organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o470-o471

Crystal structure of azimsulfuron

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 3 June 2015; accepted 6 June 2015; online 13 June 2015)

The title compound {systematic name: 1-(4,6-di­meth­oxy­pyrimidin-2-yl)-3-[1-methyl-4-(2-methyl-2H-tetra­zol-5-yl)pyrazol-5-ylsulfon­yl]urea}, C13H16N10O5S, is a sulfonyl­urea herbicide. In this compound, the dihedral angles between the planes of the central pyrazole and the terminal di­meth­oxy­pyrimidine and tetra­zole rings are 79.10 (8) and 17.21 (16)°, respectively. In the crystal, N—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(8) inversion dimers. In addition, weak C—H⋯O and C—H⋯N hydrogen bonds and weak ππ inter­actions [ring centroid separation = 3.8255 (12) Å] are present, resulting in a three-dimensional architecture.

1. Related literature

For information on the herbicidal properties of the title compound, see: Valle et al. (2006[Valle, A., Boschin, G., Negri, M., Abbruscato, P., Sorlini, C., D'Agostina, A. & Zanardini, E. (2006). J. Appl. Microbiol. 101, 443-452.]); Boschin et al. (2007[Boschin, G., D'Agostina, A., Antonioni, C., Locati, D. & Arnoldi, A. (2007). Chemosphere, 68, 1312-1317.]). For a related crystal structure, see: Chopra et al. (2004[Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2418-o2420.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H16N10O5S

  • Mr = 424.42

  • Triclinic, [P \overline 1]

  • a = 8.5884 (7) Å

  • b = 9.9165 (7) Å

  • c = 12.2788 (13) Å

  • α = 73.190 (5)°

  • β = 75.819 (4)°

  • γ = 66.374 (3)°

  • V = 907.16 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.42 × 0.10 × 0.09 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.979

  • 16122 measured reflections

  • 4123 independent reflections

  • 3357 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.04

  • 4123 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O3i 0.88 2.09 2.877 (2) 149
C1—H1A⋯O3ii 0.98 2.55 3.381 (3) 143
C1—H1C⋯O4iii 0.98 2.44 3.225 (3) 137
C11—H11A⋯N9iv 0.98 2.57 3.357 (3) 137
C13—H13B⋯N6v 0.98 2.62 3.533 (3) 155
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y-1, z; (iii) -x+2, -y+1, -z+2; (iv) x-1, y+1, z; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Azimsulfuron [systematic name: 1-(4,6-dimethoxypyrimidin-2-yl)-3-[1-methyl-4-(2-methyl-2H-tetrazol-5-yl)pyrazol-5-ylsulfonyl]urea] is a sulfonylurea herbicide, a group of pesticides widely used all over the world for controlling weeds in several crops, rice, wheat, maize, barley, sugar beet, and tomato (Valle et al., 2006). However, until now its crystal structure has not been reported. In the title compound (Fig. 1), the dihedral angles between the planes of the central pyrazol and the terminal dimethoxypyrimidinyl and tetrazol rings are 79.10 (8) and 17.21 (16)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Chopra et al., 2004).

In the crystal structure (Fig. 2), molecules are linked by a pairs of N–H···O hydrogen bonds(Table 1), forming inversion dimmers with an R22(8) ring motif. In addition, weak C–H···O and C–H···N hydrogen bonding and weak intermolecular ππ interactions between the terminal tetrazol ring systems [Cg2···Cg2i = 3.8255 (12) Å] are present (Cg2 is the centroid of the N7–N8–N9–N10–C12 ring) [for symmetry codes: (i), -x, -y + 1, -z + 1].

Related literature top

For information on the herbicidal properties of the title compound, see: Valle et al. (2006); Boschin et al. (2007). For a related crystal structure, see: Chopra et al. (2004).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for urea N—H, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl group, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the b axis. The hydrogen bonds are shown as dashed lines.
1-(4,6-Dimethoxypyrimidin-2-yl)-3-[1-methyl-4-(2-methyl-2H-tetrazol-5-yl)pyrazol-5-ylsulfonyl]urea top
Crystal data top
C13H16N10O5SZ = 2
Mr = 424.42F(000) = 440
Triclinic, P1Dx = 1.554 Mg m3
a = 8.5884 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9165 (7) ÅCell parameters from 4687 reflections
c = 12.2788 (13) Åθ = 2.3–26.9°
α = 73.190 (5)°µ = 0.23 mm1
β = 75.819 (4)°T = 173 K
γ = 66.374 (3)°Block, colourless
V = 907.16 (14) Å30.42 × 0.10 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3357 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.5°, θmin = 1.8°
Tmin = 0.909, Tmax = 0.979h = 1111
16122 measured reflectionsk = 1212
4123 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.5222P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4123 reflectionsΔρmax = 0.56 e Å3
266 parametersΔρmin = 0.49 e Å3
Crystal data top
C13H16N10O5Sγ = 66.374 (3)°
Mr = 424.42V = 907.16 (14) Å3
Triclinic, P1Z = 2
a = 8.5884 (7) ÅMo Kα radiation
b = 9.9165 (7) ŵ = 0.23 mm1
c = 12.2788 (13) ÅT = 173 K
α = 73.190 (5)°0.42 × 0.10 × 0.09 mm
β = 75.819 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4123 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3357 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.979Rint = 0.036
16122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 0.56 e Å3
4123 reflectionsΔρmin = 0.49 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74797 (6)0.79478 (5)0.73248 (4)0.02370 (14)
O11.10371 (18)0.02315 (15)1.11503 (12)0.0280 (3)
O21.32890 (18)0.30498 (17)0.81805 (13)0.0356 (4)
O30.53148 (17)0.65412 (16)0.91451 (13)0.0326 (4)
O40.6527 (2)0.91670 (16)0.78851 (14)0.0379 (4)
O50.90400 (19)0.79382 (17)0.65785 (14)0.0361 (4)
N10.9372 (2)0.21202 (18)1.04786 (14)0.0236 (4)
N21.0436 (2)0.38255 (18)0.89699 (14)0.0238 (4)
N30.7525 (2)0.44579 (18)0.97760 (14)0.0254 (4)
H3N0.67790.41821.03360.031*
N40.8032 (2)0.63736 (17)0.82771 (13)0.0214 (3)
H4N0.91330.58380.82840.026*
N50.4566 (2)0.88624 (18)0.63630 (16)0.0303 (4)
N60.3789 (2)0.8477 (2)0.57414 (18)0.0394 (5)
N70.7377 (2)0.40229 (17)0.58472 (14)0.0247 (4)
N80.8855 (2)0.28937 (17)0.59920 (14)0.0243 (4)
N90.9977 (2)0.32420 (18)0.63093 (16)0.0298 (4)
N100.9232 (2)0.46781 (18)0.63767 (15)0.0280 (4)
C11.2673 (3)0.1457 (2)1.11176 (19)0.0308 (5)
H1A1.30740.16291.03330.046*
H1B1.25440.23731.16430.046*
H1C1.35120.12011.13550.046*
C21.0957 (2)0.1075 (2)1.04081 (16)0.0228 (4)
C31.2338 (2)0.1330 (2)0.96351 (17)0.0262 (4)
H31.34520.05750.95890.031*
C41.1988 (2)0.2757 (2)0.89353 (17)0.0244 (4)
C50.9207 (2)0.3420 (2)0.97398 (16)0.0215 (4)
C61.2928 (3)0.4514 (3)0.7412 (2)0.0393 (6)
H6A1.20670.46670.69480.059*
H6B1.39850.45730.69040.059*
H6C1.24860.52970.78610.059*
C70.6855 (2)0.5842 (2)0.90723 (16)0.0231 (4)
C80.6097 (2)0.7766 (2)0.65845 (16)0.0215 (4)
C90.4833 (3)0.7125 (2)0.5569 (2)0.0316 (5)
H90.46010.65710.51530.038*
C100.6314 (2)0.6612 (2)0.60716 (16)0.0212 (4)
C110.3620 (3)1.0278 (3)0.6757 (3)0.0496 (7)
H11A0.28151.09730.62240.074*
H11B0.44311.07320.67830.074*
H11C0.29811.00740.75270.074*
C120.7652 (2)0.5127 (2)0.60905 (16)0.0204 (4)
C130.9157 (3)0.1370 (2)0.5897 (2)0.0326 (5)
H13A1.03960.08070.57780.049*
H13B0.86530.14240.52440.049*
H13C0.86250.08570.66060.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0261 (3)0.0177 (2)0.0299 (3)0.00848 (19)0.0094 (2)0.00349 (18)
O10.0263 (7)0.0221 (7)0.0311 (8)0.0045 (6)0.0073 (6)0.0024 (6)
O20.0173 (7)0.0365 (8)0.0414 (9)0.0065 (6)0.0006 (6)0.0009 (7)
O30.0177 (7)0.0287 (7)0.0380 (8)0.0007 (6)0.0005 (6)0.0025 (6)
O40.0478 (10)0.0220 (7)0.0494 (9)0.0038 (7)0.0234 (8)0.0146 (7)
O50.0301 (8)0.0364 (8)0.0425 (9)0.0205 (7)0.0075 (7)0.0047 (7)
N10.0213 (8)0.0249 (8)0.0240 (8)0.0068 (7)0.0050 (7)0.0050 (6)
N20.0176 (8)0.0255 (8)0.0253 (8)0.0046 (7)0.0039 (7)0.0049 (7)
N30.0174 (8)0.0254 (8)0.0260 (8)0.0041 (7)0.0002 (7)0.0024 (7)
N40.0162 (7)0.0200 (7)0.0251 (8)0.0028 (6)0.0050 (6)0.0042 (6)
N50.0265 (9)0.0225 (8)0.0423 (10)0.0018 (7)0.0164 (8)0.0132 (7)
N60.0336 (10)0.0331 (10)0.0538 (12)0.0015 (8)0.0243 (9)0.0174 (9)
N70.0234 (8)0.0194 (7)0.0312 (9)0.0041 (7)0.0068 (7)0.0078 (7)
N80.0260 (8)0.0182 (7)0.0293 (9)0.0047 (7)0.0063 (7)0.0087 (6)
N90.0252 (9)0.0236 (8)0.0411 (10)0.0021 (7)0.0102 (8)0.0131 (7)
N100.0233 (8)0.0212 (8)0.0409 (10)0.0024 (7)0.0103 (8)0.0121 (7)
C10.0283 (11)0.0193 (9)0.0403 (12)0.0001 (8)0.0127 (9)0.0055 (8)
C20.0234 (10)0.0227 (9)0.0236 (9)0.0058 (8)0.0094 (8)0.0056 (7)
C30.0180 (9)0.0271 (10)0.0298 (10)0.0027 (8)0.0066 (8)0.0060 (8)
C40.0165 (9)0.0297 (10)0.0262 (10)0.0071 (8)0.0042 (8)0.0056 (8)
C50.0173 (9)0.0246 (9)0.0228 (9)0.0049 (8)0.0044 (7)0.0076 (7)
C60.0283 (11)0.0411 (13)0.0386 (13)0.0145 (10)0.0007 (10)0.0043 (10)
C70.0200 (9)0.0242 (9)0.0230 (9)0.0051 (8)0.0010 (8)0.0075 (7)
C80.0213 (9)0.0172 (8)0.0249 (9)0.0028 (7)0.0079 (8)0.0050 (7)
C90.0297 (11)0.0264 (10)0.0419 (12)0.0028 (9)0.0170 (10)0.0124 (9)
C100.0209 (9)0.0187 (9)0.0237 (9)0.0057 (7)0.0056 (8)0.0040 (7)
C110.0405 (14)0.0317 (12)0.0737 (18)0.0128 (11)0.0255 (13)0.0302 (12)
C120.0206 (9)0.0198 (8)0.0219 (9)0.0056 (7)0.0053 (7)0.0066 (7)
C130.0393 (12)0.0181 (9)0.0415 (12)0.0063 (9)0.0074 (10)0.0125 (8)
Geometric parameters (Å, º) top
S1—O41.4201 (15)N8—N91.314 (2)
S1—O51.4243 (16)N8—C131.462 (2)
S1—N41.6284 (16)N9—N101.325 (2)
S1—C81.751 (2)N10—C121.350 (2)
O1—C21.338 (2)C1—H1A0.9800
O1—C11.444 (2)C1—H1B0.9800
O2—C41.337 (2)C1—H1C0.9800
O2—C61.444 (3)C2—C31.387 (3)
O3—C71.217 (2)C3—C41.383 (3)
N1—C51.321 (2)C3—H30.9500
N1—C21.341 (2)C6—H6A0.9800
N2—C41.330 (2)C6—H6B0.9800
N2—C51.342 (2)C6—H6C0.9800
N3—C71.373 (2)C8—C101.389 (3)
N3—C51.397 (2)C9—C101.393 (3)
N3—H3N0.8800C9—H90.9500
N4—C71.378 (2)C10—C121.459 (2)
N4—H4N0.8800C11—H11A0.9800
N5—N61.340 (3)C11—H11B0.9800
N5—C81.358 (2)C11—H11C0.9800
N5—C111.466 (3)C13—H13A0.9800
N6—C91.325 (3)C13—H13B0.9800
N7—N81.324 (2)C13—H13C0.9800
N7—C121.332 (2)
O4—S1—O5119.58 (10)N2—C4—C3123.37 (18)
O4—S1—N4109.86 (9)O2—C4—C3117.43 (17)
O5—S1—N4104.30 (9)N1—C5—N2127.89 (17)
O4—S1—C8107.79 (9)N1—C5—N3114.04 (17)
O5—S1—C8109.46 (10)N2—C5—N3118.05 (16)
N4—S1—C8104.90 (9)O2—C6—H6A109.5
C2—O1—C1117.09 (16)O2—C6—H6B109.5
C4—O2—C6118.04 (16)H6A—C6—H6B109.5
C5—N1—C2114.99 (17)O2—C6—H6C109.5
C4—N2—C5114.96 (16)H6A—C6—H6C109.5
C7—N3—C5129.98 (17)H6B—C6—H6C109.5
C7—N3—H3N115.0O3—C7—N3121.66 (18)
C5—N3—H3N115.0O3—C7—N4122.49 (17)
C7—N4—S1123.00 (13)N3—C7—N4115.85 (16)
C7—N4—H4N118.5N5—C8—C10107.00 (17)
S1—N4—H4N118.5N5—C8—S1122.90 (14)
N6—N5—C8111.29 (16)C10—C8—S1130.02 (14)
N6—N5—C11117.40 (17)N6—C9—C10111.85 (19)
C8—N5—C11131.12 (18)N6—C9—H9124.1
C9—N6—N5105.78 (17)C10—C9—H9124.1
N8—N7—C12101.76 (15)C8—C10—C9104.07 (16)
N9—N8—N7113.84 (15)C8—C10—C12131.15 (18)
N9—N8—C13123.11 (16)C9—C10—C12124.59 (18)
N7—N8—C13122.87 (17)N5—C11—H11A109.5
N8—N9—N10106.55 (15)N5—C11—H11B109.5
N9—N10—C12105.48 (16)H11A—C11—H11B109.5
O1—C1—H1A109.5N5—C11—H11C109.5
O1—C1—H1B109.5H11A—C11—H11C109.5
H1A—C1—H1B109.5H11B—C11—H11C109.5
O1—C1—H1C109.5N7—C12—N10112.36 (16)
H1A—C1—H1C109.5N7—C12—C10121.13 (17)
H1B—C1—H1C109.5N10—C12—C10126.48 (17)
O1—C2—N1112.43 (17)N8—C13—H13A109.5
O1—C2—C3124.43 (17)N8—C13—H13B109.5
N1—C2—C3123.14 (18)H13A—C13—H13B109.5
C4—C3—C2115.60 (17)N8—C13—H13C109.5
C4—C3—H3122.2H13A—C13—H13C109.5
C2—C3—H3122.2H13B—C13—H13C109.5
N2—C4—O2119.19 (17)
O4—S1—N4—C759.80 (18)C5—N3—C7—N47.5 (3)
O5—S1—N4—C7170.87 (15)S1—N4—C7—O32.7 (3)
C8—S1—N4—C755.81 (17)S1—N4—C7—N3176.66 (13)
C8—N5—N6—C90.1 (3)N6—N5—C8—C100.1 (2)
C11—N5—N6—C9175.4 (2)C11—N5—C8—C10174.9 (2)
C12—N7—N8—N90.4 (2)N6—N5—C8—S1177.18 (16)
C12—N7—N8—C13175.78 (18)C11—N5—C8—S18.1 (3)
N7—N8—N9—N100.4 (2)O4—S1—C8—N515.8 (2)
C13—N8—N9—N10175.73 (18)O5—S1—C8—N5115.78 (18)
N8—N9—N10—C120.2 (2)N4—S1—C8—N5132.80 (17)
C1—O1—C2—N1177.72 (17)O4—S1—C8—C10167.94 (18)
C1—O1—C2—C31.3 (3)O5—S1—C8—C1060.5 (2)
C5—N1—C2—O1178.07 (16)N4—S1—C8—C1050.9 (2)
C5—N1—C2—C31.0 (3)N5—N6—C9—C100.4 (3)
O1—C2—C3—C4179.64 (18)N5—C8—C10—C90.3 (2)
N1—C2—C3—C40.7 (3)S1—C8—C10—C9177.09 (17)
C5—N2—C4—O2178.90 (17)N5—C8—C10—C12175.5 (2)
C5—N2—C4—C30.2 (3)S1—C8—C10—C127.8 (3)
C6—O2—C4—N21.7 (3)N6—C9—C10—C80.4 (3)
C6—O2—C4—C3177.50 (19)N6—C9—C10—C12176.0 (2)
C2—C3—C4—N21.1 (3)N8—N7—C12—N100.3 (2)
C2—C3—C4—O2179.76 (18)N8—N7—C12—C10178.32 (17)
C2—N1—C5—N22.7 (3)N9—N10—C12—N70.1 (2)
C2—N1—C5—N3175.99 (17)N9—N10—C12—C10177.97 (18)
C4—N2—C5—N12.3 (3)C8—C10—C12—N7159.2 (2)
C4—N2—C5—N3176.29 (17)C9—C10—C12—N715.0 (3)
C7—N3—C5—N1173.08 (19)C8—C10—C12—N1018.5 (3)
C7—N3—C5—N25.7 (3)C9—C10—C12—N10167.3 (2)
C5—N3—C7—O3171.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.882.092.877 (2)149
C1—H1A···O3ii0.982.553.381 (3)143
C1—H1C···O4iii0.982.443.225 (3)137
C11—H11A···N9iv0.982.573.357 (3)137
C13—H13B···N6v0.982.623.533 (3)155
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1, z; (iii) x+2, y+1, z+2; (iv) x1, y+1, z; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.882.092.877 (2)148.8
C1—H1A···O3ii0.982.553.381 (3)143.1
C1—H1C···O4iii0.982.443.225 (3)136.7
C11—H11A···N9iv0.982.573.357 (3)136.8
C13—H13B···N6v0.982.623.533 (3)154.5
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1, z; (iii) x+2, y+1, z+2; (iv) x1, y+1, z; (v) x+1, y+1, z+1.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBoschin, G., D'Agostina, A., Antonioni, C., Locati, D. & Arnoldi, A. (2007). Chemosphere, 68, 1312–1317.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2418–o2420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationValle, A., Boschin, G., Negri, M., Abbruscato, P., Sorlini, C., D'Agostina, A. & Zanardini, E. (2006). J. Appl. Microbiol. 101, 443–452.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o470-o471
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds