organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-acet­­oxy-2-methyl­benzoic acid

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India, bPG & Research Department of Physics, Government Arts College, Ariyalur 621 713, Tamil Nadu, India, and cSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
*Correspondence e-mail: asubashini2k4@yahoo.co.in

Edited by A. J. Lough, University of Toronto, Canada (Received 11 May 2015; accepted 5 June 2015; online 13 June 2015)

In the title mol­ecule, C10H10O4, the carb­oxy­lic acid group is twisted by 11.37 (15)° from the plane of the benzene ring and the acet­oxy group is twisted from this plane by 86.60 (17)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with the expected R22(8) graph-set motif.

1. Related literature

For related structures, see: Chiari et al. (1981[Chiari, G., Fronczek, F. R., Davis, S. T. & Gandour, R. D. (1981). Acta Cryst. B37, 1623-1625.]); Fronczek et al. (1982[Fronczek, F. R., Merrill, M. L. & Gandour, R. D. (1982). Acta Cryst. B38, 1337-1339.]); Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.]); Shoaib et al. (2014[Shoaib, M., Shah, I., Shah, S. W. A., Tahir, M. N., Ullah, S. & Ayaz, M. (2014). Acta Cryst. E70, o1153.]); Wheatley (1964[Wheatley, P. J. (1964). J. Chem. Soc. pp. 6036-6048.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H10O4

  • Mr = 194.18

  • Orthorhombic, P b c a

  • a = 7.754 (2) Å

  • b = 11.346 (3) Å

  • c = 21.187 (6) Å

  • V = 1864.0 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.38 × 0.22 × 0.06 mm

2.2. Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.994

  • 14775 measured reflections

  • 2131 independent reflections

  • 1017 reflections with I > 2σ(I)

  • Rint = 0.095

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.184

  • S = 1.03

  • 2131 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.93 (5) 1.70 (5) 2.622 (3) 176 (3)
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Crystal structures of 2-acetoxy-3-methylbenzoic acid (3-methyl aspirin) (Chiari et al., 1981) and 2-acetoxy-6-methylbenzoic acid (6-methyl aspirin) have already been reported in the literature (Fronczek et al. 1982). Aspirin is a unique drug as it is effective against pain, it has anti-pyretic and anti-inflammatory properties, and it is widely used during heart attacks or strokes. The crystal and molecular structure of aspirin has been reported by Wheatley in 1964. We report herein on the crystal structure of the title molecule.

The molecular structure of the title compound is shown in Fig. 1. There are some very definite angular distortions within the molecule, both in the benzene ring and the carboxyl group, but more particularly, in the acetyl group. The internal angle at C3 (123.6 (3)°) is greater than 120° (the expected value in terms of hybridization principles), and that at C2 is less (116.2 (2)°). The carboxyl group is bent away from the methyl and acetyl group, possibly by repulsion between O1 and O2, so that there is a substantial increase in the angle C2—C1—C7, and a decrease in C6—C1—C7. The angle O1—C7—O2 is greater than 120°, again suggesting repulsion between oxygen atoms. The carboxyl group is twisted by 11.37 (15)° out of the plane of the benzene ring, and the acetoxy group is twisted out of plane by 86.60 (17)°.

Certain torsion angles reveal conformational changes in the carboxyl and acetoxy groups caused by methyl substitution at C2. Atoms C7 and C8 lie in the plane of the benzene ring and O3 is slightly out of plane. The deviations of atoms C7, C8 and O3 from the least-squares plane of the benzene ring are -0.015 (3), 0.010 (3) and 0.111 (2) Å, respectively.

A similar situation is exists in 2-acetoxy-6-methyl benzoic acid (Fronczek et al. 1982). Comparison of the C2—C3—O3—C9 angle (94.8 (3)°) reveals that the acetoxy group is skewed slightly away from the methyl group in this structure. There is also a slight but significant twist in the ester backbone, C3—O3—C9—C10 = -178.3 (3)°, present in the title compound, a result quite similar to that in 6-methyl aspirin (Fronczek et al. 1982). In the crystal, pairs of O—H···O hydrogen bonds form inversion dimers with the expected R22(8) graph-set motif (Fig. 2). The carboxyl oxygen atom O1 acts as a donor in an intermolecular hydrogen bond to atom O2, producing an R22(8) ring, thus creating a hydrogen-bonded dimer. This type of motif is commonly observed (Shoaib et al., 2014; Montis & Hursthouse et al., 2012).

Related literature top

For related structures, see: Chiari et al. (1981); Fronczek et al. (1982); Montis & Hursthouse (2012); Shoaib et al. (2014); Wheatley (1964).

Experimental top

A hot methanol solution (20 ml) of 3-acetoxy-2-methyl benzoic acid [3 A2MBA] (1 mm 0.194 g, Alfa aesar) was stirred at room temperature for 20 minutes. The resulting solution was kept as such for crystallization. After a few days colourless block-shaped crystals were appeared from the mother liquor.

Refinement top

H atoms bonded to C atoms were positioned geometrically and treated as riding with C—H = 0.93–0.96Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The hydroxyl H atom was refined independently with an isotropic displacement parameter.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines [symmetry code: (i) -x, -y + 2, -z + 1].
3-Acetoxy-2-methylbenzoic acid top
Crystal data top
C10H10O4F(000) = 816
Mr = 194.18Dx = 1.384 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 1.9–27.5°
a = 7.754 (2) ŵ = 0.11 mm1
b = 11.346 (3) ÅT = 293 K
c = 21.187 (6) ÅBlock, colourless
V = 1864.0 (9) Å30.38 × 0.22 × 0.06 mm
Z = 8
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2131 independent reflections
Radiation source: fine-focus sealed tube1017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.960, Tmax = 0.994k = 1314
14775 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.1948P]
where P = (Fo2 + 2Fc2)/3
2131 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H10O4V = 1864.0 (9) Å3
Mr = 194.18Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.754 (2) ŵ = 0.11 mm1
b = 11.346 (3) ÅT = 293 K
c = 21.187 (6) Å0.38 × 0.22 × 0.06 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2131 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1017 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.994Rint = 0.095
14775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
2131 reflectionsΔρmin = 0.18 e Å3
133 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2256 (3)0.9740 (2)0.49706 (10)0.0671 (8)
O20.0048 (2)0.88776 (19)0.45072 (9)0.0665 (8)
O30.3342 (3)0.54490 (19)0.34035 (9)0.0677 (8)
O40.3190 (4)0.6303 (3)0.24740 (11)0.1057 (13)
C10.2878 (3)0.8175 (3)0.42969 (12)0.0500 (9)
C20.2399 (3)0.7163 (3)0.39650 (12)0.0523 (10)
C30.3732 (4)0.6518 (3)0.36983 (12)0.0547 (10)
C40.5439 (4)0.6833 (3)0.37411 (13)0.0659 (13)
C50.5868 (4)0.7823 (3)0.40696 (14)0.0658 (11)
C60.4601 (3)0.8482 (3)0.43437 (13)0.0565 (10)
C70.1608 (4)0.8942 (3)0.45996 (12)0.0534 (10)
C80.0586 (4)0.6754 (3)0.38841 (14)0.0688 (11)
C90.3081 (4)0.5436 (4)0.27810 (16)0.0690 (14)
C100.2636 (5)0.4254 (3)0.25496 (17)0.0927 (17)
H10.141 (6)1.022 (4)0.514 (2)0.139 (18)*
H40.628800.637800.354900.0790*
H50.701600.804800.410700.0790*
H60.490300.915500.456800.0680*
H8A0.002600.722500.356800.1030*
H8B0.001900.683000.427700.1030*
H8C0.058300.594300.375400.1030*
H10A0.234200.429700.211000.1390*
H10B0.167000.395600.278400.1390*
H10C0.360500.373800.260400.1390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0434 (12)0.0748 (16)0.0830 (14)0.0033 (11)0.0008 (10)0.0255 (12)
O20.0386 (12)0.0773 (15)0.0836 (14)0.0004 (10)0.0012 (9)0.0192 (12)
O30.0830 (15)0.0599 (15)0.0602 (13)0.0060 (12)0.0015 (10)0.0054 (10)
O40.151 (3)0.102 (2)0.0642 (15)0.014 (2)0.0150 (15)0.0037 (16)
C10.0414 (15)0.0559 (18)0.0527 (15)0.0009 (13)0.0003 (11)0.0004 (13)
C20.0460 (16)0.0602 (19)0.0507 (15)0.0017 (14)0.0011 (12)0.0033 (14)
C30.0574 (19)0.0575 (19)0.0492 (15)0.0071 (15)0.0023 (12)0.0001 (14)
C40.0500 (19)0.082 (3)0.0658 (19)0.0084 (17)0.0086 (13)0.0084 (17)
C50.0405 (16)0.079 (2)0.078 (2)0.0027 (16)0.0030 (14)0.0089 (18)
C60.0455 (16)0.0625 (19)0.0615 (17)0.0021 (14)0.0026 (13)0.0065 (15)
C70.0439 (17)0.0598 (19)0.0565 (16)0.0001 (15)0.0012 (13)0.0051 (14)
C80.0564 (19)0.070 (2)0.080 (2)0.0075 (16)0.0007 (14)0.0101 (17)
C90.069 (2)0.079 (3)0.059 (2)0.0072 (19)0.0002 (15)0.0072 (19)
C100.095 (3)0.090 (3)0.093 (3)0.001 (2)0.010 (2)0.030 (2)
Geometric parameters (Å, º) top
O1—C71.300 (4)C4—C51.363 (5)
O2—C71.228 (3)C5—C61.364 (4)
O3—C31.397 (4)C9—C101.469 (6)
O3—C91.334 (4)C4—H40.9300
O4—C91.182 (5)C5—H50.9300
O1—H10.93 (5)C6—H60.9300
C1—C21.397 (4)C8—H8A0.9600
C1—C61.384 (3)C8—H8B0.9600
C1—C71.462 (4)C8—H8C0.9600
C2—C81.490 (4)C10—H10A0.9600
C2—C31.387 (4)C10—H10B0.9600
C3—C41.374 (4)C10—H10C0.9600
O1···O2i2.622 (3)C7···C5ix3.506 (4)
O2···C7i3.369 (4)C7···O3ii3.057 (4)
O2···C82.779 (4)C8···C93.383 (5)
O2···O1i2.622 (3)C8···O22.779 (4)
O2···O3ii3.195 (3)C9···C83.383 (5)
O3···C7iii3.057 (4)C10···O4iii3.413 (5)
O3···O2iii3.195 (3)C6···H8Cii3.0600
O3···C1iii3.337 (4)C6···H8Bviii2.9600
O4···C4iv3.397 (4)C7···H8B2.7900
O4···C43.257 (4)C7···H1i2.59 (5)
O4···C10ii3.413 (5)C9···H8C2.8900
O4···C23.363 (4)H1···O1i2.85 (5)
O1···H62.3200H1···O2i1.70 (5)
O1···H6v2.7200H1···C7i2.59 (5)
O1···H1i2.85 (5)H1···H1i2.32 (7)
O2···H5vi2.6700H4···O4vii2.6200
O2···H8B2.3700H5···O2x2.6700
O2···H1i1.70 (5)H6···O12.3200
O2···H8A2.7300H6···O1v2.7200
O3···H8C2.3300H8A···O22.7300
O4···H4iv2.6200H8A···O4iv2.8300
O4···H8Avii2.8300H8B···O22.3700
C1···O3ii3.337 (4)H8B···C72.7900
C2···O43.363 (4)H8B···C6ix2.9600
C3···C7iii3.501 (5)H8C···O32.3300
C4···O43.257 (4)H8C···C92.8900
C4···O4vii3.397 (4)H8C···C6iii3.0600
C5···C7viii3.506 (4)H10B···H10Civ2.5300
C7···C3ii3.501 (5)H10C···H10Bvii2.5300
C7···O2i3.369 (4)
C3—O3—C9119.0 (3)O3—C9—O4121.6 (4)
C7—O1—H1112 (3)C3—C4—H4121.00
C2—C1—C7122.1 (2)C5—C4—H4121.00
C6—C1—C7118.0 (3)C4—C5—H5120.00
C2—C1—C6120.0 (3)C6—C5—H5120.00
C1—C2—C8124.4 (2)C1—C6—H6119.00
C3—C2—C8119.5 (3)C5—C6—H6119.00
C1—C2—C3116.2 (2)C2—C8—H8A109.00
O3—C3—C2118.6 (3)C2—C8—H8B109.00
O3—C3—C4117.6 (3)C2—C8—H8C109.00
C2—C3—C4123.6 (3)H8A—C8—H8B110.00
C3—C4—C5118.9 (3)H8A—C8—H8C109.00
C4—C5—C6119.6 (3)H8B—C8—H8C110.00
C1—C6—C5121.8 (3)C9—C10—H10A109.00
O1—C7—C1114.8 (3)C9—C10—H10B109.00
O2—C7—C1123.9 (3)C9—C10—H10C109.00
O1—C7—O2121.3 (3)H10A—C10—H10B110.00
O3—C9—C10112.1 (3)H10A—C10—H10C109.00
O4—C9—C10126.4 (3)H10B—C10—H10C110.00
C9—O3—C3—C294.8 (3)C2—C1—C7—O212.0 (5)
C9—O3—C3—C489.2 (3)C6—C1—C7—O110.6 (4)
C3—O3—C9—O40.8 (5)C6—C1—C7—O2167.6 (3)
C3—O3—C9—C10178.3 (3)C1—C2—C3—O3175.0 (2)
C6—C1—C2—C30.1 (4)C1—C2—C3—C40.7 (4)
C6—C1—C2—C8179.8 (3)C8—C2—C3—O35.1 (4)
C7—C1—C2—C3179.7 (3)C8—C2—C3—C4179.2 (3)
C7—C1—C2—C80.2 (4)O3—C3—C4—C5174.9 (3)
C2—C1—C6—C50.4 (4)C2—C3—C4—C50.9 (5)
C7—C1—C6—C5179.3 (3)C3—C4—C5—C60.5 (5)
C2—C1—C7—O1169.8 (3)C4—C5—C6—C10.2 (5)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y, z+1/2; (v) x+1, y+2, z+1; (vi) x1, y, z; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y+3/2, z+1; (ix) x1/2, y+3/2, z+1; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.93 (5)1.70 (5)2.622 (3)176 (3)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.93 (5)1.70 (5)2.622 (3)176 (3)
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

MS thanks Collegiate Education Chennai, Tamil Nadu, for financial support (College Research Student Fellowship Ref· No. 28696/K2/12).

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiari, G., Fronczek, F. R., Davis, S. T. & Gandour, R. D. (1981). Acta Cryst. B37, 1623–1625.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFronczek, F. R., Merrill, M. L. & Gandour, R. D. (1982). Acta Cryst. B38, 1337–1339.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMontis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242–5254.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoaib, M., Shah, I., Shah, S. W. A., Tahir, M. N., Ullah, S. & Ayaz, M. (2014). Acta Cryst. E70, o1153.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWheatley, P. J. (1964). J. Chem. Soc. pp. 6036–6048.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds