organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-methyl-3-nitro­benzoic anhydride

aDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

Edited by A. J. Lough, University of Toronto, Canada (Received 21 May 2015; accepted 1 June 2015; online 6 June 2015)

The title mol­ecule, C16H12N2O7, lies on a twofold rotation axis which bis­ects the central O atom. The dihedral angle between two symmetry-related benzene rings is 48.54 (9)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds which generate C(13) chains running parallel to [31-1].

1. Related literature

For related structures, see: Schmitt et al. (2011[Schmitt, B., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o1662.]); Liu et al. (2009[Liu, G.-F., Luo, Y.-W. & Qin, D.-B. (2009). Acta Cryst. E65, o1043.]); Huelgas et al. (2006[Huelgas, G., Quintero, L., Anaya de Parrodi, C. & Bernès, S. (2006). Acta Cryst. E62, o3191-o3192.]); Glówka et al. (1990[Główka, M. L., Iwanicka, I. & Król, I. J. (1990). J. Crystallogr. Spectrosc. Res. 20, 519-523.]). For hydrogen-bond details, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H12N2O7

  • Mr = 344.28

  • Monoclinic, C 2/c

  • a = 10.6332 (5) Å

  • b = 11.6961 (4) Å

  • c = 12.7934 (6) Å

  • β = 111.930 (6)°

  • V = 1475.95 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.06 mm−1

  • T = 123 K

  • 0.45 × 0.40 × 0.16 mm

2.2. Data collection

  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.550, Tmax = 1.000

  • 5209 measured reflections

  • 1466 independent reflections

  • 1384 reflections with I > 2σ(I)

  • Rint = 0.101

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.163

  • S = 1.08

  • 1466 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.52 3.204 (2) 129
Symmetry code: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In the synthesis of phenyl-benzamides performed in our research group for quite some time, the untimely production of 2-methyl-3-nitrobenzoic anhydride (I) as a product of the reaction system was given. A small excess in moles of 2-methyl-3-nitrobenzoic acid in the presence of thionyl chloride in the reaction and the subsequent addition of the o-nitroaniline in dry acetonitrile, allowed the formation of two different types of crystals: the corresponding amide and the 2-methyl-3-nitrobenzoic anhydride. The excess addition of 2-methyl-3-nitrobenzoic acid possibly yield the benzyl halide formation which subsequently reacts with another molecule of acid, forming the anhydride system in dry condition. A number of anhydrous compounds, from benzoic acid derivatives are reported in the literature. Some with halogen substituents on the rings, encounter a widespread use as chelate ligands in coordination chemistry (Schmitt et al., 2011). Similar compounds to (I) have been reported in the literature: N-phenylanthranilic anhydride (II) (Liu et al., 2009), o-nitrobenzoic acid anhydride (III) (Huelgas et al., 2006) and m-nitrobenzoic acid anhydride (IV) (Glówka et al., 1990). The molecular structure of (I) is shown in Fig. 1. The central anhydride moiety C6-C8(O3)-O4 shows a C8i-O4-C8-O3 torsion angle (symmetry code: (i) -x, y, -z+3/2) of 25.06 (14)°. The twofold rotation axis passes through atom O4. Bond lengths and bond angles in the molecule are in a good agreement with those found in the related compounds (II), (III) and (IV), with the exception of the C6—C8 bond length. The title structure exhibits strong elongation in the C6—C8 bond length [1.494 (2) Å] if compared to the similar bond length presented in (III) [1.402 (2) Å]. In the crystal structure (Fig. 2), molecules are linked by weak C—H···O hydrogen bonds (see Table 1, Nardelli, 1995). The C3—H3 group in the molecule at (x,y,z) acts as hydrogen bond donor to O1 atom of the nitro group in the molecule at (-x-1/2,+y-1/2,-z+1/2). These interactions generate C(13) chains of molecules parallel to [3 11].

Related literature top

For related structures, see: Schmitt et al. (2011); Liu et al. (2009); Huelgas et al. (2006); Glówka et al. (1990). For hydrogen-bond details, see: Nardelli (1995).

For related literature, see: Altomare et al. (1992).

Experimental top

A mass of 0.380 g (1.104 mmol) of 2-methyl-3-nitrobenzoic acid was refluxed with 2 ml of thionyl chloride for one hour. Then 0.125 g (0.906 mmol) of 2-nitroaniline was added and dissolved in 10 ml of dry acetonitrile and it was placed under reflux and constant stirring for 3 hours. Subsequently, the final solvent was slowly evaporated to obtain colorless blocks of the title compound [m.p. 428 (1)K], and other yellow crystals of the amide show a melting point of 399 (1)K.

Refinement top

All H-atoms were located in difference Fourier maps and were positioned geometrically [C—H = 0.95 Å for aromatic, C—H= 0.98 Å for methyl] and were refined using a riding-model approximation with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom or 1.2 times Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius (symmetry code: (i) -x, y, -z + 3/2).
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a hydrogen-bonded C(13) chain parallel to [311] (symmetry code: (i) -x - 1/2 ,+y - 1/2, -z + 1/2).
2-Methyl-3-nitrobenzoic anhydride top
Crystal data top
C16H12N2O7Dx = 1.549 Mg m3
Mr = 344.28Melting point: 428(1) K
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
a = 10.6332 (5) ÅCell parameters from 5209 reflections
b = 11.6961 (4) Åθ = 5.9–73.2°
c = 12.7934 (6) ŵ = 1.06 mm1
β = 111.930 (6)°T = 123 K
V = 1475.95 (12) Å3Block, colourless
Z = 40.45 × 0.40 × 0.16 mm
F(000) = 712
Data collection top
Oxford Diffraction Gemini S
diffractometer
1466 independent reflections
Radiation source: fine-focus sealed tube1384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
ω scansθmax = 73.2°, θmin = 5.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1213
Tmin = 0.550, Tmax = 1.000k = 1414
5209 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0933P)2 + 1.5216P]
where P = (Fo2 + 2Fc2)/3
1466 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H12N2O7V = 1475.95 (12) Å3
Mr = 344.28Z = 4
Monoclinic, C2/cCu Kα radiation
a = 10.6332 (5) ŵ = 1.06 mm1
b = 11.6961 (4) ÅT = 123 K
c = 12.7934 (6) Å0.45 × 0.40 × 0.16 mm
β = 111.930 (6)°
Data collection top
Oxford Diffraction Gemini S
diffractometer
1466 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1384 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 1.000Rint = 0.101
5209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.08Δρmax = 0.40 e Å3
1466 reflectionsΔρmin = 0.33 e Å3
115 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22053 (15)0.30472 (11)0.21092 (12)0.0323 (4)
O20.15352 (15)0.13946 (12)0.17543 (12)0.0348 (4)
O30.03327 (14)0.37124 (12)0.65687 (11)0.0303 (4)
O40.00000.21684 (16)0.75000.0270 (5)
N10.17462 (15)0.20860 (13)0.23928 (13)0.0247 (4)
C10.08126 (16)0.24457 (15)0.44518 (15)0.0214 (4)
C20.14895 (17)0.17107 (15)0.35513 (15)0.0223 (4)
C30.19730 (18)0.06382 (15)0.36540 (16)0.0254 (4)
H30.23930.01720.30090.031*
C40.18356 (18)0.02561 (16)0.47094 (16)0.0275 (4)
H40.21500.04820.48040.033*
C50.12307 (18)0.09647 (16)0.56351 (15)0.0252 (4)
H50.11640.07160.63610.030*
C60.07208 (17)0.20339 (14)0.55154 (15)0.0219 (4)
C70.0176 (2)0.35437 (16)0.42891 (16)0.0284 (5)
H7A0.00920.35360.35520.043*
H7B0.07240.36230.48830.043*
H7C0.07470.41890.43260.043*
C80.00896 (18)0.27684 (16)0.65334 (15)0.0231 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0356 (8)0.0225 (7)0.0357 (8)0.0027 (6)0.0095 (6)0.0041 (5)
O20.0382 (9)0.0322 (8)0.0336 (8)0.0025 (6)0.0130 (6)0.0055 (5)
O30.0288 (7)0.0253 (7)0.0315 (7)0.0084 (5)0.0051 (6)0.0010 (5)
O40.0288 (10)0.0222 (9)0.0279 (9)0.0000.0082 (8)0.000
N10.0188 (8)0.0233 (8)0.0299 (8)0.0014 (6)0.0067 (6)0.0012 (6)
C10.0126 (7)0.0194 (8)0.0307 (9)0.0006 (6)0.0062 (6)0.0009 (7)
C20.0150 (8)0.0207 (9)0.0293 (9)0.0012 (6)0.0061 (7)0.0002 (7)
C30.0170 (8)0.0218 (9)0.0327 (9)0.0007 (7)0.0038 (7)0.0026 (7)
C40.0216 (8)0.0199 (8)0.0362 (10)0.0046 (7)0.0052 (7)0.0012 (7)
C50.0178 (8)0.0247 (9)0.0301 (9)0.0017 (7)0.0054 (7)0.0023 (7)
C60.0121 (7)0.0202 (8)0.0310 (10)0.0002 (6)0.0054 (7)0.0008 (6)
C70.0292 (10)0.0253 (9)0.0312 (9)0.0093 (7)0.0118 (8)0.0030 (7)
C80.0146 (8)0.0247 (9)0.0272 (9)0.0002 (7)0.0047 (6)0.0018 (7)
Geometric parameters (Å, º) top
O1—N11.225 (2)C3—C41.377 (3)
O2—N11.228 (2)C3—H30.9500
O3—C81.186 (2)C4—C51.391 (3)
O4—C81.3939 (19)C4—H40.9500
O4—C8i1.3939 (19)C5—C61.394 (2)
N1—C21.470 (2)C5—H50.9500
C1—C21.402 (2)C6—C81.494 (2)
C1—C61.412 (3)C7—H7A0.9800
C1—C71.502 (2)C7—H7B0.9800
C2—C31.380 (2)C7—H7C0.9800
C8—O4—C8i119.5 (2)C4—C5—C6121.08 (17)
O1—N1—O2123.96 (16)C4—C5—H5119.5
O1—N1—C2118.41 (15)C6—C5—H5119.5
O2—N1—C2117.56 (15)C5—C6—C1121.47 (16)
C2—C1—C6114.35 (16)C5—C6—C8119.12 (16)
C2—C1—C7122.01 (16)C1—C6—C8119.39 (15)
C6—C1—C7123.55 (15)C1—C7—H7A109.5
C3—C2—C1125.05 (17)C1—C7—H7B109.5
C3—C2—N1115.58 (15)H7A—C7—H7B109.5
C1—C2—N1119.37 (15)C1—C7—H7C109.5
C4—C3—C2118.77 (16)H7A—C7—H7C109.5
C4—C3—H3120.6H7B—C7—H7C109.5
C2—C3—H3120.6O3—C8—O4122.37 (16)
C3—C4—C5119.17 (17)O3—C8—C6127.50 (16)
C3—C4—H4120.4O4—C8—C6110.09 (15)
C5—C4—H4120.4
C6—C1—C2—C33.8 (3)C4—C5—C6—C10.8 (3)
C7—C1—C2—C3172.93 (16)C4—C5—C6—C8179.52 (16)
C6—C1—C2—N1175.09 (14)C2—C1—C6—C52.1 (2)
C7—C1—C2—N18.2 (2)C7—C1—C6—C5174.58 (16)
O1—N1—C2—C3132.42 (17)C2—C1—C6—C8176.64 (14)
O2—N1—C2—C344.8 (2)C7—C1—C6—C86.7 (3)
O1—N1—C2—C146.6 (2)C8i—O4—C8—O325.06 (14)
O2—N1—C2—C1136.26 (17)C8i—O4—C8—C6157.20 (15)
C1—C2—C3—C42.4 (3)C5—C6—C8—O3176.29 (18)
N1—C2—C3—C4176.46 (16)C1—C6—C8—O32.5 (3)
C2—C3—C4—C50.8 (3)C5—C6—C8—O46.1 (2)
C3—C4—C5—C62.3 (3)C1—C6—C8—O4175.15 (14)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.952.523.204 (2)129
Symmetry code: (ii) x1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.952.523.204 (2)129.2
Symmetry code: (i) x1/2, y1/2, z+1/2.
 

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGłówka, M. L., Iwanicka, I. & Król, I. J. (1990). J. Crystallogr. Spectrosc. Res. 20, 519–523.  Google Scholar
First citationHuelgas, G., Quintero, L., Anaya de Parrodi, C. & Bernès, S. (2006). Acta Cryst. E62, o3191–o3192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, G.-F., Luo, Y.-W. & Qin, D.-B. (2009). Acta Cryst. E65, o1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSchmitt, B., Gerber, T., Hosten, E. & Betz, R. (2011). Acta Cryst. E67, o1662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds