organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o468-o469

Crystal structure of 3-amino-1-(4-meth­­oxy­phen­yl)-1H-benzo[f]chromene-2-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cSchool of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, England, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 5 June 2015; accepted 6 June 2015; online 13 June 2015)

In the title compound, C21H16N2O2, the meth­oxy­benzene ring is almost perpendicular to the mean plane of the naphthalene ring system, making a dihedral angle of 83.62 (5)°. The 4H-pyran ring fused with the naphthalene ring system is almost planar [maximum deviation = 0.033 (1) Å]. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯N hydrogen bonds. N—H⋯O hydrogen bonds connect the dimers, forming a helical supra­molecular chain along the a-axis direction. The crystal packing also features C—H⋯π inter­actions.

1. Related literature

For the biological inter­est of benzochromene derivatives, see: Gourdeau et al. (2004[Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S. X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375-1384.]); Sangani et al. (2012[Sangani, C. B., Shah, N. M., Patel, M. P. & Patel, R. G. (2012). J. Serb. Chem. Soc. 77, 1165-1174.]); Cheng et al. (2003[Cheng, J., Ishikawa, A., Ono, Y., Arrhenius, T. & Nadzan, A. (2003). Bioorg. Med. Chem. Lett. 13, 3647-3650.]); Kamal et al. (2012[Kamal, A. M., Abd El-all, E. K. H., Elshemy, H. A. & Kandeel, M. M. (2012). Int. J. Pharm. Res. Dev. 4, 310-322.]); Denish et al. (2012[Denish, C. K., Hetal, K. P. & Nilesh, K. G. (2012). Asian J. Biochem. Pharm. Res. 2, 126-130.]); Nitin et al.. (2012[Nitin, K., Sushil, K., Himanshu, G. & Sharma, P. K. (2012). World Res. J. Biochem. 1, 1-5.]); Bhat et al. (2008[Bhat, M. A., Siddiqui, N. & Khan, S. A. (2008). Acta Pol. Pharm. 65, 235-239.]). For a similar structure, see: Akkurt et al. (2013[Akkurt, M., Kennedy, A. R., Mohamed, S. K., Younes, S. H. H. & Miller, G. J. (2013). Acta Cryst. E69, o401.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H16N2O2

  • Mr = 328.36

  • Monoclinic, I 2/a

  • a = 20.6017 (14) Å

  • b = 6.1461 (4) Å

  • c = 25.9689 (16) Å

  • β = 94.332 (4)°

  • V = 3278.8 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.38 × 0.23 × 0.13 mm

2.2. Data collection

  • Rigaku AFC11 diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 12941 measured reflections

  • 2914 independent reflections

  • 2832 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.03

  • 2914 reflections

  • 236 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4/C5/C10–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.896 (18) 2.125 (18) 3.0174 (15) 173.8 (16)
N1—H1B⋯O2ii 0.900 (17) 2.053 (17) 2.9509 (14) 175.5 (14)
C11—H11⋯Cg2iii 0.95 2.56 3.3913 (14) 147
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+2, z]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClearSM Expert (Rigaku, 2012[Rigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClearSM Expert; data reduction: CrystalClearSM Expert; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Benzopyran (Chromene) is one of the important medicinal pharmacophores found in natural compounds which generated great attention because of their interesting biological activity. The natural and synthetic chromene derivatives have important biological activities such as antivascular (Gourdeau et al., 2004), antimicrobial (Sangani et al., 2012), TNF-α inhibitor (Cheng et al., 2003), anticancer (Kamal et al., 2012), anti-HIV (Denish et al., 2012), anti-inflammatory (Nitin et al., 2012), and anticonvulsant activity (Bhat et al., 2008). Based on such findings and following to our study on synthesis of bio-active heterocyclic molecules we herein report the synthesis and crystal structure of the title compound.

Fig. 1 shows the asymmetric unit of the title compound. The methoxybenzene ring (C15–C20) is approximately perpendicular to the naphthalene ring system [C4–C13, maximum deviation = 0.040 (1) Å at atom C12] as indicated by the dihedral angle of 83.62 (5)°. The pyran ring (O1/C1–C4/C13) is almost planar [maximum deviation = -0.033 (1) Å at atom C2]. The methoxy group (C21/O2) is nearly co-planar with the attached benzene ring (C15–C20) with the torsion angle C21—O2—C18—C19 of -171.07 (11)°. The bond lengths and angles in the title compound are within normal ranges and comparable with those reported for a similar structure (Akkurt et al., 2013).

In the crystal, molecules are linked into a helical supramolecular chain along the a axis, which consist of N1—H1B···O2 hydrogen bonds that connect the dimers formed by N1—H1A···N2 hydrogen bonds, to each other (Fig. 2). The crystal packing is further stabilized by C—H···π interactions (Table 1).

Related literature top

For the biological interest of benzochromene derivatives, see: Gourdeau et al. (2004); Sangani et al. (2012); Cheng et al. (2003); Kamal et al. (2012); Denish et al. (2012); Nitin et al.. (2012); Bhat et al. (2008). For a similar structure, see: Akkurt et al. (2013).

Experimental top

An ethanolic solution of 4-methoxybenzylidenepropanedinitrile (184 mg; 1 mmol) and 2-naphthol (144 mg; 1 mmol) was refluxed with stirring for 3 h at 350 K with adding two drops of piperidine. The solid product was obtained by cooling the reaction mixture to room temperature, then it was collected by filtration, washed with cold ethanol and dried under vacuum. Colourless crystals of the title compound (M.p. 465 K) suitable for X-ray diffraction were obtained in excellent yield (87%) by recrystallization of the crude product from ethanol using the slow evaporation method.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic CH), C—H = 0.98 Å (methyl CH3), C—H = 1.00 Å (methine CH) with Uiso(H) = 1.5Ueq(methyl C) or Uiso(H) = 1.2Ueq(C). The H atoms of the NH2 group were located in difference Fourier maps and included in the subsequent refinement using restraints (N1—H1B = 0.900 (17) Å and N1—H1A = 0.896 (18) Å) with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClearSM Expert (Rigaku, 2012); cell refinement: CrystalClearSM Expert (Rigaku, 2012); data reduction: CrystalClearSM Expert (Rigaku, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the dimers forming by N—H···N hydrogen bonds.
3-Amino-1-(4-methoxyphenyl)-1H-benzo[f]chromene-2-carbonitrile top
Crystal data top
C21H16N2O2F(000) = 1376
Mr = 328.36Dx = 1.330 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54178 Å
Hall symbol: -I 2yaCell parameters from 15816 reflections
a = 20.6017 (14) Åθ = 2.6–68.3°
b = 6.1461 (4) ŵ = 0.70 mm1
c = 25.9689 (16) ÅT = 100 K
β = 94.332 (4)°Prism, colourless
V = 3278.8 (4) Å30.38 × 0.23 × 0.13 mm
Z = 8
Data collection top
Rigaku AFC11
diffractometer
2914 independent reflections
Radiation source: Rotating Anode2832 reflections with I > 2σ(I)
Detector resolution: 22.2222 pixels mm-1Rint = 0.037
profile data from ω–scansθmax = 68.2°, θmin = 3.4°
Absorption correction: multi-scan
(CrystalClearSM Expert; Rigaku, 2012)
h = 2424
Tmin = 0.910, Tmax = 1.000k = 57
12941 measured reflectionsl = 3124
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0752P)2 + 2.3851P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.31 e Å3
2914 reflectionsΔρmin = 0.23 e Å3
236 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraintsExtinction coefficient: 0.0014 (2)
Crystal data top
C21H16N2O2V = 3278.8 (4) Å3
Mr = 328.36Z = 8
Monoclinic, I2/aCu Kα radiation
a = 20.6017 (14) ŵ = 0.70 mm1
b = 6.1461 (4) ÅT = 100 K
c = 25.9689 (16) Å0.38 × 0.23 × 0.13 mm
β = 94.332 (4)°
Data collection top
Rigaku AFC11
diffractometer
2914 independent reflections
Absorption correction: multi-scan
(CrystalClearSM Expert; Rigaku, 2012)
2832 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.037
12941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
2914 reflectionsΔρmin = 0.23 e Å3
236 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46524 (4)1.06769 (14)0.61312 (3)0.0180 (2)
O20.82346 (4)0.82919 (15)0.54600 (3)0.0243 (3)
N10.43089 (5)0.85280 (19)0.54736 (4)0.0229 (3)
N20.54448 (5)0.39845 (17)0.54907 (4)0.0212 (3)
C10.47727 (6)0.88455 (19)0.58585 (5)0.0171 (3)
C20.52947 (6)0.75466 (19)0.59874 (5)0.0172 (3)
C30.58264 (6)0.80882 (19)0.64036 (4)0.0166 (3)
C40.56459 (6)1.01315 (19)0.66861 (4)0.0166 (3)
C50.60414 (6)1.0884 (2)0.71278 (5)0.0184 (3)
C60.65975 (6)0.9729 (2)0.73361 (5)0.0233 (4)
C70.69636 (7)1.0479 (3)0.77625 (5)0.0303 (4)
C80.68002 (7)1.2444 (3)0.80039 (5)0.0301 (4)
C90.62635 (6)1.3586 (2)0.78173 (5)0.0245 (4)
C100.58687 (6)1.2843 (2)0.73818 (5)0.0190 (3)
C110.52962 (6)1.39706 (19)0.71978 (5)0.0189 (3)
C120.49085 (6)1.3200 (2)0.67886 (5)0.0181 (3)
C130.50912 (6)1.12794 (19)0.65376 (4)0.0164 (3)
C140.53658 (5)0.5592 (2)0.57068 (4)0.0170 (3)
C150.64862 (5)0.8191 (2)0.61700 (4)0.0162 (3)
C160.68716 (6)0.6343 (2)0.61775 (5)0.0192 (3)
C170.74603 (6)0.6302 (2)0.59448 (5)0.0204 (3)
C180.76660 (6)0.8158 (2)0.57027 (5)0.0189 (3)
C190.72851 (6)1.0035 (2)0.56930 (5)0.0198 (3)
C200.66979 (6)1.0046 (2)0.59208 (4)0.0180 (3)
C210.85852 (6)0.6305 (2)0.53986 (6)0.0306 (4)
H1A0.4404 (8)0.772 (3)0.5202 (7)0.031 (4)*
H1B0.3976 (8)0.948 (3)0.5451 (6)0.028 (4)*
H30.584700.686800.665900.0200*
H60.671800.841300.717700.0280*
H70.733100.966800.789700.0360*
H80.706201.296900.829400.0360*
H90.615301.490000.798200.0290*
H110.518101.528200.736200.0230*
H120.452001.394600.667400.0220*
H160.673200.507200.634500.0230*
H170.771700.501600.595200.0250*
H190.742901.131200.552900.0240*
H200.643801.132400.590700.0220*
H21A0.830400.525700.520500.0460*
H21B0.872100.570300.573900.0460*
H21C0.897000.659700.521000.0460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0168 (4)0.0180 (4)0.0191 (4)0.0025 (3)0.0012 (3)0.0031 (3)
O20.0162 (4)0.0278 (5)0.0297 (5)0.0001 (4)0.0079 (4)0.0048 (4)
N10.0184 (5)0.0256 (6)0.0243 (6)0.0045 (4)0.0010 (4)0.0081 (5)
N20.0229 (5)0.0203 (6)0.0204 (5)0.0018 (4)0.0015 (4)0.0013 (4)
C10.0171 (6)0.0171 (6)0.0176 (6)0.0016 (4)0.0052 (4)0.0018 (4)
C20.0169 (6)0.0171 (6)0.0179 (6)0.0010 (5)0.0039 (4)0.0010 (5)
C30.0166 (6)0.0169 (6)0.0163 (6)0.0003 (4)0.0023 (4)0.0006 (5)
C40.0167 (6)0.0177 (6)0.0159 (6)0.0012 (5)0.0055 (4)0.0013 (5)
C50.0188 (6)0.0204 (6)0.0165 (6)0.0013 (5)0.0049 (5)0.0009 (5)
C60.0238 (6)0.0262 (7)0.0199 (6)0.0044 (5)0.0010 (5)0.0027 (5)
C70.0255 (7)0.0398 (8)0.0248 (7)0.0073 (6)0.0039 (5)0.0037 (6)
C80.0283 (7)0.0398 (8)0.0213 (6)0.0005 (6)0.0041 (5)0.0086 (6)
C90.0268 (7)0.0261 (7)0.0210 (6)0.0020 (5)0.0045 (5)0.0057 (5)
C100.0209 (6)0.0199 (6)0.0170 (6)0.0026 (5)0.0063 (5)0.0003 (5)
C110.0231 (6)0.0164 (6)0.0180 (6)0.0017 (5)0.0078 (5)0.0003 (5)
C120.0183 (6)0.0179 (6)0.0188 (6)0.0010 (5)0.0062 (5)0.0025 (5)
C130.0170 (6)0.0183 (6)0.0143 (5)0.0022 (4)0.0038 (4)0.0015 (4)
C140.0156 (6)0.0197 (6)0.0160 (6)0.0003 (4)0.0024 (4)0.0019 (5)
C150.0149 (6)0.0189 (6)0.0146 (5)0.0004 (4)0.0001 (4)0.0024 (4)
C160.0199 (6)0.0165 (6)0.0213 (6)0.0000 (5)0.0015 (5)0.0007 (5)
C170.0178 (6)0.0194 (6)0.0240 (6)0.0046 (5)0.0008 (5)0.0031 (5)
C180.0139 (5)0.0257 (6)0.0172 (6)0.0013 (5)0.0019 (4)0.0053 (5)
C190.0213 (6)0.0181 (6)0.0203 (6)0.0025 (5)0.0031 (5)0.0001 (5)
C200.0185 (6)0.0163 (6)0.0192 (6)0.0022 (4)0.0016 (4)0.0016 (5)
C210.0197 (6)0.0321 (8)0.0410 (8)0.0025 (5)0.0089 (6)0.0137 (6)
Geometric parameters (Å, º) top
O1—C11.3625 (15)C11—C121.3650 (18)
O1—C131.3871 (14)C12—C131.4132 (17)
O2—C181.3740 (15)C15—C201.3970 (17)
O2—C211.4338 (15)C15—C161.3851 (17)
N1—C11.3438 (16)C16—C171.3955 (18)
N2—C141.1538 (16)C17—C181.3843 (18)
C1—C21.3607 (17)C18—C191.3944 (17)
N1—H1B0.900 (17)C19—C201.3862 (17)
N1—H1A0.896 (18)C3—H31.0000
C2—C141.4184 (17)C6—H60.9500
C2—C31.5166 (17)C7—H70.9500
C3—C41.5149 (16)C8—H80.9500
C3—C151.5311 (16)C9—H90.9500
C4—C131.3733 (17)C11—H110.9500
C4—C51.4326 (17)C12—H120.9500
C5—C101.4307 (18)C16—H160.9500
C5—C61.4197 (18)C17—H170.9500
C6—C71.3716 (19)C19—H190.9500
C7—C81.413 (2)C20—H200.9500
C8—C91.367 (2)C21—H21A0.9800
C9—C101.4178 (18)C21—H21B0.9800
C10—C111.4194 (18)C21—H21C0.9800
C1—O1—C13118.84 (9)C15—C16—C17121.65 (11)
C18—O2—C21117.01 (10)C16—C17—C18119.19 (11)
O1—C1—N1111.07 (10)O2—C18—C19116.12 (11)
O1—C1—C2121.89 (11)O2—C18—C17123.96 (11)
N1—C1—C2127.02 (12)C17—C18—C19119.92 (12)
H1A—N1—H1B121.3 (15)C18—C19—C20120.29 (11)
C1—N1—H1A118.7 (11)C15—C20—C19120.45 (11)
C1—N1—H1B116.7 (11)C2—C3—H3107.00
C1—C2—C3124.15 (11)C4—C3—H3107.00
C1—C2—C14118.75 (11)C15—C3—H3107.00
C3—C2—C14117.06 (10)C5—C6—H6119.00
C2—C3—C4109.67 (10)C7—C6—H6119.00
C4—C3—C15114.55 (10)C6—C7—H7120.00
C2—C3—C15109.98 (9)C8—C7—H7120.00
C5—C4—C13118.03 (10)C7—C8—H8120.00
C3—C4—C5120.65 (10)C9—C8—H8120.00
C3—C4—C13121.29 (10)C8—C9—H9119.00
C4—C5—C6122.51 (11)C10—C9—H9119.00
C4—C5—C10119.65 (11)C10—C11—H11119.00
C6—C5—C10117.83 (11)C12—C11—H11119.00
C5—C6—C7121.22 (12)C11—C12—H12120.00
C6—C7—C8120.70 (13)C13—C12—H12120.00
C7—C8—C9119.67 (13)C15—C16—H16119.00
C8—C9—C10121.15 (12)C17—C16—H16119.00
C5—C10—C9119.42 (11)C16—C17—H17120.00
C5—C10—C11119.01 (11)C18—C17—H17120.00
C9—C10—C11121.56 (11)C18—C19—H19120.00
C10—C11—C12121.01 (11)C20—C19—H19120.00
C11—C12—C13119.23 (11)C15—C20—H20120.00
C4—C13—C12123.00 (11)C19—C20—H20120.00
O1—C13—C12113.14 (10)O2—C21—H21A109.00
O1—C13—C4123.86 (10)O2—C21—H21B109.00
N2—C14—C2177.37 (12)O2—C21—H21C109.00
C3—C15—C16119.06 (10)H21A—C21—H21B109.00
C3—C15—C20122.33 (10)H21A—C21—H21C109.00
C16—C15—C20118.49 (10)H21B—C21—H21C109.00
C13—O1—C1—N1178.67 (10)C5—C4—C13—O1177.22 (10)
C13—O1—C1—C22.86 (17)C5—C4—C13—C122.37 (18)
C1—O1—C13—C40.19 (16)C4—C5—C6—C7179.38 (13)
C1—O1—C13—C12179.81 (10)C10—C5—C6—C70.91 (19)
C21—O2—C18—C178.50 (17)C4—C5—C10—C9179.71 (11)
C21—O2—C18—C19171.07 (11)C4—C5—C10—C111.72 (18)
O1—C1—C2—C36.34 (19)C6—C5—C10—C91.78 (18)
O1—C1—C2—C14175.95 (11)C6—C5—C10—C11176.80 (12)
N1—C1—C2—C3175.45 (12)C5—C6—C7—C80.7 (2)
N1—C1—C2—C142.3 (2)C6—C7—C8—C91.4 (2)
C1—C2—C3—C46.28 (16)C7—C8—C9—C100.5 (2)
C1—C2—C3—C15120.55 (13)C8—C9—C10—C51.10 (19)
C14—C2—C3—C4175.97 (10)C8—C9—C10—C11177.44 (13)
C14—C2—C3—C1557.20 (14)C5—C10—C11—C120.73 (19)
C2—C3—C4—C5174.52 (11)C9—C10—C11—C12177.82 (12)
C2—C3—C4—C133.53 (15)C10—C11—C12—C131.63 (19)
C15—C3—C4—C561.27 (14)C11—C12—C13—O1179.67 (11)
C15—C3—C4—C13120.68 (12)C11—C12—C13—C40.03 (19)
C2—C3—C15—C1693.24 (12)C3—C15—C16—C17176.32 (11)
C2—C3—C15—C2082.78 (13)C20—C15—C16—C170.14 (18)
C4—C3—C15—C16142.72 (11)C3—C15—C20—C19176.89 (10)
C4—C3—C15—C2041.26 (14)C16—C15—C20—C190.85 (17)
C3—C4—C5—C62.87 (18)C15—C16—C17—C180.34 (19)
C3—C4—C5—C10178.69 (11)C16—C17—C18—O2179.67 (11)
C13—C4—C5—C6175.25 (12)C16—C17—C18—C190.12 (19)
C13—C4—C5—C103.20 (17)O2—C18—C19—C20179.00 (11)
C3—C4—C13—O10.88 (17)C17—C18—C19—C200.59 (19)
C3—C4—C13—C12179.53 (11)C18—C19—C20—C151.08 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4/C5/C10–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.896 (18)2.125 (18)3.0174 (15)173.8 (16)
N1—H1B···O2ii0.900 (17)2.053 (17)2.9509 (14)175.5 (14)
C11—H11···Cg2iii0.952.563.3913 (14)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+2, z; (iii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4/C5/C10–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.896 (18)2.125 (18)3.0174 (15)173.8 (16)
N1—H1B···O2ii0.900 (17)2.053 (17)2.9509 (14)175.5 (14)
C11—H11···Cg2iii0.952.563.3913 (14)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+2, z; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors would like to express their thanks to the National Crystallography Service (NCS), Southampton, UK, for providing the X-ray data.

References

First citationAkkurt, M., Kennedy, A. R., Mohamed, S. K., Younes, S. H. H. & Miller, G. J. (2013). Acta Cryst. E69, o401.  CSD CrossRef IUCr Journals Google Scholar
First citationBhat, M. A., Siddiqui, N. & Khan, S. A. (2008). Acta Pol. Pharm. 65, 235–239.  Web of Science PubMed CAS Google Scholar
First citationCheng, J., Ishikawa, A., Ono, Y., Arrhenius, T. & Nadzan, A. (2003). Bioorg. Med. Chem. Lett. 13, 3647–3650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDenish, C. K., Hetal, K. P. & Nilesh, K. G. (2012). Asian J. Biochem. Pharm. Res. 2, 126–130.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S. X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384.  Web of Science PubMed CAS Google Scholar
First citationKamal, A. M., Abd El-all, E. K. H., Elshemy, H. A. & Kandeel, M. M. (2012). Int. J. Pharm. Res. Dev. 4, 310–322.  Google Scholar
First citationNitin, K., Sushil, K., Himanshu, G. & Sharma, P. K. (2012). World Res. J. Biochem. 1, 1–5.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSangani, C. B., Shah, N. M., Patel, M. P. & Patel, R. G. (2012). J. Serb. Chem. Soc. 77, 1165–1174.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o468-o469
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds