.2 (3)C28—C27—C29—C3227.1 (7)
O1—C1—C6—C5179.4 (3)C26—C27—C29—C32153.9 (5)
C2—C1—C6—C52.2 (5)C4—C27—C29—C3262.3 (5)
O1—C1—C6—C117.6 (5)C28—C27—C29—C30141.6 (5)
C2—C1—C6—C11170.8 (3)C26—C27—C29—C3039.4 (6)
C4—C5—C6—C10.6 (5)C4—C27—C29—C3052.2 (4)
C4—C5—C6—C11172.7 (3)C24—C25—C33—C34105.1 (4)
C3—C4—C7—C10167.3 (4)C26—C25—C33—C3472.2 (4)
C5—C4—C7—C1022.6 (5)C25—C33—C34—C3995.1 (4)
C27—C4—C7—C10108.8 (4)C25—C33—C34—C3579.2 (4)
C3—C4—C7—C972.3 (5)C50B—O4—C35—C3694.8 (6)
C5—C4—C7—C997.8 (5)C50B—O4—C35—C3487.9 (6)
C27—C4—C7—C911.6 (4)C39—C34—C35—O4178.8 (3)
C3—C4—C7—C846.8 (5)C33—C34—C35—O44.3 (5)
C5—C4—C7—C8143.2 (4)C39—C34—C35—C361.5 (5)
C27—C4—C7—C8130.7 (4)C33—C34—C35—C36172.9 (3)
C1—C6—C11—C12121.8 (4)O4—C35—C36—C37178.1 (3)
C5—C6—C11—C1251.2 (4)C34—C35—C36—C370.8 (5)
C6—C11—C12—C1799.2 (4)O4—C35—C36—C447.3 (5)
C6—C11—C12—C1371.6 (4)C34—C35—C36—C44170.0 (3)
C50A—O2—C13—C1493.4 (8)C35—C36—C37—C380.0 (5)
C50A—O2—C13—C1289.5 (8)C44—C36—C37—C38170.6 (3)
C17—C12—C13—O2179.8 (3)C36—C37—C38—C390.0 (5)
C11—C12—C13—O29.2 (5)C36—C37—C38—C40178.7 (3)
C17—C12—C13—C143.0 (5)C36—C37—C38—C1650.6 (3)
C11—C12—C13—C14168.1 (3)C35—C34—C39—C381.6 (6)
O2—C13—C14—C15178.8 (3)C33—C34—C39—C38172.9 (4)
C12—C13—C14—C151.7 (5)C37—C38—C39—C340.8 (6)
O2—C13—C14—C222.1 (6)C40—C38—C39—C34177.9 (4)
C12—C13—C14—C22175.0 (3)C16—C38—C39—C3450.1 (3)
C13—C14—C15—C160.7 (6)C39—C38—C40—C4169.9 (6)
C22—C14—C15—C16177.5 (4)C37—C38—C40—C41111.4 (5)
C14—C15—C16—C171.7 (6)C16—C38—C40—C41158.2 (4)
C14—C15—C16—C18179.1 (4)C39—C38—C40—C42170.7 (4)
C14—C15—C16—C3850.9 (3)C37—C38—C40—C428.0 (6)
C13—C12—C17—C162.0 (5)C16—C38—C40—C4282.5 (5)
C11—C12—C17—C16168.8 (3)C39—C38—C40—C4351.2 (6)
C15—C16—C17—C120.3 (5)C37—C38—C40—C43127.5 (5)
C18—C16—C17—C12177.6 (3)C16—C38—C40—C4337.1 (5)
C38—C16—C17—C1246.9 (3)C35—C36—C44—C272.9 (4)
C15—C16—C18—C207.9 (8)C37—C36—C44—C297.7 (4)
C17—C16—C18—C20169.4 (7)C3—C2—C44—C3654.0 (4)
C38—C16—C18—C2075.9 (7)C1—C2—C44—C36120.0 (4)
C15—C16—C18—C21123.7 (7)C1—O1—C45A—C46A166.2 (10)
C17—C16—C18—C2159.1 (7)O1—C45A—C46A—C47A42.1 (18)
C38—C16—C18—C21152.6 (6)C45A—C46A—C47A—C48A152.8 (11)
C15—C16—C18—C19A58.7 (8)C46A—C47A—C48A—C49A105.6 (14)
C17—C16—C18—C19A118.6 (8)C47A—C48A—C49A—Br1A5 (3)
C38—C16—C18—C19A25.1 (8)C1—O1—C45B—C46B179.1 (8)
C15—C16—C18—C21A171.5 (7)O1—C45B—C46B—C47B82.1 (16)
C17—C16—C18—C21A11.3 (8)C45B—C46B—C47B—C48B92.4 (17)
C38—C16—C18—C21A104.7 (7)C46B—C47B—C48B—C49B91.6 (11)
C15—C16—C18—C19122.6 (6)C47B—C48B—C49B—Br1B73 (2)
C17—C16—C18—C1954.6 (6)C1—O1—C45C—C46C163.2 (7)
C38—C16—C18—C1938.8 (6)O1—C45C—C46C—C47C73 (2)
C15—C16—C18—C20A55.8 (7)C45C—C46C—C47C—C48C124 (2)
C17—C16—C18—C20A126.9 (6)C46C—C47C—C48C—C49C153.2 (13)
C38—C16—C18—C20A139.6 (5)C47C—C48C—C49C—Br1C20 (4)
C15—C14—C22—C23100.4 (5)C13—O2—C50A—C51A173.6 (9)
C13—C14—C22—C2376.2 (6)O2—C50A—C51A—C52A103.6 (12)
C14—C22—C23—C2876.6 (6)C50A—C51A—C52A—C53A112.0 (13)
C14—C22—C23—C24101.8 (5)C51A—C52A—C53A—C54A84.5 (15)
C54B—O3—C24—C25103.6 (6)C24—O3—C54A—C53A168.3 (7)
C54A—O3—C24—C2576.3 (7)C52A—C53A—C54A—O359.5 (13)
C54B—O3—C24—C2382.0 (6)C35—O4—C50B—C51B165.0 (6)
C54A—O3—C24—C23109.2 (7)O4—C50B—C51B—C52B101.3 (11)
C28—C23—C24—C250.3 (5)C50B—C51B—C52B—C53B120.5 (11)
C22—C23—C24—C25178.1 (3)C51B—C52B—C53B—C54B89.8 (12)
C28—C23—C24—O3174.5 (3)C24—O3—C54B—C53B176.2 (6)
C22—C23—C24—O33.9 (5)C52B—C53B—C54B—O359.1 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C48A—H48A···Br1Ai0.992.953.612 (11)125
C48B—H48D···O10.992.573.227 (16)124
C51A—H51A···O40.992.663.588 (10)157
C51B—H51C···O20.992.653.597 (10)161
C51B—H51D···Br1B0.992.993.939 (8)162
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C48A—H48A···Br1Ai0.992.953.612 (11)125.3
C48B—H48D···O10.992.573.227 (16)124.1
C51A—H51A···O40.992.663.588 (10)156.8
C51B—H51C···O20.992.653.597 (10)160.6
C51B—H51D···Br1B0.992.993.939 (8)161.7
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC54H72BrO4
Mr865.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)34.730 (5), 14.7386 (7), 25.903 (4)
β (°) 132.36 (2)
V3)9797 (3)
Z8
Radiation typeCu Kα
µ (mm1)1.46
Crystal size (mm)0.46 × 0.33 × 0.10
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.801, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
20219, 9873, 6973
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.109, 0.337, 1.05
No. of reflections9873
No. of parameters649
No. of restraints188
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1859P)2 + 21.3411P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.27, 1.17

Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

RJB is grateful to the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer and the Howard University Nanoscience Facility and the PDRM program for funding and access to liquid nitro­gen. STH wishes to acknowledge the Howard University Graduate School for the award of a Teaching Assistantship.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArduini, A., Fabbi, M., Mantovani, M., Mirone, L., Pochini, A., Secchi, A. & Ungaro, R. (1995). J. Org. Chem. 60, 1454–1457.  CrossRef CAS Web of Science Google Scholar
First citationArduini, A., McGregor, W. M., Paganuzzi, D., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996a). J. Chem. Soc. Perkin Trans. 2, pp. 839–846.  CSD CrossRef Web of Science Google Scholar
First citationArduini, A., McGregor, W. M., Pochini, A., Secchi, A., Ugozzoli, F. & Ungaro, R. (1996b). J. Org. Chem. 61, 6881–6887.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationConner, M., Janout, V. & Regen, S. L. (1991). J. Am. Chem. Soc. 113, 9670–9671.  CrossRef CAS Web of Science Google Scholar
First citationDrew, M. G. B., Beer, P. D. & Ogden, M. I. (1997). Acta Cryst. C53, 472–474.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry, edited by J. F. Stoddard. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationHailu, S. T., Butcher, R. J., Hudrlik, P. F. & Hudrlik, A. M. (2012). Acta Cryst. E68, o1833–o1834.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHailu, S. T., Butcher, R. J., Hudrlik, P. F. & Hudrlik, A. M. (2013). Acta Cryst. E69, o1001–o1002.  CSD CrossRef IUCr Journals Google Scholar
First citationHudrlik, P. F., Hailu, S. T., Hudrlik, A. M. & Butcher, R. J. (2013). J. Mol. Struct. 1054–1055, 271–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationHudrlik, P. F., Hudrlik, A. M., Zhang, L., Arasho, W. D. & Cho, J. (2007). J. Org. Chem. 72, 7858–7862.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIkeda, A. & Shinkai, S. (1997). Chem. Rev. 97, 1713–1734.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 772-775
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds