research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 810-812

Crystal structure of metronidazolium tetra­chlorido­aurate(III)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Columbia University, New York, NY 10027, USA, and bHaskins Laboratories, Dept. of Chemistry, Pace University, New York, NY 10038, USA
*Correspondence e-mail: rupmacis@pace.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 14 May 2015; accepted 4 June 2015; online 17 June 2015)

Metronidazole (MET) [systematic names: 1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanol] is a medication that is used to treat infections from a variety of anaerobic organisms. As with other imidazole derivatives, metronidazole is also susceptible to protonation. However, there are few reports of the structures of metronidazolium derivatives. In the title compound, (C6H10N3O3)[AuCl4] [systematic name: 1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazol-3-ium tetra­chlorido­aur­ate(III)], the asymmetric unit consists of a metronidazolium cation, [H(MET)]+, and a tetra­chlorido­aurate(III) anion, [AuCl4], in which the AuIII ion is in a slightly distorted square-planar coordination environment. In the cation, the nitro group is essentially coplanar with the imidazole ring, as indicated by an O N—C=C torsion angle of −0.2 (4)°, while the hy­droxy­ethyl group is in a coiled conformation, with an O(H)—C—C—N torsion angle of 62.3 (3)°. In the crystal, the anion and cation are linked by an inter­molecular O—H⋯Cl hydrogen bond. In addition, the N—H group of the metronidazolium ion serves as a hydrogen-bond donor to the O atom of the hy­droxy­ethyl group of a symmetry-related mol­ecule, leading to the formation of chains along [010].

1. Chemical context

Metronidazole (MET), marketed as flagyl, and also known by the systematic names 1-(2-hy­droxy­eth­yl)-2-methyl-5-nitro-1H-imidazole and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanol, is a medication that has been used for the treatment of parasitic infections, such as trichomoniasis, amoebiasis and giardiasis, and is also effective against anaerobic bacteria (Freeman et al., 1997[Freeman, C. D., Klutman, N. E. & Lamp, K. C. (1997). Drugs, 54, 679-708.]; Miljkovic et al., 2014[Miljkovic, V., Arsic, B., Bojanic, Z., Nikolic, G., Nikolic, L. J., Lj, , Kalicanin, B. & Savic, V. (2014). Pharmazie, 69, 571-577.]; Soares et al., 2012[Soares, G. M. S., Figueiredo, L. C., Faveri, M., Cortelli, S. C., Duarte, P. M. & Feres, M. (2012). J. Appl. Oral Sci. 20, 295-309.]; Samuelson, 1999[Samuelson, J. (1999). Antimicrob. Agents Chemother. 43, 1533-1541.]; Lofmark et al., 2010[Lofmark, S., Edlund, C. & Nord, C. E. (2010). Clin. Infect. Dis. 50 (Suppl 1), S16-S23.]; Contreras et al., 2009[Contreras, R., Flores-Parra, A., Mijangos, E., Téllez, F., López-Sandoval, H. & Barba-Behrens, N. (2009). Coord. Chem. Rev. 253, 1979-1999.]). Metronidazole possesses a variety of functional groups, and the two-coordinate nitro­gen atom of the imidazole ring has been shown to be an effective ligand for a variety of metals (Contreras et al., 2009[Contreras, R., Flores-Parra, A., Mijangos, E., Téllez, F., López-Sandoval, H. & Barba-Behrens, N. (2009). Coord. Chem. Rev. 253, 1979-1999.]). This nitro­gen atom is also susceptible to protonation, but there are few structures of metronidazolium derivatives reported in the literature (Yang, 2008[Yang, B. (2008). Acta Cryst. E64, o1338-o1339.]; Wang et al., 2010[Wang, Y.-T., Chu, X.-L., Yan, S.-C. & Tang, G.-M. (2010). Acta Cryst. E66, o2647.]). We describe herein the structure of metronidazolium tetra­chlorido­aurate(III), which is obtained by the addition of MET to HAuCl4.

2. Structural commentary

The asymmetric unit of [H(MET)][AuCl4] consists of a metronidazolium cation, [H(MET)]+, hydrogen-bonded to a square-planar tetra­chlorido­aurate(III) anion, [AuCl4], by an O—H⋯Cl hydrogen bond as illustrated in Fig. 1[link]. The O3⋯Cl3 distance of 3.169 (2) Å is comparable to the values in other tetra­chlorido­aurate(III) derivatives that exhibit O—H⋯Cl hydrogen bonds. As an illustration, bis­{2-[(2-hy­droxy­eth­yl)imino­meth­yl]phenolato}gold(III) tetra­chlorido­aurate(III) possesses an O—H⋯Cl hydrogen bond between a hy­droxy­ethyl group and [AuCl4], with an O(H)⋯Cl distance of 3.365 Å (Nockemann et al., 2007[Nockemann, P., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2007). Acta Cryst. E63, m402-m404.]). For further reference, the average O⋯Cl distance in compounds that have O—H⋯Cl inter­actions is 3.196 (3) Å (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 49-76.]). The nitro group is almost coplanar with the imidazole ring, as indicated by an O1—N3—C2—C1 torsion angle of −0.2 (4)°, while the hy­droxy­ethyl group exhibits an O3—C6—C5—N2 torsion angle of 62.3 (3)°, describing a coiled conformation.

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of the title compound, shown with 20% probability displacement ellipsoids. The O3—H3⋯Cl3 hydrogen bond is shown as an open bond.

3. Supra­molecular features

In the crystal, the N—H group of the metronidazolium ion serves as a hydrogen-bond donor to the oxygen atom of the hy­droxy­ethyl group of a symmetry-related mol­ecule, forming a chain along [010] in which each O—H group is O—H⋯Cl hydrogen bonded to a [AuCl4] ion (Table 1[link] and Fig. 2[link]). The N⋯O distance of 2.729 (3) Å associated with the hydrogen bond is comparable to that observed for metronidazole [2.816 (2) Å] (Blaton et al., 1979[Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2465-2467.]; Galván-Tejada et al., 2002[Galván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339-348.]). However, an important difference between the hydrogen bonds in metronidazole and metronidazolium is that the alcohol O—H group is the hydrogen-bond donor for metronidazole (i.e. O—H⋯N), while the N—H group is the hydrogen-bond donor for metronidazolium (i.e. N—H⋯O).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O3i 0.94 (4) 1.81 (4) 2.729 (3) 166 (3)
O3—H3⋯Cl3 0.67 (4) 2.54 (4) 3.169 (2) 158 (4)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure showing a hydrogen-bonded chain (open bonds) along [010].

4. Database survey

Metronidazolium derivatives that feature other counter-ions, e.g. 3-carb­oxy-4-hy­droxy­benzene­sulfonate and perchlorate have been reported (Yang, 2008[Yang, B. (2008). Acta Cryst. E64, o1338-o1339.]; Wang et al., 2010[Wang, Y.-T., Chu, X.-L., Yan, S.-C. & Tang, G.-M. (2010). Acta Cryst. E66, o2647.]), as have a variety of tetra­chlorido­aurate(III) complexes (Johnson & Steed, 1998[Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.]; Pluzhnik-Gladyr et al., 2014[Pluzhnik-Gladyr, S. M., Kravtsov, V. C., Fonari, M. S. & Kamalov, G. L. (2014). Dalton Trans. 43, 7087-7095.]; Faza­eli et al., 2010[Fazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212.]).

5. Synthesis and crystallization

Crystals of composition [H(MET)][AuCl4] were obtained by combining HAuCl4·H2O (0.12 mmol) with MET (0.20 mmol) in MeOH (2 ml), followed by evaporation of MeOH, and crystallization from Et2O.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were refined with a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl). H atoms bonded to N and O atoms were refined independently with isotropic displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula (C6H10N3O3)[AuCl4]
Mr 510.94
Crystal system, space group Monoclinic, P21/n
Temperature (K) 130
a, b, c (Å) 7.324 (2), 11.972 (4), 15.667 (5)
β (°) 94.384 (4)
V3) 1369.6 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 11.52
Crystal size (mm) 0.23 × 0.04 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.426, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22024, 4214, 3673
Rint 0.041
(sin θ/λ)max−1) 0.718
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.16
No. of reflections 4214
No. of parameters 163
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.30, −1.22
Computer programs: APEX2 and, SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Chemical context top

Metronidazole (MET), marketed as flagyl, and also known by the systematic names 1-(2-hy­droxy­ethyl)-2-methyl-5-nitro-1H-imidazole and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanol, is a medication that has been used for the treatment of parasitic infections, such as trichomoniasis, amoebiasis and giardiasis, and is also effective against anaerobic bacteria (Freeman et al., 1997; Miljkovic et al., 2014; Soares et al., 2012; Samuelson, 1999; Lofmark et al., 2010; Contreras et al., 2009). Metronidazole possesses a variety of functional groups, and the two-coordinate nitro­gen atom of the imidazole ring has been shown to be an effective ligand for a variety of metals (Contreras et al., 2009). This nitro­gen atom is also susceptible to protonation, but there are few structures of metronidazolium derivatives reported in the literature (Yang, 2008; Wang et al., 2010). We describe herein the structure of metronidazolium tetra­chloridoaurate(III), which is obtained by the addition of MET to HAuCl4.

Structural commentary top

The asymmetric unit of [H(MET)][AuCl4] consists of a metronidazolium cation, [H(MET)]+ hydrogen bonded to a square-planar tetra­chloridoaurate(III) anion, [AuCl4], by an O—H···Cl hydrogen bond as illustrated in Fig. 1. The O3···Cl3 distance of 3.169 (2) Å is comparable to the values in other tetra­chloridoaurate(III) derivatives that exhibit O—H···Cl hydrogen bonds. As an illustration, bis­{2-[(2-hy­droxy­ethyl)­imino­methyl]­phenolato}gold(III) tetra­chloridoaurate(III) possesses an O–H···Cl hydrogen bond between a hy­droxy­ethyl group and [AuCl4], with an O(H)···Cl distance of 3.365 Å (Nockemann et al., 2007). For further reference, the average O···Cl distance in compounds that have O—H···Cl inter­actions is 3.196 (3) Å (Steiner, 2002). The nitro group is almost coplanar with the imidazole ring, as indicated by an O1—N3—C2—C1 torsion angle of -0.2 (4)°, while the hy­droxy­ethyl group exhibits an O3—C6—C5—N2 torsion angle of 62.3 (3)°, describing a coiled conformation.

Supra­molecular features top

In the crystal, the N—H group of the metronidazolium ion serves as a hydrogen-bond donor to the oxygen atom of the hy­droxy­ethyl group of a symmetry-related molecule, forming a chain along [010] in which each O—H group is O—H···Cl hydrogen bonded to a [AuCl4] ion (Table 1 and Fig. 2). The N···O distance of 2.729 (3) Å associated with the hydrogen bond is comparable to that observed for metronidazole [2.816 (2) Å] (Blaton et al., 1979, Galván-Tejada et al., 2002). However, an important difference between the hydrogen bonds in metronidazole and metronidazolium is that the alcohol O—H group is the hydrogen-bond donor for metronidazole (i.e. O—H···N), while the N—H group is the hydrogen-bond donor for metronidazolium (i.e. N—H···O).

Database survey top

Metronidazolium derivatives that feature other counter-ions, e.g. 3-carb­oxy-4-hy­droxy­benzene­sulfonate and perchlorate have been reported (Yang, 2008; Wang et al., 2010), as have a variety of tetra­chloridoaurate(III) complexes (Johnson & Steed, 1998; Pluzhnik-Gladyr et al., 2014; Faza­eli et al., 2010).

Synthesis and crystallization top

Crystals of composition [H(MET)][AuCl4] were obtained by combining HAuCl4.H2O (0.12 mmol) with MET (0.20 mmol) in MeOH (2 ml), followed by evaporation of MeOH, and crystallization from Et2O.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C atoms were refined with a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). H atoms bonded to N and O atoms were refined independently with isotropic displacement parameters.

Related literature top

For related literature, see: Blaton et al. (1979); Contreras et al. (2009); Fazaeli et al. (2010); Freeman et al. (1997); Galván-Tejada, Bernes, Castillo-Blum, Noth, Vicente & Barba-Behrens (2002); Johnson & Steed (1998); Lofmark et al. (2010); Miljkovic et al. (2014); Nockemann et al. (2007); Pluzhnik-Gladyr, Kravtsov, Fonari & Kamalov (2014); Samuelson (1999); Sheldrick (2008); Sheldrick (2015); Soares et al. (2012); Steiner (2002); Wang et al. (2010); Yang (2008).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, shown with 20% probability displacement ellipsoids. The O3—H3···Cl3 hydrogen bond is shown as an open bond.
[Figure 2] Fig. 2. Part of the crystal structure showing a hydrogen-bonded chain (open bonds) along [010].
1-(2-Hydroxyethyl)-2-methyl-5-nitro-1H-imidazol-3-ium tetrachloridoaurate(III)] top
Crystal data top
(C6H10N3O3)[AuCl4]F(000) = 952
Mr = 510.94Dx = 2.478 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.324 (2) ÅCell parameters from 9874 reflections
b = 11.972 (4) Åθ = 2.6–30.6°
c = 15.667 (5) ŵ = 11.52 mm1
β = 94.384 (4)°T = 130 K
V = 1369.6 (8) Å3Plate, yellow
Z = 40.23 × 0.04 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3673 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 30.7°, θmin = 2.1°
Tmin = 0.426, Tmax = 0.746h = 1010
22024 measured reflectionsk = 1717
4214 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0129P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
4214 reflectionsΔρmax = 1.30 e Å3
163 parametersΔρmin = 1.22 e Å3
Crystal data top
(C6H10N3O3)[AuCl4]V = 1369.6 (8) Å3
Mr = 510.94Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.324 (2) ŵ = 11.52 mm1
b = 11.972 (4) ÅT = 130 K
c = 15.667 (5) Å0.23 × 0.04 × 0.02 mm
β = 94.384 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4214 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3673 reflections with I > 2σ(I)
Tmin = 0.426, Tmax = 0.746Rint = 0.041
22024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 1.30 e Å3
4214 reflectionsΔρmin = 1.22 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.36629 (2)0.79983 (2)0.58625 (2)0.01868 (4)
Cl10.26070 (11)0.84595 (7)0.45047 (5)0.03247 (17)
Cl20.44092 (10)0.62541 (6)0.54111 (5)0.03012 (16)
Cl30.46029 (10)0.75210 (6)0.72389 (5)0.02610 (15)
Cl40.29498 (10)0.97418 (6)0.63205 (5)0.02831 (15)
O10.8047 (3)0.7553 (2)0.41611 (14)0.0367 (5)
O20.9242 (3)0.60835 (18)0.47815 (14)0.0331 (5)
O30.7450 (3)0.55236 (18)0.73360 (15)0.0265 (5)
H30.684 (5)0.591 (3)0.719 (2)0.042 (13)*
N10.8446 (3)0.89061 (19)0.65413 (15)0.0175 (4)
H010.810 (5)0.953 (3)0.685 (2)0.042 (10)*
N20.9387 (3)0.72022 (17)0.63739 (14)0.0159 (4)
N30.8670 (3)0.70319 (19)0.47846 (15)0.0223 (5)
C10.8127 (4)0.8685 (2)0.56913 (17)0.0191 (5)
H1A0.76040.91730.52610.023*
C20.8708 (3)0.7626 (2)0.55853 (17)0.0158 (5)
C30.9200 (4)0.8016 (2)0.69521 (17)0.0170 (5)
C40.9783 (4)0.7982 (3)0.78720 (19)0.0272 (6)
H4A0.93180.86430.81540.041*
H4B1.11230.79720.79490.041*
H4C0.92950.73070.81260.041*
C51.0107 (4)0.6070 (2)0.65912 (18)0.0198 (5)
H5A1.08630.61020.71420.024*
H5B1.09040.58220.61450.024*
C60.8579 (4)0.5230 (2)0.66604 (18)0.0227 (6)
H6A0.78180.51990.61110.027*
H6B0.91110.44790.67730.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.01490 (5)0.01746 (6)0.02409 (6)0.00147 (4)0.00416 (4)0.00253 (4)
Cl10.0438 (4)0.0304 (4)0.0234 (4)0.0042 (3)0.0037 (3)0.0009 (3)
Cl20.0286 (4)0.0222 (3)0.0400 (4)0.0024 (3)0.0057 (3)0.0092 (3)
Cl30.0255 (3)0.0251 (3)0.0272 (4)0.0036 (3)0.0008 (3)0.0012 (3)
Cl40.0360 (4)0.0193 (3)0.0292 (4)0.0033 (3)0.0002 (3)0.0038 (3)
O10.0516 (15)0.0375 (13)0.0193 (11)0.0047 (11)0.0090 (10)0.0008 (10)
O20.0468 (14)0.0221 (11)0.0309 (12)0.0056 (10)0.0058 (10)0.0077 (9)
O30.0250 (11)0.0233 (11)0.0327 (13)0.0053 (9)0.0109 (9)0.0075 (9)
N10.0172 (10)0.0152 (10)0.0203 (11)0.0003 (9)0.0023 (9)0.0003 (9)
N20.0146 (10)0.0157 (10)0.0175 (11)0.0000 (8)0.0021 (8)0.0014 (8)
N30.0253 (12)0.0233 (12)0.0181 (12)0.0032 (10)0.0010 (9)0.0019 (9)
C10.0217 (13)0.0198 (13)0.0157 (12)0.0003 (10)0.0001 (10)0.0012 (10)
C20.0184 (12)0.0152 (11)0.0138 (12)0.0023 (10)0.0008 (9)0.0006 (9)
C30.0146 (12)0.0188 (12)0.0180 (13)0.0012 (10)0.0038 (10)0.0002 (10)
C40.0292 (16)0.0355 (17)0.0167 (14)0.0031 (13)0.0011 (12)0.0009 (12)
C50.0181 (12)0.0170 (12)0.0245 (14)0.0051 (10)0.0026 (10)0.0064 (10)
C60.0254 (14)0.0164 (13)0.0271 (15)0.0029 (11)0.0072 (12)0.0046 (11)
Geometric parameters (Å, º) top
Au—Cl12.2752 (10)N2—C51.485 (3)
Au—Cl42.2807 (9)N3—C21.441 (3)
Au—Cl22.2844 (9)C1—C21.351 (4)
Au—Cl32.2855 (10)C1—H1A0.9500
O1—N31.218 (3)C3—C41.472 (4)
O2—N31.210 (3)C4—H4A0.9800
O3—C61.436 (3)C4—H4B0.9800
O3—H30.67 (4)C4—H4C0.9800
N1—C31.341 (3)C5—C61.515 (4)
N1—C11.360 (3)C5—H5A0.9900
N1—H010.94 (4)C5—H5B0.9900
N2—C31.345 (3)C6—H6A0.9900
N2—C21.392 (3)C6—H6B0.9900
Cl1—Au—Cl490.14 (3)N1—C3—N2108.2 (2)
Cl1—Au—Cl290.27 (3)N1—C3—C4124.7 (2)
Cl4—Au—Cl2179.36 (3)N2—C3—C4127.0 (2)
Cl1—Au—Cl3177.66 (3)C3—C4—H4A109.5
Cl4—Au—Cl389.52 (3)C3—C4—H4B109.5
Cl2—Au—Cl390.09 (3)H4A—C4—H4B109.5
C6—O3—H3108 (3)C3—C4—H4C109.5
C3—N1—C1110.4 (2)H4A—C4—H4C109.5
C3—N1—H01120 (2)H4B—C4—H4C109.5
C1—N1—H01129 (2)N2—C5—C6111.8 (2)
C3—N2—C2106.6 (2)N2—C5—H5A109.3
C3—N2—C5124.1 (2)C6—C5—H5A109.3
C2—N2—C5129.3 (2)N2—C5—H5B109.3
O2—N3—O1125.9 (3)C6—C5—H5B109.3
O2—N3—C2118.9 (2)H5A—C5—H5B107.9
O1—N3—C2115.2 (2)O3—C6—C5111.1 (2)
C2—C1—N1105.7 (2)O3—C6—H6A109.4
C2—C1—H1A127.1C5—C6—H6A109.4
N1—C1—H1A127.1O3—C6—H6B109.4
C1—C2—N2109.1 (2)C5—C6—H6B109.4
C1—C2—N3125.8 (2)H6A—C6—H6B108.0
N2—C2—N3125.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O3i0.94 (4)1.81 (4)2.729 (3)166 (3)
O3—H3···Cl30.67 (4)2.54 (4)3.169 (2)158 (4)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O3i0.94 (4)1.81 (4)2.729 (3)166 (3)
O3—H3···Cl30.67 (4)2.54 (4)3.169 (2)158 (4)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C6H10N3O3)[AuCl4]
Mr510.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)7.324 (2), 11.972 (4), 15.667 (5)
β (°) 94.384 (4)
V3)1369.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)11.52
Crystal size (mm)0.23 × 0.04 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.426, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
22024, 4214, 3673
Rint0.041
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.16
No. of reflections4214
No. of parameters163
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.30, 1.22

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

RKU would like to thank Pace University for research support. Gerard Parkin (Columbia University) is thanked for helpful discussions.

References

First citationBlaton, N. M., Peeters, O. M. & De Ranter, C. J. (1979). Acta Cryst. B35, 2465–2467.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationContreras, R., Flores-Parra, A., Mijangos, E., Téllez, F., López-Sandoval, H. & Barba-Behrens, N. (2009). Coord. Chem. Rev. 253, 1979–1999.  CrossRef CAS Google Scholar
First citationFazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFreeman, C. D., Klutman, N. E. & Lamp, K. C. (1997). Drugs, 54, 679–708.  CrossRef CAS PubMed Google Scholar
First citationGalván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339–348.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJohnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.  Web of Science CSD CrossRef Google Scholar
First citationLofmark, S., Edlund, C. & Nord, C. E. (2010). Clin. Infect. Dis. 50 (Suppl 1), S16–S23.  Google Scholar
First citationMiljkovic, V., Arsic, B., Bojanic, Z., Nikolic, G., Nikolic, L. J., Lj, , Kalicanin, B. & Savic, V. (2014). Pharmazie, 69, 571–577.  Google Scholar
First citationNockemann, P., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2007). Acta Cryst. E63, m402–m404.  CSD CrossRef IUCr Journals Google Scholar
First citationPluzhnik-Gladyr, S. M., Kravtsov, V. C., Fonari, M. S. & Kamalov, G. L. (2014). Dalton Trans. 43, 7087–7095.  CAS PubMed Google Scholar
First citationSamuelson, J. (1999). Antimicrob. Agents Chemother. 43, 1533–1541.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoares, G. M. S., Figueiredo, L. C., Faveri, M., Cortelli, S. C., Duarte, P. M. & Feres, M. (2012). J. Appl. Oral Sci. 20, 295–309.  CrossRef CAS PubMed Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 49–76.  Google Scholar
First citationWang, Y.-T., Chu, X.-L., Yan, S.-C. & Tang, G.-M. (2010). Acta Cryst. E66, o2647.  CSD CrossRef IUCr Journals Google Scholar
First citationYang, B. (2008). Acta Cryst. E64, o1338–o1339.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 810-812
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds