organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o453-o454

Crystal structure of 6-amino-4-(3-bromo-4-meth­­oxy­phen­yl)-3-methyl-2,4-di­hydro­pyrano[2,3-c]pyrazole-5-carbo­nitrile di­methyl sulfoxide monosolvate

CROSSMARK_Color_square_no_text.svg

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 27 May 2015; accepted 1 June 2015; online 6 June 2015)

In the pyrazole mol­ecule of the title solvate, C15H13BrN4O2·C2H6OS, the dihedral angle between the benzene ring and the mean plane of the di­hydro­pyrano[2,3-c]pyrazole ring system [r.m.s deviation = 0.031 (2) Å] is 86.71 (14)°. In the crystal, the pyrazole mol­ecules are linked by N—H⋯N hydrogen bonds, forming a layer parallel to (10-1). The pyrazole and dimethyl sulfoxide mol­ecules are connected by an N—H⋯O hydrogen bond.

1. Related literature

For the applications and biological activities of pyrazole derivative, see: Balbia et al. (2011[Balbi, A., Anzaldi, M., Macciò, C., Aiello, C., Mazzei, M., Gangemi, R., Castagnola, P., Miele, M., Rosano, C. & Viale, M. (2011). Eur. J. Med. Chem. 46, 5293-5309.]); Insuasty et al. (2010[Insuasty, B., Tigreros, A., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M., Sanchez, A. & Cobo, J. (2010). Bioorg. Med. Chem. 18, 4965-4974.]); Szabó et al. (2008[Szabó, G., Fischer, J., Kis-Varga, A. & Gyires, K. (2008). J. Med. Chem. 51, 142-147.]); Perchellet et al. (2006[Perchellet, E. M., Ward, M. M., Skaltsounis, A. L., Kostakis, I. K., Pouli, N., Marakos, P. & Perchellet, J. P. (2006). Anticancer Res. 26, 2791-2804.]); Tanitame et al. (2004[Tanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Suzuki, K., Ueda, T., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). Bioorg. Med. Chem. 12, 5515-5524.], 2005[Tanitame, A., Oyamada, Y., Ofuji, K., Terauchi, H., Kawasaki, M., Wachi, M. & Yamagishi, J. (2005). Bioorg. Med. Chem. Lett. 15, 4299-4303.]); Abadi et al. (2003[Abadi, A. H., Eissa, A. A. H. & Hassan, G. S. (2003). Chem. Pharm. Bull. 51, 838-844.]). For crystal structures of related compounds, see: Sharma et al. (2014[Sharma, N., Brahmachari, G., Banerjee, B., Kant, R. & Gupta, V. K. (2014). Acta Cryst. E70, o875-o876.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H13BrN4O2·C2H6OS

  • Mr = 439.33

  • Monoclinic, P 21 /n

  • a = 13.4982 (6) Å

  • b = 8.3470 (4) Å

  • c = 17.7173 (8) Å

  • β = 101.510 (1)°

  • V = 1956.05 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 273 K

  • 0.54 × 0.51 × 0.33 mm

2.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.345, Tmax = 0.479

  • 9464 measured reflections

  • 3642 independent reflections

  • 2776 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.149

  • S = 1.04

  • 3642 reflections

  • 247 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.82 (3) 1.96 (4) 2.762 (5) 166 (4)
N3—H3A⋯N4ii 0.84 (4) 2.26 (4) 3.080 (5) 165 (3)
N3—H3B⋯N1iii 0.86 (3) 2.14 (4) 2.983 (4) 169 (3)
Symmetry codes: (i) -x+1, -y+3, -z; (ii) -x+2, -y+1, -z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyrazole moiety containing compounds represent an important group of pharmaceutically active molecules with a wide range of biological activities including antifungal (Tanitame et al., 2004), antibacterial (Tanitame et al., 2005), anti-diabetic, (Balbia et al., 2011), anti-inflammatory (Szabo et al., 2008) and antiangiogenesis (Abadi et al., 2003). The pyrazole derivatives are also known to have antiproliferative (Perchellet et al., 2006) and anti-tumor (Insuasty et al., 2010) activities. The title compound was synthesize as a part of our ongoing research to synthesize and evaluate the biological activities of structural analogues of dihydropyrano[2,3-c] pyrazole derivatives. In continuation of our efforts to purify enantiomerically pure compounds from racemic mixtures by using simple crystallization techniques the title compound was crystallize as dimethyl sulfoxide (DMSO) solvate from racemic mixture by dissolving in DMSO at room temperature.

The structure of title compound is similar to that of previously published 6-amino-3-methyl-4-(3,4,5-trimethoxy-phenyl)-2,4-dihydropyrano[2,3-c]- pyrazole-5-carbonitrile (Sharma et al., 2014) with the difference that trimethoxy sustituted phenyl ring is replaced by methoxy substituted bromo benzene ring (Fig. 1). The dihedral angles between the benzene (C1–C6) / pyran (O1/C7–C9/C10/C11) rings and the benzene (C1–C6) / pyrazole (N1/N2/C8/C9/C13) rings are 87.53 (15) and 86.04 (18)°, respectively. The bond lengths and angles are similar as in structurally related benzohydrazide derivatives (Sharma et al., 2014). The crystal structure stabilize by intermolecular N—H···O and N—H···N interactions to form a layer parallel to (101) (Table 2 and Fig. 2).

Related literature top

For the applications and biological activities of pyrazole derivative, see: Balbia et al. (2011); Insuasty et al. (2010); Szabó et al. (2008); Perchellet et al. (2006); Tanitame et al. (2004, 2005); Abadi et al. (2003). For crystal structures of related compounds, see: Sharma et al. (2014).

Experimental top

The title compound was synthesized as follows. Dichloromethane (10 ml), 1.0 equivalent (1 mmol) of triethylamine and pyrazolone were taken in a round bottom flask and allowed to stirred for 2 minutes at room temperature followed by the addition of 1.0 equivalent of corresponding pre-synthesized benzylidene from malononitrile and allowed to stir for additional 25–30 min. The progress of reaction was monitored by TLC. The desired product was appeared in the form of precipitates. The precipitates were washed with water to remove the unreacted pyrazolone to obtain pure products. Yeild 79%; m.p. 215 °C. The precipitates were redissolved in DMSO and allow to stand at room temperature for whole night followed by the removal of DMSO under freeze drying condition to obtain single crystals suitable for X-ray diffraction.

Refinement top

H atoms on methyl, phenyl and methine groups were positioned geometrically with C—H = 0.96, 0.93 and 0.98 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for the methyl H atoms or 1.2Ueq(C) for the other H atoms. H atoms on N were located in a difference Fourier map and refined freely [N—H = 0.81 (3)–0.86 (4) Å].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Only H atoms involved in the hydrogen bonds (dashed lines) are shown.
6-Amino-4-(3-bromo-4-methoxyphenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile dimethyl sulfoxide solvate top
Crystal data top
C15H13BrN4O2·C2H6OSF(000) = 896
Mr = 439.33Dx = 1.492 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3172 reflections
a = 13.4982 (6) Åθ = 2.4–25.5°
b = 8.3470 (4) ŵ = 2.23 mm1
c = 17.7173 (8) ÅT = 273 K
β = 101.510 (1)°BLOCK, colorless
V = 1956.05 (16) Å30.54 × 0.51 × 0.33 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3642 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 168
Tmin = 0.345, Tmax = 0.479k = 1010
9464 measured reflectionsl = 1621
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0714P)2 + 2.3987P]
where P = (Fo2 + 2Fc2)/3
3642 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C15H13BrN4O2·C2H6OSV = 1956.05 (16) Å3
Mr = 439.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4982 (6) ŵ = 2.23 mm1
b = 8.3470 (4) ÅT = 273 K
c = 17.7173 (8) Å0.54 × 0.51 × 0.33 mm
β = 101.510 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3642 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2776 reflections with I > 2σ(I)
Tmin = 0.345, Tmax = 0.479Rint = 0.019
9464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.15 e Å3
3642 reflectionsΔρmin = 0.59 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.53684 (5)0.80041 (9)0.10616 (4)0.1100 (3)
S20.41262 (9)1.33033 (14)0.16737 (7)0.0725 (4)
O10.80217 (17)0.8729 (2)0.16690 (11)0.0408 (5)
C110.8828 (2)0.8290 (3)0.03464 (16)0.0318 (6)
C100.8569 (2)0.7805 (4)0.10982 (17)0.0347 (7)
C70.8596 (2)0.9926 (3)0.00378 (16)0.0328 (6)
H7A0.92351.04990.01310.039*
N10.7159 (2)1.1133 (3)0.19466 (15)0.0415 (6)
N30.8795 (3)0.6418 (4)0.13885 (18)0.0499 (8)
C120.9385 (2)0.7201 (4)0.01801 (17)0.0378 (7)
C80.7977 (2)1.0822 (3)0.07006 (16)0.0328 (6)
C60.8067 (2)0.9806 (4)0.06440 (16)0.0348 (7)
N20.7048 (2)1.2445 (3)0.15155 (16)0.0432 (7)
C90.7727 (2)1.0195 (3)0.14372 (16)0.0345 (7)
C20.6640 (3)0.9018 (5)0.1172 (2)0.0530 (9)
C130.7513 (3)1.2299 (4)0.07755 (18)0.0388 (7)
C40.7998 (3)1.0387 (5)0.19660 (19)0.0527 (9)
H4A0.82991.08370.24360.063*
N40.9847 (3)0.6326 (4)0.06142 (17)0.0545 (8)
C50.8497 (3)1.0446 (4)0.13548 (18)0.0458 (8)
H5A0.91311.09250.14230.055*
O20.6509 (2)0.9565 (4)0.24480 (16)0.0713 (8)
C10.7129 (3)0.9085 (4)0.05641 (18)0.0439 (8)
H1B0.68260.86410.00930.053*
C140.7477 (3)1.3584 (4)0.0197 (2)0.0588 (10)
H14A0.70841.44680.04410.088*
H14B0.81511.39400.00150.088*
H14C0.71711.31700.02080.088*
C150.6936 (4)1.0205 (7)0.3188 (2)0.0878 (16)
H15A0.64701.00610.35270.132*
H15B0.70681.13270.31400.132*
H15C0.75570.96590.33940.132*
C30.7068 (3)0.9673 (4)0.18880 (19)0.0499 (9)
O30.4267 (3)1.5021 (4)0.1919 (3)0.1011 (12)
C160.4432 (4)1.2187 (6)0.2534 (3)0.0736 (12)
H16A0.38991.22920.28170.110*
H16B0.50521.25830.28400.110*
H16C0.45111.10790.24130.110*
C170.5216 (5)1.2847 (8)0.1298 (4)0.106 (2)
H17A0.51751.33800.08120.159*
H17B0.52551.17110.12260.159*
H17C0.58081.32040.16520.159*
H3A0.913 (3)0.572 (5)0.110 (2)0.055 (11)*
H3B0.850 (3)0.620 (4)0.185 (2)0.041 (9)*
H2A0.670 (3)1.320 (4)0.1703 (19)0.034 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0905 (4)0.1520 (6)0.1031 (5)0.0652 (4)0.0569 (4)0.0322 (4)
S20.0579 (6)0.0701 (7)0.0833 (8)0.0025 (5)0.0009 (5)0.0238 (6)
O10.0583 (14)0.0336 (11)0.0269 (10)0.0099 (10)0.0000 (9)0.0002 (9)
C110.0335 (15)0.0346 (15)0.0262 (14)0.0017 (12)0.0030 (11)0.0019 (12)
C100.0387 (16)0.0351 (16)0.0299 (15)0.0015 (13)0.0060 (12)0.0021 (12)
C70.0349 (15)0.0341 (16)0.0285 (14)0.0028 (12)0.0042 (12)0.0005 (12)
N10.0535 (16)0.0364 (14)0.0329 (13)0.0044 (12)0.0042 (12)0.0039 (11)
N30.072 (2)0.0428 (17)0.0293 (15)0.0176 (16)0.0038 (14)0.0042 (13)
C120.0441 (17)0.0405 (17)0.0288 (15)0.0015 (15)0.0075 (13)0.0036 (14)
C80.0380 (16)0.0325 (15)0.0277 (14)0.0033 (12)0.0063 (12)0.0010 (12)
C60.0414 (17)0.0341 (16)0.0286 (15)0.0038 (13)0.0064 (12)0.0007 (12)
N20.0552 (18)0.0322 (15)0.0413 (16)0.0082 (13)0.0077 (13)0.0058 (12)
C90.0425 (17)0.0305 (15)0.0302 (15)0.0014 (13)0.0065 (12)0.0025 (12)
C20.056 (2)0.055 (2)0.053 (2)0.0082 (18)0.0221 (17)0.0011 (17)
C130.0484 (18)0.0331 (16)0.0360 (16)0.0018 (14)0.0114 (14)0.0015 (13)
C40.066 (2)0.062 (2)0.0303 (17)0.0052 (19)0.0112 (16)0.0061 (16)
N40.069 (2)0.0520 (18)0.0379 (16)0.0160 (16)0.0002 (14)0.0015 (14)
C50.0481 (19)0.055 (2)0.0331 (17)0.0028 (16)0.0045 (14)0.0050 (15)
O20.089 (2)0.084 (2)0.0512 (16)0.0065 (17)0.0397 (15)0.0057 (14)
C10.0467 (19)0.0522 (19)0.0343 (16)0.0085 (16)0.0115 (14)0.0051 (14)
C140.087 (3)0.0398 (19)0.049 (2)0.0094 (19)0.014 (2)0.0070 (16)
C150.105 (4)0.127 (4)0.040 (2)0.034 (3)0.034 (2)0.005 (2)
C30.066 (2)0.051 (2)0.0377 (18)0.0106 (18)0.0239 (16)0.0077 (15)
O30.104 (3)0.0544 (19)0.151 (4)0.0290 (18)0.041 (2)0.030 (2)
C160.070 (3)0.065 (3)0.084 (3)0.003 (2)0.011 (2)0.020 (2)
C170.119 (5)0.109 (5)0.101 (4)0.031 (4)0.047 (4)0.014 (4)
Geometric parameters (Å, º) top
Br1—C21.889 (4)N2—H2A0.81 (3)
S2—O31.499 (4)C2—C11.371 (5)
S2—C161.764 (5)C2—C31.397 (5)
S2—C171.773 (6)C13—C141.492 (5)
O1—C101.365 (4)C4—C31.372 (5)
O1—C91.374 (4)C4—C51.385 (5)
C11—C101.369 (4)C4—H4A0.9300
C11—C121.408 (4)C5—H5A0.9300
C11—C71.527 (4)O2—C31.365 (4)
C10—N31.327 (4)O2—C151.426 (6)
C7—C81.498 (4)C1—H1B0.9300
C7—C61.524 (4)C14—H14A0.9600
C7—H7A0.9800C14—H14B0.9600
N1—C91.319 (4)C14—H14C0.9600
N1—N21.360 (4)C15—H15A0.9600
N3—H3A0.84 (4)C15—H15B0.9600
N3—H3B0.86 (4)C15—H15C0.9600
C12—N41.150 (4)C16—H16A0.9600
C8—C131.377 (4)C16—H16B0.9600
C8—C91.384 (4)C16—H16C0.9600
C6—C11.384 (4)C17—H17A0.9600
C6—C51.385 (4)C17—H17B0.9600
N2—C131.341 (4)C17—H17C0.9600
O3—S2—C16105.1 (2)C8—C13—C14130.9 (3)
O3—S2—C17104.3 (3)C3—C4—C5121.0 (3)
C16—S2—C1798.2 (3)C3—C4—H4A119.5
C10—O1—C9115.3 (2)C5—C4—H4A119.5
C10—C11—C12116.9 (3)C6—C5—C4121.1 (3)
C10—C11—C7125.6 (3)C6—C5—H5A119.5
C12—C11—C7117.4 (2)C4—C5—H5A119.5
N3—C10—O1109.7 (3)C3—O2—C15117.6 (4)
N3—C10—C11126.9 (3)C2—C1—C6120.7 (3)
O1—C10—C11123.3 (3)C2—C1—H1B119.6
C8—C7—C6112.2 (2)C6—C1—H1B119.6
C8—C7—C11106.7 (2)C13—C14—H14A109.5
C6—C7—C11112.7 (2)C13—C14—H14B109.5
C8—C7—H7A108.3H14A—C14—H14B109.5
C6—C7—H7A108.3C13—C14—H14C109.5
C11—C7—H7A108.3H14A—C14—H14C109.5
C9—N1—N2102.0 (2)H14B—C14—H14C109.5
C10—N3—H3A120 (3)O2—C15—H15A109.5
C10—N3—H3B117 (2)O2—C15—H15B109.5
H3A—N3—H3B122 (4)H15A—C15—H15B109.5
N4—C12—C11179.2 (4)O2—C15—H15C109.5
C13—C8—C9103.1 (3)H15A—C15—H15C109.5
C13—C8—C7133.9 (3)H15B—C15—H15C109.5
C9—C8—C7122.9 (3)O2—C3—C4125.7 (3)
C1—C6—C5118.0 (3)O2—C3—C2116.5 (4)
C1—C6—C7120.8 (3)C4—C3—C2117.8 (3)
C5—C6—C7121.2 (3)S2—C16—H16A109.5
C13—N2—N1113.1 (3)S2—C16—H16B109.5
C13—N2—H2A126 (2)H16A—C16—H16B109.5
N1—N2—H2A121 (2)S2—C16—H16C109.5
N1—C9—O1119.2 (3)H16A—C16—H16C109.5
N1—C9—C8114.8 (3)H16B—C16—H16C109.5
O1—C9—C8126.0 (3)S2—C17—H17A109.5
C1—C2—C3121.4 (3)S2—C17—H17B109.5
C1—C2—Br1120.4 (3)H17A—C17—H17B109.5
C3—C2—Br1118.2 (3)S2—C17—H17C109.5
N2—C13—C8106.9 (3)H17A—C17—H17C109.5
N2—C13—C14122.2 (3)H17B—C17—H17C109.5
C9—O1—C10—N3179.1 (3)C7—C8—C9—N1178.5 (3)
C9—O1—C10—C110.9 (4)C13—C8—C9—O1179.3 (3)
C12—C11—C10—N30.7 (5)C7—C8—C9—O11.9 (5)
C7—C11—C10—N3177.0 (3)N1—N2—C13—C80.9 (4)
C12—C11—C10—O1179.4 (3)N1—N2—C13—C14179.0 (3)
C7—C11—C10—O12.9 (5)C9—C8—C13—N20.4 (3)
C10—C11—C7—C84.0 (4)C7—C8—C13—N2179.0 (3)
C12—C11—C7—C8178.4 (3)C9—C8—C13—C14179.6 (4)
C10—C11—C7—C6127.6 (3)C7—C8—C13—C140.9 (6)
C12—C11—C7—C654.7 (4)C1—C6—C5—C40.8 (5)
C6—C7—C8—C1352.8 (4)C7—C6—C5—C4177.6 (3)
C11—C7—C8—C13176.8 (3)C3—C4—C5—C60.8 (6)
C6—C7—C8—C9125.6 (3)C3—C2—C1—C60.1 (6)
C11—C7—C8—C91.6 (4)Br1—C2—C1—C6179.1 (3)
C8—C7—C6—C158.8 (4)C5—C6—C1—C20.3 (5)
C11—C7—C6—C161.8 (4)C7—C6—C1—C2178.1 (3)
C8—C7—C6—C5119.6 (3)C15—O2—C3—C42.0 (6)
C11—C7—C6—C5119.8 (3)C15—O2—C3—C2179.1 (4)
C9—N1—N2—C131.0 (4)C5—C4—C3—O2179.2 (3)
N2—N1—C9—O1178.8 (3)C5—C4—C3—C20.4 (6)
N2—N1—C9—C80.8 (4)C1—C2—C3—O2178.8 (3)
C10—O1—C9—N1177.1 (3)Br1—C2—C3—O22.0 (5)
C10—O1—C9—C83.4 (4)C1—C2—C3—C40.1 (6)
C13—C8—C9—N10.3 (4)Br1—C2—C3—C4179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.82 (3)1.96 (4)2.762 (5)166 (4)
N3—H3A···N4ii0.84 (4)2.26 (4)3.080 (5)165 (3)
N3—H3B···N1iii0.86 (3)2.14 (4)2.983 (4)169 (3)
Symmetry codes: (i) x+1, y+3, z; (ii) x+2, y+1, z; (iii) x+3/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.82 (3)1.96 (4)2.762 (5)166 (4)
N3—H3A···N4ii0.84 (4)2.26 (4)3.080 (5)165 (3)
N3—H3B···N1iii0.86 (3)2.14 (4)2.983 (4)169 (3)
Symmetry codes: (i) x+1, y+3, z; (ii) x+2, y+1, z; (iii) x+3/2, y1/2, z1/2.
 

Acknowledgements

The authors acknowledge the financial support of the Higher Education Commission of Pakistan (HEC) through research projects Nos. 20–1910 and 20–2216 under the National Research Program for Universities.

References

First citationAbadi, A. H., Eissa, A. A. H. & Hassan, G. S. (2003). Chem. Pharm. Bull. 51, 838–844.  CrossRef PubMed CAS Google Scholar
First citationBalbi, A., Anzaldi, M., Macciò, C., Aiello, C., Mazzei, M., Gangemi, R., Castagnola, P., Miele, M., Rosano, C. & Viale, M. (2011). Eur. J. Med. Chem. 46, 5293–5309.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationInsuasty, B., Tigreros, A., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M., Sanchez, A. & Cobo, J. (2010). Bioorg. Med. Chem. 18, 4965–4974.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPerchellet, E. M., Ward, M. M., Skaltsounis, A. L., Kostakis, I. K., Pouli, N., Marakos, P. & Perchellet, J. P. (2006). Anticancer Res. 26, 2791–2804.  Web of Science PubMed CAS Google Scholar
First citationSharma, N., Brahmachari, G., Banerjee, B., Kant, R. & Gupta, V. K. (2014). Acta Cryst. E70, o875–o876.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzabó, G., Fischer, J., Kis-Varga, A. & Gyires, K. (2008). J. Med. Chem. 51, 142–147.  Web of Science PubMed Google Scholar
First citationTanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Suzuki, K., Ueda, T., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). Bioorg. Med. Chem. 12, 5515–5524.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanitame, A., Oyamada, Y., Ofuji, K., Terauchi, H., Kawasaki, M., Wachi, M. & Yamagishi, J. (2005). Bioorg. Med. Chem. Lett. 15, 4299–4303.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o453-o454
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds