organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o479-o480

Crystal structure of 2-amino-4,6-di­meth­­oxy­pyrimidinium thio­phene-2-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: tommtrichy@yahoo.co.in

Edited by P. C. Healy, Griffith University, Australia (Received 16 May 2015; accepted 5 June 2015; online 13 June 2015)

In the title salt, C6H10N3O2+·C5H3O2S, the 2-amino-4,6-di­meth­oxy­pyrimidinium cation inter­acts with the carboxyl­ate group of the thio­phene-2-carboxyl­ate anion through a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. These motifs are centrosymmetrically paired via N—H⋯O hydrogen bonds, forming a complementary DDAA array. The separate DDAA arrays are linked by ππ stacking inter­actions between the pyrimidine rings, as well as by a number of weak C—H⋯O and N—H⋯O inter­actions. In the anion, the dihedral angle between the ring plane and the CO2 group is 11.60 (3)°. In the cation, the C atoms of methoxy groups deviate from the ring plane by 0.433 (10) Å.

1. Related literature

For the role played by non-covalent inter­actions in mol­ecular recognition porcesses, see: Desiraju (1989[Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). For amino­pryimidine–carboxylate interactions in protein–nucleic acid recognition and protein–drug binding inteactions, see: Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533-536.]); Alkorta & Elguero (2003[Alkorta, I. & Elguero, J. (2003). J. Phys. Chem. 107, 5306-5310.]). For 1:1 salts between 2-amino­pyrimidine and mono- and di­carb­oxy­lic acids, see: Etter & Adsmond (1990[Etter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589-591.]). For self-assembly of 2-amino­pyrimidine compounds, see: Scheinbeim & Schempp (1976[Scheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607-609.]). For carb­oxy­lic acid and 2-amino heterocyclic ring system synthons, see: Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]). For crystal structures of related salts, see: Ebenezer et al. (2012[Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766-3785.]); Jennifer & Mu­thiah (2014[Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.]). DDAA arrays have been observed in trimeth­oprim hydrogen glutarate (Robert et al., 2001[Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206-o1208.]), trimetho­prim formate (Umadevi et al., 2002[Umadevi, B., Prabakaran, P. & Muthiah, P. T. (2002). Acta Cryst. C58, o510-o512.]), trimethoprim-m-chloro­benzoate (Raj et al., 2003[Raj, S. B., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm., 5, 48-53.]), pyrimethaminium 3,5-di­nitro­benzoate (Subashini et al., 2007[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o3775.]) and 2-amino-4,6-di­meth­oxy­pyrimidinum-salicylate (Thanigaimani et al., 2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4555-o4556.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H10N3O2+·C5H3O2S

  • Mr = 283.30

  • Monoclinic, P 21 /n

  • a = 6.7335 (3) Å

  • b = 7.6307 (4) Å

  • c = 25.0638 (10) Å

  • β = 93.928 (4)°

  • V = 1284.78 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 173 K

  • 0.32 × 0.28 × 0.14 mm

2.2. Data collection

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.789, Tmax = 1.000

  • 8844 measured reflections

  • 4245 independent reflections

  • 3071 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.186

  • S = 1.05

  • 4245 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2Ai 0.88 1.76 2.637 (2) 175
N3—H3A⋯O1Aii 0.88 2.04 2.826 (2) 148
N3—H3B⋯O1Ai 0.88 1.92 2.798 (2) 173
C6—H6B⋯O1iii 0.98 2.52 3.434 (3) 155
C1A—H1A⋯O1iv 0.95 2.60 3.365 (3) 138
C1A—H1A⋯O2Av 0.95 2.60 3.383 (3) 140
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

The asymmetric unit of C6H10N3O2+ C5H3O2S-, (I), contains one 2-amino-4,6-di­meth­oxy­pyrimidinium cation and one thio­phene-2-carboxyl­ate anion (Fig 1). Protonation of the cation occurs at N1, providing a C1/N1/C2 angle of 119.39 (16)° compared to the C1/N2/C4 angle (115.99 (16)°) of the unprotonated N2 atom. The carboxyl­ate group of the thio­phene-2-carboxyl­ate anion inter­acts with the protonated atom N1 and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds, forming an eight membered R22(8) ring motif. These motifs are centrosymmetrically paired via N—H···O hydrogen bonds to produce a DDAA (D = donor in hydrogen bonds, A = acceptor in hydrogen bonds) array of quadruple hydrogen bonds represented by the graph-set notation R22(8), R42(8) and R22(8) (Fig. 2). This type of array has also been identified in trimethoprim hydrogen glutarate (Robert et al., 2001), trimethoprim formate (Umadevi et al., 2002), trimethoprim- m-chloro­benzoate (Raj et al., 2003), pyrimethaminium 3,5-di­nitro­benzoate (Subashini et al., 2007) and 2-amino-4,6-di­meth­oxy­pyrimidinum-salicylate (Thanigaimani et al., 2007). An infinite number of several such quadruple arrays are inter­connected and stabilized by ππ stacking inter­actions between the pyrimidine ring of one array with a neighbouring array, with an observed inter­planar distance of 3.356 Å, a centroid (Cg1)-to-centroid (Cg1) distance of 3.4689 (12) Å (where Cg1 equals the centroid of the ring N1/C1/N2/C2/C3/C4, Fig 3) and slip angle (the angle between the centroid vector and the normal to the plane) of 14.68°, which are typical aromatic stacking values (Hunter, 1994). In addition, a number of weak C—H···O and N—H···O inter­molecular inter­actions are also observed which contribute to crystal packing stability (Table 2).

Synthesis and crystallization top

A hot methano­lic solution of 2-amino-4,6-di­meth­oxy pyrimidine (38 mg, Aldrich) and thio­phene-2-carb­oxy­lic acid (32 mg, Aldrich) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless crystals were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All of the H atoms were placed in their calculated positions andthen refined using the riding model with atom—H lengths of 0.95Å (CH), 0.98Å (CH3)or 0.88Å (NH, NH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH, NH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating groups.

Related literature top

For the role played by non-covalent interactions in molecular recognition porcesses, see: Desiraju (1989). For aminopryimidine–carbolylate inteactions in protein–nucleic acid recognition and protein–drug binding inteactions, see: Hunt et al. (1980); Baker & Santi (1965). For 1:1 adducts between 2-aminopyrimidine and mono- and dicarboxylic acids, see: Etter & Adsmond (1990). For self-assembly compounds of 2-aminopyrimidine compounds, see: Scheinbeim & Schempp (1976). For carboxylic acid and 2-amino heterocyclic ring system synthons, see: Lynch & Jones (2004). For crystal structures of related co-crystal salts, see: Ebenezer et al. (2012); Jennifer & Muthiah (2014). DDAA arrays have been observed in trimethoprim hydrogen glutarate (Robert et al., 2001), trimethoprim formate (Umadevi et al., 2002), trimethoprim-m-chlorobenzoate (Raj et al., 2003), pyrimethaminium 3,5-dinitrobenzoate (Subashini et al., 2007) and 2-amino-4,6-dimethoxypyrimidinum-salicylate (Thanigaimani et al., 2007)

For typical aromatic stacking values, see: Hunter (1994).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. : The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : A view of DDAA array along the b axis formed by independent N—H···O hydrogen bonds. Symmetry codes are given in Table 1. Dashed lines represent hydrogen bonds.
[Figure 3] Fig. 3. : A view of infinite number of DDAA arrays interconnected by ππ stacking interactions indicated by dotted lines. Cg1···Cg1 = 3.4689 (12) Å, where Cg1 represents the centroid of the ring N1/C1/N2/C2/C3/C4.
2-Amino-4,6-dimethoxypyrimidinium thiophene-2-carboxylate top
Crystal data top
C6H10N3O2+·C5H3O2SF(000) = 592
Mr = 283.30Dx = 1.465 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.7335 (3) ÅCell parameters from 2092 reflections
b = 7.6307 (4) Åθ = 4.0–32.4°
c = 25.0638 (10) ŵ = 0.27 mm1
β = 93.928 (4)°T = 173 K
V = 1284.78 (10) Å3Irregular, colourless
Z = 40.32 × 0.28 × 0.14 mm
Data collection top
Agilent Eos Gemini
diffractometer
4245 independent reflections
Radiation source: Enhance (Mo) X-ray Source3071 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.028
ω scansθmax = 32.7°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 79
Tmin = 0.789, Tmax = 1.000k = 1110
8844 measured reflectionsl = 3633
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.9218P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4245 reflectionsΔρmax = 0.79 e Å3
174 parametersΔρmin = 0.55 e Å3
0 restraints
Crystal data top
C6H10N3O2+·C5H3O2SV = 1284.78 (10) Å3
Mr = 283.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7335 (3) ŵ = 0.27 mm1
b = 7.6307 (4) ÅT = 173 K
c = 25.0638 (10) Å0.32 × 0.28 × 0.14 mm
β = 93.928 (4)°
Data collection top
Agilent Eos Gemini
diffractometer
4245 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
3071 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 1.000Rint = 0.028
8844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.05Δρmax = 0.79 e Å3
4245 reflectionsΔρmin = 0.55 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3208 (2)0.1426 (2)0.38775 (6)0.0280 (3)
O20.2312 (2)0.1346 (2)0.57319 (6)0.0324 (4)
N10.5394 (2)0.2619 (2)0.44749 (6)0.0228 (3)
H10.60740.29250.42020.027*
N20.5086 (2)0.2608 (2)0.54146 (6)0.0240 (3)
N30.7832 (3)0.3787 (3)0.50524 (7)0.0329 (4)
H3A0.83230.40430.53770.039*
H3B0.85040.40530.47750.039*
C10.6093 (3)0.3005 (3)0.49820 (8)0.0230 (4)
C20.3645 (3)0.1761 (3)0.43926 (8)0.0223 (4)
C30.2549 (3)0.1307 (3)0.48120 (8)0.0257 (4)
H30.13150.07060.47630.031*
C40.3372 (3)0.1789 (3)0.53174 (8)0.0242 (4)
C50.1469 (3)0.0367 (3)0.37450 (9)0.0333 (5)
H5A0.13200.01860.33570.050*
H5B0.02860.09660.38620.050*
H5C0.16170.07690.39260.050*
C60.3184 (4)0.1689 (4)0.62628 (9)0.0352 (5)
H6A0.36590.29030.62840.053*
H6B0.43050.08900.63420.053*
H6C0.21820.15070.65230.053*
S10.15194 (10)0.54563 (10)0.26469 (2)0.0427 (2)
O1A0.0066 (2)0.4332 (2)0.41417 (6)0.0326 (4)
O2A0.2775 (2)0.3607 (3)0.36279 (6)0.0361 (4)
C1A0.0377 (5)0.6516 (4)0.23842 (10)0.0434 (6)
H1A0.02950.70140.20360.052*
C2A0.2037 (4)0.6582 (4)0.27227 (11)0.0431 (6)
H2A0.32270.71420.26310.052*
C3A0.1860 (3)0.5737 (3)0.32322 (8)0.0268 (4)
H3AA0.28740.56370.35130.032*
C4A0.0153 (3)0.5071 (3)0.32345 (8)0.0253 (4)
C5A0.1048 (3)0.4276 (3)0.37009 (8)0.0250 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0286 (7)0.0348 (8)0.0209 (7)0.0082 (6)0.0042 (5)0.0050 (6)
O20.0321 (8)0.0437 (10)0.0228 (7)0.0045 (7)0.0110 (6)0.0022 (6)
N10.0241 (7)0.0250 (8)0.0196 (7)0.0027 (6)0.0044 (6)0.0006 (6)
N20.0269 (8)0.0271 (8)0.0185 (7)0.0015 (6)0.0054 (6)0.0015 (6)
N30.0316 (9)0.0479 (12)0.0193 (8)0.0135 (8)0.0023 (7)0.0005 (8)
C10.0267 (9)0.0229 (9)0.0198 (8)0.0003 (7)0.0039 (7)0.0016 (7)
C20.0241 (9)0.0214 (9)0.0217 (8)0.0009 (7)0.0032 (7)0.0006 (7)
C30.0241 (9)0.0279 (10)0.0256 (9)0.0034 (7)0.0062 (7)0.0015 (8)
C40.0275 (9)0.0243 (9)0.0217 (9)0.0032 (7)0.0079 (7)0.0029 (7)
C50.0321 (10)0.0379 (12)0.0296 (11)0.0087 (9)0.0009 (8)0.0066 (9)
C60.0372 (11)0.0494 (14)0.0202 (9)0.0037 (10)0.0101 (8)0.0003 (9)
S10.0476 (4)0.0578 (5)0.0226 (3)0.0000 (3)0.0015 (2)0.0018 (3)
O1A0.0325 (8)0.0457 (10)0.0194 (7)0.0082 (7)0.0006 (6)0.0043 (6)
O2A0.0340 (8)0.0530 (11)0.0213 (7)0.0147 (7)0.0015 (6)0.0006 (7)
C1A0.0661 (17)0.0416 (14)0.0241 (11)0.0038 (12)0.0141 (11)0.0050 (10)
C2A0.0517 (15)0.0439 (15)0.0354 (13)0.0110 (11)0.0155 (11)0.0029 (11)
C3A0.0409 (11)0.0239 (9)0.0170 (8)0.0072 (8)0.0112 (7)0.0013 (7)
C4A0.0311 (10)0.0277 (10)0.0171 (8)0.0014 (8)0.0026 (7)0.0002 (7)
C5A0.0291 (9)0.0277 (10)0.0186 (8)0.0026 (7)0.0034 (7)0.0002 (7)
Geometric parameters (Å, º) top
O1—C21.329 (2)C5—H5B0.9800
O1—C51.443 (3)C5—H5C0.9800
O2—C41.343 (2)C6—H6A0.9800
O2—C61.441 (3)C6—H6B0.9800
N1—H10.8800C6—H6C0.9800
N1—C11.357 (2)S1—C1A1.683 (3)
N1—C21.351 (3)S1—C4A1.708 (2)
N2—C11.352 (2)O1A—C5A1.249 (2)
N2—C41.321 (3)O2A—C5A1.272 (3)
N3—H3A0.8800C1A—H1A0.9500
N3—H3B0.8800C1A—C2A1.357 (4)
N3—C11.315 (3)C2A—H2A0.9500
C2—C31.370 (3)C2A—C3A1.443 (3)
C3—H30.9500C3A—H3AA0.9500
C3—C41.396 (3)C3A—C4A1.448 (3)
C5—H5A0.9800C4A—C5A1.481 (3)
C2—O1—C5116.97 (16)H5A—C5—H5C109.5
C4—O2—C6117.66 (17)H5B—C5—H5C109.5
C1—N1—H1120.3O2—C6—H6A109.5
C2—N1—H1120.3O2—C6—H6B109.5
C2—N1—C1119.40 (16)O2—C6—H6C109.5
C4—N2—C1115.98 (17)H6A—C6—H6B109.5
H3A—N3—H3B120.0H6A—C6—H6C109.5
C1—N3—H3A120.0H6B—C6—H6C109.5
C1—N3—H3B120.0C1A—S1—C4A92.37 (12)
N2—C1—N1122.80 (18)S1—C1A—H1A123.6
N3—C1—N1118.20 (17)C2A—C1A—S1112.83 (19)
N3—C1—N2119.00 (18)C2A—C1A—H1A123.6
O1—C2—N1111.98 (16)C1A—C2A—H2A122.5
O1—C2—C3126.99 (18)C1A—C2A—C3A115.0 (2)
N1—C2—C3121.02 (18)C3A—C2A—H2A122.5
C2—C3—H3122.3C2A—C3A—H3AA126.4
C2—C3—C4115.38 (18)C2A—C3A—C4A107.1 (2)
C4—C3—H3122.3C4A—C3A—H3AA126.4
O2—C4—C3115.91 (18)C3A—C4A—S1112.68 (14)
N2—C4—O2118.68 (18)C3A—C4A—C5A125.34 (18)
N2—C4—C3125.40 (17)C5A—C4A—S1121.78 (16)
O1—C5—H5A109.5O1A—C5A—O2A124.37 (18)
O1—C5—H5B109.5O1A—C5A—C4A117.69 (18)
O1—C5—H5C109.5O2A—C5A—C4A117.92 (18)
H5A—C5—H5B109.5
O1—C2—C3—C4178.67 (19)C6—O2—C4—N24.2 (3)
N1—C2—C3—C40.2 (3)C6—O2—C4—C3174.98 (19)
C1—N1—C2—O1177.64 (17)S1—C1A—C2A—C3A0.3 (3)
C1—N1—C2—C31.3 (3)S1—C4A—C5A—O1A167.06 (17)
C1—N2—C4—O2179.44 (18)S1—C4A—C5A—O2A11.8 (3)
C1—N2—C4—C30.4 (3)C1A—S1—C4A—C3A1.39 (18)
C2—N1—C1—N21.8 (3)C1A—S1—C4A—C5A173.67 (19)
C2—N1—C1—N3177.7 (2)C1A—C2A—C3A—C4A1.3 (3)
C2—C3—C4—O2179.84 (19)C2A—C3A—C4A—S11.7 (2)
C2—C3—C4—N20.7 (3)C2A—C3A—C4A—C5A173.1 (2)
C4—N2—C1—N10.9 (3)C3A—C4A—C5A—O1A7.3 (3)
C4—N2—C1—N3178.5 (2)C3A—C4A—C5A—O2A173.8 (2)
C5—O1—C2—N1174.26 (18)C4A—S1—C1A—C2A0.6 (2)
C5—O1—C2—C34.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ai0.882.833.479 (2)132
N1—H1···O2Ai0.881.762.637 (2)175
N3—H3A···O1Aii0.882.042.826 (2)148
N3—H3B···O1Ai0.881.922.798 (2)173
C5—H5B···O1A0.982.683.369 (3)128
C6—H6B···O1iii0.982.523.434 (3)155
C1A—H1A···O1iv0.952.603.365 (3)138
C1A—H1A···O2Av0.952.603.383 (3)140
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ai0.882.833.479 (2)132.2
N1—H1···O2Ai0.881.762.637 (2)174.7
N3—H3A···O1Aii0.882.042.826 (2)147.7
N3—H3B···O1Ai0.881.922.798 (2)172.8
C5—H5B···O1A0.982.683.369 (3)127.9
C6—H6B···O1iii0.982.523.434 (3)155.0
C1A—H1A···O1iv0.952.603.365 (3)137.5
C1A—H1A···O2Av0.952.603.383 (3)140.4
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1/2.
 

Acknowledgements

PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAlkorta, I. & Elguero, J. (2003). J. Phys. Chem. 107, 5306–5310.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589–591.  CrossRef Web of Science Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536.  CAS PubMed Web of Science Google Scholar
First citationJennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaj, S. B., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm., 5, 48–53.  CAS Google Scholar
First citationRobert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607–609.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o3775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4555–o4556.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUmadevi, B., Prabakaran, P. & Muthiah, P. T. (2002). Acta Cryst. C58, o510–o512.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o479-o480
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds