research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 783-785

Crystal structure of 1,10-phenanthrolinium 3-hy­dr­oxy-2,4,6-tri­nitro­phenolate

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

Edited by H. Ishida, Okayama University, Japan (Received 15 May 2015; accepted 3 June 2015; online 13 June 2015)

In the title molecular salt, C12H9N2+·C6H2N3O8, the cation and anion are connected by an N—H⋯O hydrogen bond. In the anion, an intra­molecular O—H⋯O hydrogen bond with an S(6) ring motif is observed. The planes of two of the nitro groups are approximately parallel to the plane of the benzene ring, making dihedral angles of 3.9 (2) and 15.3 (2)°, while the third nitro group is almost perpendicular to the benzene ring, with a dihedral angle of 78.6 (3)°. In the crystal, cation–anion pairs related by an n-glide plane are connected by C—H⋯O hydrogen bonds, forming a chain structure along [101]. Sensitivity tests and thermal testing indicate that the title salt is an insensitive high-energy-density material (IHEDM).

1. Chemical context

2,4,6-Tri­nitro­benzene-1,3-diol (styphnic acid) is an energetic mol­ecule, which forms complexes with metal ions (Liu et al., 2009[Liu, J. W., Zhang, J. G., Zhang, T. L., Zheng, H., Yang, L. & Yu, K. B. (2009). Struct. Chem. 20, 387-392.]; Zhang et al., 2011[Zhang, J. G., Wang, K., Li, Z. M., Zheng, H., Zhang, T. L. & Yang, L. (2011). Main Group Chem. 10, 205-213.]; Zhu et al., 2009[Zhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315-10321.]) and salts with organic amines (Kalaivani & Malarvizhi, 2010[Kalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698.]; Kalaivani et al., 2011[Kalaivani, D., Malarvizhi, R., Thanigaimani, K. & Muthiah, P. T. (2011). Acta Cryst. E67, o686.]; Muthulakshmi & Kalaivani, 2015[Muthulakshmi, S. & Kalaivani, D. (2015). Acta Cryst. E71, 117-120.]; Srinivas et al., 2014[Srinivas, D., Ghule, V. D. & Muralidharan, K. (2014). New J. Chem. 38, 3699-3707.]). 1,10-Phenanthroline is a well-known heterocyclic chelating agent (Goel & Singh, 2013[Goel, N. & Singh, U. P. (2013). J. Phys. Chem. A, 117, 10428-10437.]; MacDonnell et al., 1999[MacDonnell, F. M., Kim, M. J. & Bodige, S. (1999). Coord. Chem. Rev. 185-186, 535-549.]). It also shows good anticancer activity (Sastri et al., 2003[Sastri, C. V., Eswaramoorthy, D., Giribabu, L. & Maiya, B. G. (2003). J. Inorg. Biochem. 94, 138-145.]). It is observed in the present study that although styphnic acid contains two acidic phenolic hydrogen atoms and 1,10-phenanthroline contains two basic tertiary nitro­gen atoms, they form only the monoprotonated title mol­ecular salt with 1:1 stoichiometry upon mixing of their ethano­lic solutions.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title mol­ecular salt is depicted in Fig. 1[link]. The acidic hydrogen atom of the phenolic group in styphnic acid protonates the nitro­gen atom of 1,10-phenanthroline, making it a cation. An S(6) ring motif is formed in the anion by an intra­molecular O—H⋯O hydrogen bond (Table 1[link]). Of the three nitro groups present in the anion, the plane of the one which is involved in the intra­molecular hydrogen bond deviates only slightly from the plane of benzene ring [dihedral angle 3.94 (8)°] to which it is attached. The nitro group flanked between the C—O group and the O—H group deviates to a greater extent [dihedral angle 78.62 (1)°] than the remaining nitro group which is oriented between the C—H and C—O groups [dihedral angle 15.27 (7)°].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O7i 0.93 2.52 3.398 (2) 158
N2—H2A⋯O7 0.94 (2) 1.87 (2) 2.702 (2) 146.7 (17)
O8—H8A⋯O5 0.82 1.88 2.579 (2) 143
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The N—H⋯O hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal, the C—O (acceptor) group of the phenolate anion and the N—H (donor) of the cation form an N—H⋯O hydrogen bond (Table 1[link] and Fig. 1[link]). A weak C—H⋯O hydrogen bond is also observed in the crystal, forming a chain structure along [101] (Table 1[link] and Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
The crystal packing of the title mol­ecular salt viewed along the a axis. Hydrogen bonds are shown as dotted lines.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along the b axis. Hydrogen bonds are shown as dotted lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 3-hy­droxy-2,4,6-tri­nitro­phenolates gave 14 hits. Six concern metal-complex cations and eight organic cations. Amongst the latter are two compounds, referred to above in §1 for their high thermal stability, viz. 2-meth­oxy­anilinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani et al., 2011[Kalaivani, D., Malarvizhi, R., Thanigaimani, K. & Muthiah, P. T. (2011). Acta Cryst. E67, o686.]), morpholinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani & Malarvizhi, 2010[Kalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698.]) while the crystal structure and thermal behaviour of pyridinium styphnate is reported by Muthulakshmi & Kalaivani (2015[Muthulakshmi, S. & Kalaivani, D. (2015). Acta Cryst. E71, 117-120.]).

5. Synthesis and crystallization

Equimolar solutions of each of styphnic acid (2.45 g, 0.01 mol, 40 mL) and 1,10-phenanthroline monohydrate (1.98 g, 0.01 mol, 30 mL) in ethanol were mixed and shaken well for 3 h. On standing at 298 K for two h, the mixture yielded a yellow solid which was ground, washed well with dry ether and recrystallized from a ethanol–water mixture. Shining yellow single crystals were obtained from the mother liquor by slow evaporation (m.p. 395 K, yield 80%). Although the monoprotonated salt is obtained in good yield, several attempts to prepare the diprotonated salt from styphnic acid and 1,10-phenanthroline by mixing them in different concentrations in solvents of different polarity were not successful. The title mol­ecular salt is produced due to a proton-transfer reaction in which one of the two phenolic group hydrogen atoms is transferred to one of the tertiary nitro­gen atoms of 1,10-phenanthroline. This type of inter­action is also evidenced by the spectroscopic data [IR: 1532 (N—O asym. str.), 1297 (N—O sym. str.), 2200–3500, 461 (amine salt) cm−1 (Silverstein & Webster, 2004[Silverstein, R. M. & Webster, F. X. (2004). Spectrometric Identification of Organic Compounds, pp. 103-104. New York: John Wiley and Sons.]; Ramachandran et al. 2007[Ramachandran, E., Baskaran, K. & Natarajan, S. (2007). Cryst. Res. Technol. 42, 73-77.]); 1H NMR: δ 8.52 p.p.m. (s, C—H proton of phenolate moiety), 9.28–8.19 p.p.m. (m, ring proton of cation), 7.0–5.5 p.p.m. (broad, time-averaged signal of OH and NH protons); 13C NMR: δ 156.0, 148.1, 142.2, 138.0, 135.3, 129.9, 127.9, 126.1 and 126.0 p.p.m.].

6. Sensitivity testing and thermal studies

The title mol­ecular salt has three nitro groups attached to the benzene ring and hence it was subjected to sensitivity testing (impact sensitivity and friction sensitivity) and thermal studies (TGA/DTA). The mol­ecular salt is insensitive towards impact and friction (Meyer et al., 2007[Meyer, R., Köhler, J. & Homburg, A. (2007). Explosives, 6th, completely revised ed., Weinheim: Wiley-VCH Verlag.]). The activation energy for the decomposition of the title mol­ecular salt was determined from TGA/DTA curves obtained at four different heating rates (5, 10, 15 and 20 K min−1) applying Ozawa and Kissinger methods (Kissinger, 1957[Kissinger, H. E. (1957). Anal. Chem. 29, 1702-1706.]; Ozawa, 1965[Ozawa, T. (1965). Bull. Chem. Soc. Jpn, 38, 1881-1886.]). The activation energy determined was 459 kJ mol−1 from the Ozawa plot and 478 kcal mol−1 from the Kissinger plot. The sensitivity tests and thermal studies indicate that this mol­ecular salt is an insensitive high-energy-density material (IHEDM).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C- and O-bound H atoms were positioned geometrically with C—H = 0.93 Å and O—H = 0.82 Å, and were refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The N-bound H atom was located in a difference Fourier map and refined freely [N—H = 0.94 (2) Å].

Table 2
Experimental details

Crystal data
Chemical formula C12H9N2+·C6H2N3O8
Mr 425.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.0984 (7), 19.0072 (14), 10.5124 (7)
β (°) 118.419 (2)
V3) 1774.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.952, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 35336, 4007, 2551
Rint 0.040
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.01
No. of reflections 4007
No. of parameters 284
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

2,4,6-Tri­nitro­benzene-1,3-diol (styphnic acid) is an energetic molecule which forms complexes with metal ions (Liu et al., 2009; Zhang et al., 2011; Zhu et al., 2009) and salts with organic amines (Kalaivani & Malarvizhi, 2010; Kalaivani et al., 2011; Muthulakshmi & Kalaivani, 2015; Srinivas et al., 2014). 1,10-Phenanthroline is a well-known heterocyclic chelating agent (Goel & Singh, 2013; MacDonnell et al., 1999). It also shows good biological response (Sastri et al., 2003). It has been observed in the present study that although styphnic acid contains two acidic phenolic hydrogen atoms and 1,10-phenanthroline contains two basic tertiary nitro­gen atoms, they form only the monoprotonated title molecular salt with 1:1 stoichiometry upon mixing of their ethano­lic solutions.

Structural commentary top

The molecular structure of the title molecular salt is depicted in Fig. 1. The acidic hydrogen of the phenolic group in styphnic acid protonates the nitro­gen atom of 1,10-phenanthroline, making it a cation. An S(6) ring motif is formed in the anion by an intra­molecular O—H···O hydrogen bond (Table 1). Of the three nitro groups present in the anion, the plane of the one which is involved in the intra­molecular hydrogen bond deviates only slightly from the plane of benzene ring [dihedral angle 3.94 (8)°] to which it is attached. The nitro group flanked between the C—O- group and the O—H group deviates to a greater extent [dihedral angle 78.62 (1)°] than the other nitro group which is oriented between the C—H and C—O- groups [dihedral angle 15.27 (7)°].

Supra­molecular features top

In the crystal, the C—O- (acceptor) group of the phenolate anion and the N—H (donor) of the cation form an N—H···O hydrogen bond (Table 1 and Fig. 1). A weak C—H···O hydrogen bond is also observed in the crystal, forming a chain structure along [101] (Table 1 and Figs. 2 and 3).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014) for 3-hy­droxy-2,4,6-tri­nitro­phenolates gave 14 hits. Six concern metal-complex cations and eight organic cations. Amongst the latter are two compounds, referred to above in §1 for their high thermal stability, viz. 2-meth­oxy­anilinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani et al., 2011), morpholinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani & Malarvizhi, 2010) while the crystal structure and thermal behaviour of pyridinium styphnate is reported by Muthulakshmi & Kalaivani (2015).

Synthesis and crystallization top

Equimolar solutions of each of styphnic acid (2.45 g, 0.01 mol, 40 mL) and 1,10-phenanthroline monohydrate (1.98 g, 0.01 mol, 30 mL) in ethanol were mixed and shaken well for 3 hours. On standing at 298 K for two hours, this solution mixture yielded a yellow solid which was powdered, washed well with dry ether and recrystallized from a ethanol–water mixture. Shining yellow single crystals were obtained from the mother liquor by slow evaporation (m.p. 395 K, yield 80%). Although the monoprotonated salt is obtained in good yield, several attempts to prepare the diprotonated salt from styphnic acid and 1,10-phenanthroline by mixing them in different concentrations in solvents of different polarity were not successful. The title molecular salt is produced due to a proton-transfer reaction in which one of the two phenolic group hydrogen atoms is transferred to one of the tertiary nitro­gen atoms of 1,10-phenanthroline. This type of inter­action is also evidenced by the spectroscopic data [IR : 1532 (N—O asym. str.), 1297 (N—O sym. str.), 2200–3500, 461 (amine salt) cm-1 (Silverstein & Webster, 2004; Ramachandran et al. 2007); 1H NMR: δ 8.52 p.p.m. (s, C—H proton of phenolate moiety), 9.28–8.19 p.p.m. (m, ring proton of cation), 7.0–5.5 p.p.m. (broad, time-averaged signal of OH and NH protons); 13C NMR: δ 156.0, 148.1, 142.2, 138.0, 135.3, 129.9, 127.9, 126.1 and 126.0 p.p.m.].

Sensitivity testing and thermal studies top

The title molecular salt has three nitro groups attached to the benzene ring and hence it was subjected to sensitivity testing (impact sensitivity and friction sensitivity) and thermal studies (TGA/DTA). The molecular salt is insensitive towards impact and friction (Meyer et al., 2007). The activation energy for the decomposition of the title molecular salt was determined from TGA/DTA curves obtained at four different heating rates (5, 10, 15 and 20 K min-1) applying Ozawa and Kissinger methods (Kissinger, 1957; Ozawa, 1965). The activation energy determined was 110.0 kcal mol-1 from the Ozawa plot and 114.4 kcal mol-1 from the Kissinger plot. The sensitivity tests and thermal studies indicate that this molecular salt is an insensitive high-energy-density material (IHEDM).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. C- and O-bound H atoms were positioned geometrically with C—H = 0.93 Å and O—H = 0.82 Å, and were refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The N-bound H atom was located in a difference Fourier map and refined freely [N—H = 0.94 (2) Å].

Related literature top

For related literature, see: Goel & Singh (2013); Groom & Allen (2014); Kalaivani & Malarvizhi (2010); Kalaivani et al. (2011); Kissinger (1957); Liu et al. (2009); MacDonnell et al. (1999); Meyer et al. (2007); Muthulakshmi & Kalaivani (2015); Ozawa (1965); Ramachandran et al. (2007); Sastri et al. (2003); Silverstein & Webster (2004); Srinivas et al. (2014); Zhang et al. (2011); Zhu & Xiao (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The N—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title molecular salt viewed along the a axis. Hydrogen bonds are shown as dotted lines.
[Figure 3] Fig. 3. The crystal packing of the title molecular salt viewed along the b axis. Hydrogen bonds are shown as dotted lines.
1,10-Phenanthrolin-1-ium 3-hydroxy-2,4,6-trinitrophenolate top
Crystal data top
C12H9N2+·C6H2N3O8F(000) = 872
Mr = 425.32Dx = 1.592 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.0984 (7) ÅCell parameters from 8729 reflections
b = 19.0072 (14) Åθ = 2.3–26.0°
c = 10.5124 (7) ŵ = 0.13 mm1
β = 118.419 (2)°T = 296 K
V = 1774.6 (2) Å3Plate, yellow
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4007 independent reflections
Radiation source: fine-focus sealed tube2551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scanθmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.952, Tmax = 0.970k = 2424
35336 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.5078P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4007 reflectionsΔρmax = 0.24 e Å3
284 parametersΔρmin = 0.22 e Å3
Crystal data top
C12H9N2+·C6H2N3O8V = 1774.6 (2) Å3
Mr = 425.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0984 (7) ŵ = 0.13 mm1
b = 19.0072 (14) ÅT = 296 K
c = 10.5124 (7) Å0.35 × 0.30 × 0.25 mm
β = 118.419 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4007 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2551 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.970Rint = 0.040
35336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.24 e Å3
4007 reflectionsΔρmin = 0.22 e Å3
284 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7553 (2)0.19947 (11)0.2956 (2)0.0454 (5)
H10.74600.23320.35490.054*
C20.8951 (2)0.17090 (12)0.3325 (2)0.0528 (5)
H20.97990.18550.41600.063*
C30.9067 (2)0.12136 (12)0.2455 (2)0.0494 (5)
H31.00010.10160.27030.059*
C40.78005 (19)0.09958 (10)0.1189 (2)0.0394 (4)
C50.7858 (2)0.04786 (11)0.0239 (2)0.0518 (5)
H50.87770.02800.04360.062*
C60.6600 (3)0.02750 (11)0.0938 (2)0.0518 (5)
H60.66640.00650.15440.062*
C70.5170 (2)0.05664 (10)0.1282 (2)0.0412 (4)
C80.3825 (2)0.03423 (11)0.2468 (2)0.0512 (5)
H80.38370.00120.30710.061*
C90.2506 (2)0.06479 (12)0.2725 (2)0.0548 (6)
H90.16040.05010.34990.066*
C100.2520 (2)0.11849 (11)0.1817 (2)0.0518 (5)
H100.16080.13940.20210.062*
C110.50613 (19)0.10956 (9)0.04079 (19)0.0350 (4)
C120.64071 (18)0.13032 (9)0.08508 (18)0.0331 (4)
N10.37497 (16)0.14143 (8)0.06844 (17)0.0422 (4)
N20.63483 (17)0.17898 (8)0.17614 (16)0.0370 (4)
H2A0.542 (2)0.1997 (11)0.155 (2)0.049 (6)*
C130.20014 (19)0.22681 (10)0.12247 (19)0.0372 (4)
C140.30718 (19)0.28269 (10)0.14818 (18)0.0368 (4)
C150.23831 (19)0.35056 (10)0.11961 (19)0.0391 (4)
C160.0886 (2)0.36441 (10)0.06754 (19)0.0408 (4)
C170.00782 (19)0.30634 (11)0.0441 (2)0.0427 (5)
C180.0499 (2)0.23906 (11)0.07130 (19)0.0420 (4)
H180.01460.20120.05450.050*
N30.24894 (18)0.15442 (9)0.15365 (17)0.0425 (4)
N40.33779 (19)0.41089 (9)0.1449 (2)0.0517 (4)
N50.16493 (18)0.31559 (11)0.00773 (18)0.0539 (5)
O10.15283 (17)0.10808 (8)0.10657 (19)0.0679 (5)
O20.38275 (15)0.14144 (7)0.22911 (15)0.0511 (4)
O30.4138 (2)0.43000 (11)0.2680 (2)0.0912 (6)
O40.3418 (2)0.43695 (11)0.0422 (2)0.0951 (7)
O50.21917 (15)0.37586 (9)0.04103 (16)0.0630 (4)
O60.24439 (17)0.26421 (11)0.0213 (2)0.0863 (6)
O70.44347 (13)0.27585 (7)0.18477 (15)0.0483 (4)
O80.04242 (15)0.43111 (7)0.04180 (16)0.0577 (4)
H8A0.04890.43270.01100.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0381 (10)0.0461 (12)0.0484 (11)0.0042 (8)0.0178 (9)0.0046 (9)
C20.0317 (10)0.0658 (14)0.0502 (12)0.0055 (9)0.0109 (9)0.0016 (11)
C30.0292 (9)0.0600 (13)0.0577 (12)0.0085 (9)0.0196 (9)0.0102 (10)
C40.0335 (9)0.0398 (10)0.0486 (11)0.0076 (8)0.0224 (8)0.0089 (9)
C50.0480 (12)0.0521 (13)0.0637 (13)0.0191 (10)0.0333 (11)0.0081 (10)
C60.0645 (14)0.0421 (12)0.0583 (13)0.0117 (10)0.0369 (12)0.0003 (10)
C70.0482 (11)0.0351 (10)0.0435 (10)0.0012 (8)0.0245 (9)0.0034 (8)
C80.0637 (14)0.0454 (12)0.0458 (11)0.0074 (10)0.0270 (10)0.0058 (9)
C90.0484 (12)0.0593 (14)0.0453 (12)0.0129 (10)0.0129 (10)0.0050 (10)
C100.0338 (10)0.0539 (13)0.0577 (13)0.0006 (9)0.0136 (10)0.0035 (10)
C110.0334 (9)0.0328 (9)0.0399 (10)0.0014 (7)0.0184 (8)0.0053 (8)
C120.0310 (9)0.0300 (9)0.0404 (9)0.0024 (7)0.0186 (8)0.0047 (8)
N10.0295 (8)0.0429 (9)0.0490 (9)0.0024 (7)0.0146 (7)0.0011 (7)
N20.0287 (8)0.0375 (9)0.0438 (9)0.0027 (7)0.0164 (7)0.0008 (7)
C130.0345 (9)0.0380 (10)0.0394 (10)0.0043 (8)0.0177 (8)0.0016 (8)
C140.0305 (9)0.0415 (10)0.0358 (9)0.0038 (8)0.0137 (8)0.0018 (8)
C150.0324 (9)0.0386 (10)0.0428 (10)0.0034 (8)0.0150 (8)0.0016 (8)
C160.0371 (10)0.0436 (11)0.0384 (10)0.0112 (8)0.0153 (8)0.0025 (8)
C170.0295 (9)0.0572 (13)0.0405 (10)0.0098 (9)0.0158 (8)0.0063 (9)
C180.0344 (9)0.0514 (12)0.0410 (10)0.0001 (8)0.0185 (8)0.0033 (9)
N30.0415 (9)0.0420 (9)0.0492 (9)0.0023 (7)0.0257 (8)0.0008 (7)
N40.0406 (10)0.0412 (10)0.0687 (12)0.0036 (8)0.0221 (9)0.0038 (9)
N50.0327 (9)0.0761 (14)0.0513 (10)0.0101 (9)0.0187 (8)0.0090 (9)
O10.0523 (9)0.0437 (9)0.1065 (13)0.0066 (7)0.0367 (9)0.0094 (8)
O20.0416 (8)0.0498 (8)0.0574 (8)0.0109 (6)0.0200 (7)0.0091 (7)
O30.0767 (12)0.0996 (15)0.0885 (13)0.0341 (11)0.0323 (11)0.0422 (11)
O40.0991 (15)0.0829 (14)0.0965 (14)0.0256 (11)0.0410 (12)0.0204 (11)
O50.0387 (8)0.0775 (12)0.0660 (10)0.0230 (8)0.0194 (7)0.0057 (8)
O60.0357 (8)0.0942 (14)0.1205 (16)0.0024 (9)0.0304 (9)0.0257 (12)
O70.0296 (7)0.0430 (8)0.0689 (9)0.0042 (6)0.0206 (6)0.0054 (7)
O80.0441 (8)0.0482 (9)0.0739 (10)0.0189 (7)0.0225 (7)0.0038 (7)
Geometric parameters (Å, º) top
C1—N21.325 (2)C11—C121.429 (2)
C1—C21.384 (3)C12—N21.353 (2)
C1—H10.9300N2—H2A0.94 (2)
C2—C31.356 (3)C13—C181.367 (2)
C2—H20.9300C13—N31.446 (2)
C3—C41.399 (3)C13—C141.446 (3)
C3—H30.9300C14—O71.247 (2)
C4—C121.404 (2)C14—C151.428 (3)
C4—C51.422 (3)C15—C161.366 (2)
C5—C61.341 (3)C15—N41.463 (3)
C5—H50.9300C16—O81.333 (2)
C6—C71.424 (3)C16—C171.414 (3)
C6—H60.9300C17—C181.378 (3)
C7—C111.402 (3)C17—N51.422 (2)
C7—C81.403 (3)C18—H180.9300
C8—C91.357 (3)N3—O21.2230 (19)
C8—H80.9300N3—O11.227 (2)
C9—C101.393 (3)N4—O31.204 (2)
C9—H90.9300N4—O41.207 (3)
C10—N11.320 (2)N5—O61.228 (2)
C10—H100.9300N5—O51.246 (2)
C11—N11.356 (2)O8—H8A0.8200
N2—C1—C2120.31 (19)N2—C12—C11120.09 (15)
N2—C1—H1119.8C4—C12—C11121.09 (16)
C2—C1—H1119.8C10—N1—C11116.72 (17)
C3—C2—C1119.13 (18)C1—N2—C12122.82 (16)
C3—C2—H2120.4C1—N2—H2A117.7 (12)
C1—C2—H2120.4C12—N2—H2A119.4 (12)
C2—C3—C4120.94 (18)C18—C13—N3116.50 (17)
C2—C3—H3119.5C18—C13—C14122.64 (17)
C4—C3—H3119.5N3—C13—C14120.85 (15)
C3—C4—C12118.00 (18)O7—C14—C15120.97 (17)
C3—C4—C5123.26 (17)O7—C14—C13126.74 (17)
C12—C4—C5118.74 (17)C15—C14—C13112.22 (15)
C6—C5—C4120.69 (18)C16—C15—C14126.41 (17)
C6—C5—H5119.7C16—C15—N4117.07 (16)
C4—C5—H5119.7C14—C15—N4116.50 (15)
C5—C6—C7121.53 (19)O8—C16—C15118.55 (18)
C5—C6—H6119.2O8—C16—C17124.17 (16)
C7—C6—H6119.2C15—C16—C17117.28 (17)
C11—C7—C8117.12 (18)C18—C17—C16120.00 (16)
C11—C7—C6119.94 (18)C18—C17—N5118.63 (19)
C8—C7—C6122.93 (19)C16—C17—N5121.37 (18)
C9—C8—C7119.38 (19)C13—C18—C17121.38 (18)
C9—C8—H8120.3C13—C18—H18119.3
C7—C8—H8120.3C17—C18—H18119.3
C8—C9—C10119.21 (19)O2—N3—O1122.31 (16)
C8—C9—H9120.4O2—N3—C13119.42 (16)
C10—C9—H9120.4O1—N3—C13118.22 (16)
N1—C10—C9123.93 (19)O3—N4—O4124.2 (2)
N1—C10—H10118.0O3—N4—C15117.6 (2)
C9—C10—H10118.0O4—N4—C15118.16 (19)
N1—C11—C7123.58 (17)O6—N5—O5121.52 (17)
N1—C11—C12118.47 (16)O6—N5—C17119.63 (19)
C7—C11—C12117.95 (16)O5—N5—C17118.84 (19)
N2—C12—C4118.80 (16)C16—O8—H8A109.5
N2—C1—C2—C30.5 (3)N3—C13—C14—O76.9 (3)
C1—C2—C3—C40.7 (3)C18—C13—C14—C152.4 (3)
C2—C3—C4—C120.3 (3)N3—C13—C14—C15176.13 (15)
C2—C3—C4—C5180.0 (2)O7—C14—C15—C16174.20 (18)
C3—C4—C5—C6178.0 (2)C13—C14—C15—C162.9 (3)
C12—C4—C5—C61.7 (3)O7—C14—C15—N43.9 (3)
C4—C5—C6—C70.1 (3)C13—C14—C15—N4178.93 (16)
C5—C6—C7—C112.2 (3)C14—C15—C16—O8177.46 (17)
C5—C6—C7—C8177.0 (2)N4—C15—C16—O80.7 (3)
C11—C7—C8—C91.0 (3)C14—C15—C16—C172.4 (3)
C6—C7—C8—C9179.84 (19)N4—C15—C16—C17179.48 (17)
C7—C8—C9—C100.9 (3)O8—C16—C17—C18178.77 (17)
C8—C9—C10—N11.2 (3)C15—C16—C17—C181.1 (3)
C8—C7—C11—N12.8 (3)O8—C16—C17—N51.2 (3)
C6—C7—C11—N1178.01 (17)C15—C16—C17—N5178.99 (17)
C8—C7—C11—C12176.54 (17)N3—C13—C18—C17177.12 (16)
C6—C7—C11—C122.7 (3)C14—C13—C18—C171.4 (3)
C3—C4—C12—N20.4 (3)C16—C17—C18—C130.7 (3)
C5—C4—C12—N2179.32 (17)N5—C17—C18—C13179.38 (17)
C3—C4—C12—C11178.65 (17)C18—C13—N3—O2163.44 (16)
C5—C4—C12—C111.1 (3)C14—C13—N3—O215.1 (3)
N1—C11—C12—N22.2 (2)C18—C13—N3—O114.3 (2)
C7—C11—C12—N2177.13 (16)C14—C13—N3—O1167.14 (17)
N1—C11—C12—C4179.56 (16)C16—C15—N4—O3103.1 (2)
C7—C11—C12—C41.1 (2)C14—C15—N4—O378.6 (2)
C9—C10—N1—C110.5 (3)C16—C15—N4—O479.0 (2)
C7—C11—N1—C102.5 (3)C14—C15—N4—O499.3 (2)
C12—C11—N1—C10176.79 (16)C18—C17—N5—O63.0 (3)
C2—C1—N2—C120.2 (3)C16—C17—N5—O6177.05 (19)
C4—C12—N2—C10.6 (3)C18—C17—N5—O5175.60 (17)
C11—C12—N2—C1178.89 (17)C16—C17—N5—O54.3 (3)
C18—C13—C14—O7174.58 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O7i0.932.523.398 (2)158
N2—H2A···O70.94 (2)1.87 (2)2.702 (2)146.7 (17)
O8—H8A···O50.821.882.579 (2)143
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O7i0.932.523.398 (2)158
N2—H2A···O70.94 (2)1.87 (2)2.702 (2)146.7 (17)
O8—H8A···O50.821.882.579 (2)143
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H9N2+·C6H2N3O8
Mr425.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.0984 (7), 19.0072 (14), 10.5124 (7)
β (°) 118.419 (2)
V3)1774.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.952, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
35336, 4007, 2551
Rint0.040
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.01
No. of reflections4007
No. of parameters284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors are thankful to the UGC for financial support, to the SAIF, IIT Madras, for the spectroscopic and single-crystal XRD data collection, and to B. S. Abdur, Rahman University, Chennai-46, for the TGA/DTA studies.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoel, N. & Singh, U. P. (2013). J. Phys. Chem. A, 117, 10428–10437.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D., Malarvizhi, R., Thanigaimani, K. & Muthiah, P. T. (2011). Acta Cryst. E67, o686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKissinger, H. E. (1957). Anal. Chem. 29, 1702–1706.  CrossRef CAS Web of Science Google Scholar
First citationLiu, J. W., Zhang, J. G., Zhang, T. L., Zheng, H., Yang, L. & Yu, K. B. (2009). Struct. Chem. 20, 387–392.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacDonnell, F. M., Kim, M. J. & Bodige, S. (1999). Coord. Chem. Rev. 185–186, 535–549.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, R., Köhler, J. & Homburg, A. (2007). Explosives, 6th, completely revised ed., Weinheim: Wiley-VCH Verlag.  Google Scholar
First citationMuthulakshmi, S. & Kalaivani, D. (2015). Acta Cryst. E71, 117–120.  CSD CrossRef IUCr Journals Google Scholar
First citationOzawa, T. (1965). Bull. Chem. Soc. Jpn, 38, 1881–1886.  CrossRef CAS Web of Science Google Scholar
First citationRamachandran, E., Baskaran, K. & Natarajan, S. (2007). Cryst. Res. Technol. 42, 73–77.  Web of Science CrossRef CAS Google Scholar
First citationSastri, C. V., Eswaramoorthy, D., Giribabu, L. & Maiya, B. G. (2003). J. Inorg. Biochem. 94, 138–145.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilverstein, R. M. & Webster, F. X. (2004). Spectrometric Identification of Organic Compounds, pp. 103–104. New York: John Wiley and Sons.  Google Scholar
First citationSrinivas, D., Ghule, V. D. & Muralidharan, K. (2014). New J. Chem. 38, 3699–3707.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J. G., Wang, K., Li, Z. M., Zheng, H., Zhang, T. L. & Yang, L. (2011). Main Group Chem. 10, 205–213.  CAS Google Scholar
First citationZhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315–10321.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 783-785
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds