research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 6-chloro­methyl-2-oxo-4-(2,3,4-tri­meth­­oxy­phen­yl)-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli-20, India, bDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, cDepartment of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur-7, India, and dCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-25, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

Edited by A. J. Lough, University of Toronto, Canada (Received 31 May 2015; accepted 17 June 2015; online 20 June 2015)

In the title compound, C17H21ClN2O6, the di­hydro­pyrimidine ring adopts a flattened envelope conformation, with the sp3-hybridized C atom forming the flap. The dihedral angle between the least-squares planes of the benzene and di­hydro­pyrimidine rings is 88.09 (6)°. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif, and the dimers are linked via further pairs of N—H⋯O hydrogen bonds, forming R22(14) rings and chains of mol­ecules along [111]. Pairs of inversion-related chains are linked via weak C—H⋯π inter­actions.

1. Chemical context

Pyrimidine derivatives have been investigated extensively due to their great biological significance and as the main constituent of nucleic acids. Pyrimidines and their derivatives are considered to be important for drugs and agricultural chemicals. They are also found to exhibit remarkable pharmacological activities such as anti-cancer, anti-tumor, anti-inflammatory and anti­fungal etc and are used widely as agrochemicals, pharmaceuticals, dyes, organic additives in electroplating of steel and in the polymerization process (Sharma et al., 2014[Sharma, A., Khare, R., Kumar, V., Gupta, G. K. & Beniwal, V. (2014). Int. J. Pharm. Pharm. Sci. 6, 171-175.]; Vaisalini et al., 2012[Vaisalini, N. B., Rao, N. V., Harika, V. B. M. L., Desu, P. K. & Nama, S. (2012). Int. J. Pharm. Chem. Res. 1, 2278-8700.]). Di­hydro­pyrimidino­nes, the product of the Biginelli reaction, are also widely used in the pharmaceutical industry as calcium channel blockers and alpha-1 antagonists (Beena & Akelesh, 2012[Beena, K. P. & Akelesh, T. (2012). Int. Res. J. Pharm. 3, 303-304.]). Moreover, some bioactive alkaloids such as batzelladine B, containing the di­hydro­pyrimidine unit, which has been isolated from marine sources, show anti-HIV activity (Asghari et al., 2011[Asghari, S., Tajbakhsh, M., Kenari, B. J. & Khaksar, S. (2011). Chin. Chem. Lett. 22, 127-130.]). Our inter­est in the preparation of pharmaco­logically active compounds led us to synthesize the title compound (I)[link] and we report its crystal structure herein.

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The di­hydro­pyrimidine ring adopts a flattened envelope conformation. Atoms N1/N2/C11/C12/C14 are essentially planar with a maximum deviation of 0.0305 (17) Å for C11 while atom C13 is displaced by 0.1311 (17) Å from this plane, forming the flap. The puckering parameters are q2 = 0.0935, q3 = −0.0317, Q = 0.0987 Å, Θ = 108.7 and Φ = 22.9°. The benzene ring is almost perpendicular to the least-squares plane of the six-membered tetra­hydro­pyrimidine ring, making a dihedral angle of 88.09 (6)°.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the intra­molecular C10—H10A⋯O1 hydrogen bond.

In comparison, this dihedral angle in the structure of ethyl 6-eth­oxy­carbonyl­methyl-4-(2-hy­droxy­phen­yl)-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate, (II), is 87.7 (2)° (Kettmann et al., 2008[Kettmann, V., Světlík, J. & Veizerová, L. (2008). Acta Cryst. E64, o1092.]), in ethyl-6-(chloro­meth­yl)-4-(4-chlorophen­yl)-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate, (III), it is 87.08 (9)° (Bharanidharan et al., 2014[Bharanidharan, S., Saleem, H., Gunasekaran, B., Padusha, M. S. A. & Suresh, M. (2014). Acta Cryst. E70, o1185-o1186.]), and in the crystal structure of ethyl 6-methyl-2-oxo-4-(3,4,5-tri­meth­oxy­phen­yl)-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate, (IV), it is 75.25 (6)° (Novina et al., 2015[Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2015). Acta Cryst. E71, o206-o207.]). The ethyl acetate group attached to the pyrimidine ring shows an extended conformation [torsion angle C12—C15—O2—C16 = −175.83 (15)°]. The meth­oxy group at C4 is essentially coplanar with the benzene ring [C5—C4—O5—C7 = −1.3 (3)°], whereas the two meth­oxy substituent groups at C2 and C3 deviate significantly from the benzene plane [C3—C2—O3—C9 = 71.6 (2) and C2—C3—O4—C8 = 71.6 (2)°]. The mol­ecular structure is partially stabilized by the C10—H10A⋯O1 intra­molecular inter­action (Table 1[link]), which generates an S(6) ring motif.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/C11–C13/N2/C14 pyrimidine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6i 0.86 1.95 2.812 (2) 178
N2—H2N⋯O4ii 0.86 2.37 3.160 (2) 153
C17—H17CCgiii 0.96 2.83 3.676 (4) 147
C10—H10A⋯O1 0.97 2.14 2.864 (3) 131
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z; (iii) -x, -y+1, -z+2.

3. Supra­molecular features

In the crystal, both N—H groups participate in inter­molecular hydrogen-bonding associations (Table 1[link]) giving centrosymmetric cyclic motifs [graph sets R22(8) and R22(14)], resulting in ribbons parallel to [111] (Fig. 2[link]). The packing (Fig. 3[link]) also features weak C—H⋯π inter­actions between the methyl H atoms of the ethyl groups and the pyrimidine rings of inversion-related mol­ecules.

[Figure 2]
Figure 2
Partial crystal packing diagram for the title compound, showing the R22(8) and R22(14) ring motifs. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
Part of the crystal packing of the title compound, showing C—H⋯π inter­actions and N—H⋯O hydrogen bonds as dashed lines.

4. Synthesis and crystallization

To an ethano­lic solution of ethyl 4-chloro­aceto acetate (2 ml, 0.012 mol), 2,3,4-trimeth­oxy benzaldehyde (2.4 g, 0.012 mol), and urea (2.25 g, 0.037 mol) were added followed by CeCl3·7H2O (931 mg). The reaction mixture was taken in a round-bottom flask and refluxed for 2 h. Then the reaction mixture was cooled and poured into crushed ice taken in a beaker with constant stirring. The solid separated out was filtered, washed with ice-cold water and then recrystallized from hot ethanol to afford the product [yield: 92%; m.p. 425–427 K] as X-ray quality crystals.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in geometrically idealized positions and refined as riding on their parent atoms with C—H distances fixed in the range 0.93–0.98 Å and N—H = 0.86 Å with Uiso(H) = 1.5Ueq(CH3) and 1.2Ueq(CH2,CH, NH).

Table 2
Experimental details

Crystal data
Chemical formula C17H21ClN2O6
Mr 384.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.479 (5), 10.080 (5), 10.320 (5)
α, β, γ (°) 108.552 (5), 102.886 (5), 94.406 (5)
V3) 899.5 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.952, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 12878, 3737, 3025
Rint 0.025
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.04
No. of reflections 3737
No. of parameters 239
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.28
Computer programs: APEX2, SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Pyrimidine derivatives have been investigated extensively due to their great biological significance and as the main constituent of nucleic acids. Pyrimidines and their derivatives are considered to be important for drugs and agricultural chemicals. They are also found to exhibit remarkable pharmacological activities such as anti-cancer, anti-tumor, anti-inflammatory and anti­fungal etc and are used widely as agrochemicals, pharmaceuticals, dyes, organic additives in electroplating of steel and in the polymerization process (Sharma et al., 2014; Vaisalini et al., 2012). Di­hydro­pyrimidino­nes, the product of the Biginelli reaction, are also widely used in the pharmaceutical industry as calcium channel blockers and alpha-1 antagonists (Beena & Akelesh, 2012). Moreover, some bioactive alkaloids such as batzelladine B, containing the di­hydro­pyrimidine unit, which has been isolated from marine sources, show anti-HIV activity (Asghari et al., 2011). Our inter­est in the preparation of pharmacologically active compounds led us to synthesize the title compound (I) and we report its crystal structure herein.

Structural commentary top

\ The molecular structure of (I) is shown in Fig. 1. The di­hydro­pyrimidine ring adopts a flattened envelope conformation. Atoms N1/N2/C11/C12/C14 are essentially planar with a maximum deviation of 0.0305 (17) Å for C11 while atom C13 is displaced by 0.1311 (17) Å from this plane, forming the flap. The puckering parameters are q2 = 0.0935, q3 = -0.0317, Q = 0.0987 Å, Θ = 108.7 and Φ = 22.9°. The benzene ring is almost perpendicular to the least-squares plane of the six-membered tetra­hydro­pyrimidine ring, making a dihedral angle of 88.09 (6)°. In comparison, this dihedral angle in the structure of ethyl 6-eth­oxy­carbonyl­methyl-4-(2-hy­droxy­phenyl)-2-oxo-1,2,3,4-\ tetra­hydro­pyrimidine-5-carboxyl­ate, (II), is 87.7 (2)° (Kettmann et al., 2008), in ethyl-6-(chloro­methyl)-4-(4-chloro­phenyl)-2-oxo-1,2,3,4- tetra­hydro­pyrimidine-5-carboxyl­ate, (III), it is 87.08 (9)° (Bharanidharan et al., 2014), and in the crystal structure of ethyl 6-methyl-2-oxo-4-(3,4,5-tri­meth­oxy­phenyl)-1,2,3,4-tetra­hydro­pyrimidine-5-\ carboxyl­ate, (IV), it is 75.25 (6)° (Novina et al., 2015). The ethyl acetate group attached to the pyrimidine ring shows an extended conformation [torsion angle C12—C15—O2—C16 = -175.83 (15)°]. The meth­oxy group at C4 is essentially coplanar with the benzene ring [C5—C4—O5—C7 = -1.3 (3)°], whereas the two meth­oxy substituent groups at C2 and C3 deviate significantly from the benzene plane [C3—C2—O3—C9 = 71.6 (2) and C2—C3—O4—C8 = 71.6 (2)°]. The molecular structure is partially stabilized by the C10—H10A···O1 intra­molecular inter­action (Table 1), which generates an S(6) ring motif.

Supra­molecular features top

In the crystal, both N—H groups participate in separate inter­molecular hydrogen-bonding associations (Table 1) giving centrosymmetric cyclic motifs [graph sets R22(8) and R22(14)], resulting in ribbons parallel to [111] (Fig. 2). The molecular packing (Fig. 3) is further stabilized by weak C—H···π inter­actions between the methyl H atoms of the ethyl groups and the pyrimidine rings of inversion-related molecules.

Synthesis and crystallization top

To an ethano­lic solution of ethyl 4-chloro­aceto acetate (2 ml, 0.012 mol), 2,3,4-tri­meth­oxy benzaldehyde (2.4 g, 0.012 mol), and urea (2.25 g, 0.037 mol) were added followed by CeCl3.7H2O (931 mg). The reaction mixture was taken in a round-bottom flask and refluxed for 2 h. Then the reaction mixture was cooled and poured into crushed ice taken in a beaker with constant stirring. The solid separated out was filtered, washed with ice-cold water and then recrystallized from hot ethanol to afford the product [yield: 92%; m.p. 425–427 K] as X-ray quality crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 21. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances fixed in the range 0.93–0.98 Å and N—H = 0.86 Å with Uiso(H) = 1.5U eq(CH3) and 1.2Ueq(CH2,CH, NH).

Related literature top

For general background and the biological activity of dihydropyrimidinones, see: Sharma et al. (2014); Asghari et al. (2011); Vaisalini et al. (2012); Beena & Akelesh (2012). For related structures, see: Kettmann et al. (2008); Bharanidharan et al. (2014); Novina et al. (2015).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the intramolecular C10—H10A···O1 hydrogen bond.
[Figure 2] Fig. 2. Partial crystal packing diagram for the title compound, showing the R22(8) and R22(14) ring motifs. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Part of the crystal packing of the title compound, showing C—H···π interactions and N—H···O hydrogen bonds as dashed lines.
Ethyl 6-chloromethyl-2-oxo-4-(2,3,4-trimethoxyphenyl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C17H21ClN2O6Z = 2
Mr = 384.81F(000) = 404
Triclinic, P1Dx = 1.421 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.479 (5) ÅCell parameters from 3737 reflections
b = 10.080 (5) Åθ = 1.0–26.6°
c = 10.320 (5) ŵ = 0.25 mm1
α = 108.552 (5)°T = 293 K
β = 102.886 (5)°Block, colourless
γ = 94.406 (5)°0.20 × 0.15 × 0.10 mm
V = 899.5 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3737 independent reflections
Radiation source: fine-focus sealed tube3025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scanθmax = 26.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.952, Tmax = 0.976k = 1212
12878 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3029P]
where P = (Fo2 + 2Fc2)/3
3737 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C17H21ClN2O6γ = 94.406 (5)°
Mr = 384.81V = 899.5 (8) Å3
Triclinic, P1Z = 2
a = 9.479 (5) ÅMo Kα radiation
b = 10.080 (5) ŵ = 0.25 mm1
c = 10.320 (5) ÅT = 293 K
α = 108.552 (5)°0.20 × 0.15 × 0.10 mm
β = 102.886 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3737 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3025 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.976Rint = 0.025
12878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
3737 reflectionsΔρmin = 0.28 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C70.3380 (3)0.2172 (2)0.3248 (3)0.0695 (6)
H7A0.39990.15010.34440.104*
H7B0.32130.30770.39890.104*
H7C0.38480.22600.23600.104*
C40.2052 (2)0.03983 (17)0.22112 (17)0.0417 (4)
C50.33170 (19)0.04788 (18)0.12747 (18)0.0428 (4)
H50.42300.02060.12930.051*
C60.32077 (18)0.17612 (18)0.03140 (17)0.0404 (4)
H60.40580.23380.03170.049*
C10.18792 (17)0.22104 (16)0.02627 (16)0.0353 (3)
C20.06034 (17)0.13322 (17)0.12190 (17)0.0375 (4)
C30.06932 (19)0.00217 (17)0.21729 (17)0.0409 (4)
C80.1441 (3)0.0596 (3)0.4122 (2)0.0685 (6)
H8A0.15750.03770.37810.103*
H8B0.23770.11970.44670.103*
H8C0.09690.07400.48770.103*
C90.1707 (3)0.1099 (3)0.0726 (3)0.0690 (6)
H9A0.17690.00920.11490.104*
H9B0.26580.13580.09700.104*
H9C0.13650.13730.02850.104*
C130.17802 (17)0.35901 (16)0.08517 (16)0.0360 (3)
H130.07870.38070.06010.043*
C120.28624 (17)0.48334 (16)0.09400 (16)0.0357 (3)
C110.39561 (18)0.54845 (16)0.21121 (17)0.0376 (4)
C140.31732 (19)0.40206 (18)0.33668 (17)0.0417 (4)
C100.5076 (2)0.67371 (18)0.23650 (19)0.0451 (4)
H10A0.50940.68510.14700.054*
H10B0.60410.65820.27930.054*
C150.26590 (19)0.52688 (17)0.03168 (17)0.0391 (4)
C160.1095 (2)0.4838 (2)0.2602 (2)0.0548 (5)
H16A0.19400.47390.29890.066*
H16B0.08690.57870.24690.066*
C170.0182 (3)0.3764 (3)0.3576 (2)0.0816 (8)
H17A0.00670.28320.37250.122*
H17B0.04380.39160.44660.122*
H17C0.10010.38520.31660.122*
N20.20306 (15)0.34077 (15)0.22426 (14)0.0414 (3)
H2N0.13670.28440.23410.050*
N10.41333 (16)0.50454 (16)0.32654 (15)0.0478 (4)
H1N0.48940.54390.39640.057*
O50.20239 (16)0.16966 (14)0.31766 (15)0.0586 (4)
O40.05528 (14)0.09329 (13)0.29991 (14)0.0536 (4)
O30.07186 (13)0.17960 (13)0.12314 (14)0.0471 (3)
O10.34931 (16)0.60863 (16)0.05290 (15)0.0615 (4)
O20.13972 (14)0.45913 (14)0.12663 (13)0.0495 (3)
O60.33671 (15)0.37184 (15)0.44510 (13)0.0595 (4)
Cl0.46401 (7)0.83004 (5)0.35072 (6)0.06618 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0724 (15)0.0561 (13)0.0664 (14)0.0167 (11)0.0202 (11)0.0003 (10)
C40.0495 (10)0.0351 (8)0.0351 (8)0.0004 (7)0.0089 (7)0.0082 (7)
C50.0384 (9)0.0438 (9)0.0440 (9)0.0025 (7)0.0120 (7)0.0123 (7)
C60.0355 (8)0.0396 (8)0.0382 (8)0.0058 (7)0.0033 (6)0.0097 (7)
C10.0371 (8)0.0317 (7)0.0324 (7)0.0034 (6)0.0034 (6)0.0106 (6)
C20.0355 (8)0.0346 (8)0.0371 (8)0.0010 (6)0.0016 (6)0.0119 (6)
C30.0411 (9)0.0340 (8)0.0369 (8)0.0066 (7)0.0003 (7)0.0082 (7)
C80.0629 (13)0.0710 (14)0.0475 (11)0.0165 (11)0.0123 (9)0.0127 (10)
C90.0669 (14)0.0783 (15)0.0892 (17)0.0250 (12)0.0395 (13)0.0495 (14)
C130.0343 (8)0.0352 (8)0.0316 (7)0.0030 (6)0.0020 (6)0.0087 (6)
C120.0380 (8)0.0294 (7)0.0348 (8)0.0013 (6)0.0059 (6)0.0078 (6)
C110.0393 (9)0.0320 (8)0.0371 (8)0.0010 (6)0.0078 (7)0.0089 (6)
C140.0439 (9)0.0385 (8)0.0351 (8)0.0059 (7)0.0025 (7)0.0107 (7)
C100.0469 (10)0.0373 (9)0.0426 (9)0.0075 (7)0.0076 (7)0.0082 (7)
C150.0424 (9)0.0337 (8)0.0384 (8)0.0052 (7)0.0088 (7)0.0100 (7)
C160.0629 (12)0.0611 (12)0.0402 (9)0.0124 (10)0.0058 (8)0.0220 (9)
C170.0997 (19)0.0735 (16)0.0466 (12)0.0001 (14)0.0117 (12)0.0114 (11)
N20.0422 (8)0.0407 (7)0.0328 (7)0.0115 (6)0.0035 (6)0.0096 (6)
N10.0463 (8)0.0482 (8)0.0369 (7)0.0168 (7)0.0066 (6)0.0160 (6)
O50.0615 (9)0.0436 (7)0.0531 (8)0.0061 (6)0.0102 (6)0.0030 (6)
O40.0483 (7)0.0383 (6)0.0535 (7)0.0110 (5)0.0075 (6)0.0066 (6)
O30.0359 (6)0.0398 (6)0.0581 (8)0.0001 (5)0.0015 (5)0.0154 (6)
O10.0604 (9)0.0675 (9)0.0557 (8)0.0128 (7)0.0036 (6)0.0334 (7)
O20.0519 (7)0.0511 (7)0.0386 (6)0.0040 (6)0.0016 (5)0.0180 (5)
O60.0628 (9)0.0630 (9)0.0412 (7)0.0235 (7)0.0084 (6)0.0250 (6)
Cl0.0771 (4)0.0375 (3)0.0716 (4)0.0020 (2)0.0145 (3)0.0072 (2)
Geometric parameters (Å, º) top
C7—O51.415 (3)C13—N21.474 (2)
C7—H7A0.9600C13—C121.523 (2)
C7—H7B0.9600C13—H130.9800
C7—H7C0.9600C12—C111.341 (2)
C4—O51.364 (2)C12—C151.475 (2)
C4—C51.389 (2)C11—N11.378 (2)
C4—C31.391 (3)C11—C101.500 (2)
C5—C61.384 (3)C14—O61.230 (2)
C5—H50.9300C14—N21.335 (2)
C6—C11.377 (3)C14—N11.369 (2)
C6—H60.9300C10—Cl1.783 (2)
C1—C21.403 (2)C10—H10A0.9700
C1—C131.522 (2)C10—H10B0.9700
C2—O31.370 (2)C15—O11.202 (2)
C2—C31.396 (2)C15—O21.335 (2)
C3—O41.3791 (19)C16—O21.448 (2)
C8—O41.424 (3)C16—C171.487 (3)
C8—H8A0.9600C16—H16A0.9700
C8—H8B0.9600C16—H16B0.9700
C8—H8C0.9600C17—H17A0.9600
C9—O31.412 (2)C17—H17B0.9600
C9—H9A0.9600C17—H17C0.9600
C9—H9B0.9600N2—H2N0.8600
C9—H9C0.9600N1—H1N0.8600
O5—C7—H7A109.5C12—C13—H13108.2
O5—C7—H7B109.5C11—C12—C15122.12 (15)
H7A—C7—H7B109.5C11—C12—C13120.78 (14)
O5—C7—H7C109.5C15—C12—C13117.09 (13)
H7A—C7—H7C109.5C12—C11—N1120.98 (14)
H7B—C7—H7C109.5C12—C11—C10126.74 (15)
O5—C4—C5124.55 (17)N1—C11—C10112.26 (14)
O5—C4—C3115.73 (15)O6—C14—N2123.26 (15)
C5—C4—C3119.71 (16)O6—C14—N1120.67 (14)
C6—C5—C4119.45 (17)N2—C14—N1116.06 (15)
C6—C5—H5120.3C11—C10—Cl109.90 (13)
C4—C5—H5120.3C11—C10—H10A109.7
C1—C6—C5122.07 (15)Cl—C10—H10A109.7
C1—C6—H6119.0C11—C10—H10B109.7
C5—C6—H6119.0Cl—C10—H10B109.7
C6—C1—C2118.47 (15)H10A—C10—H10B108.2
C6—C1—C13121.07 (13)O1—C15—O2122.11 (16)
C2—C1—C13120.39 (15)O1—C15—C12127.08 (15)
O3—C2—C3120.68 (14)O2—C15—C12110.79 (14)
O3—C2—C1119.18 (15)O2—C16—C17107.07 (17)
C3—C2—C1120.11 (16)O2—C16—H16A110.3
O4—C3—C4118.51 (15)C17—C16—H16A110.3
O4—C3—C2121.07 (16)O2—C16—H16B110.3
C4—C3—C2120.16 (14)C17—C16—H16B110.3
O4—C8—H8A109.5H16A—C16—H16B108.6
O4—C8—H8B109.5C16—C17—H17A109.5
H8A—C8—H8B109.5C16—C17—H17B109.5
O4—C8—H8C109.5H17A—C17—H17B109.5
H8A—C8—H8C109.5C16—C17—H17C109.5
H8B—C8—H8C109.5H17A—C17—H17C109.5
O3—C9—H9A109.5H17B—C17—H17C109.5
O3—C9—H9B109.5C14—N2—C13127.23 (14)
H9A—C9—H9B109.5C14—N2—H2N116.4
O3—C9—H9C109.5C13—N2—H2N116.4
H9A—C9—H9C109.5C14—N1—C11124.02 (14)
H9B—C9—H9C109.5C14—N1—H1N118.0
N2—C13—C1109.46 (13)C11—N1—H1N118.0
N2—C13—C12109.91 (12)C4—O5—C7117.72 (15)
C1—C13—C12112.61 (13)C3—O4—C8117.15 (15)
N2—C13—H13108.2C2—O3—C9116.65 (15)
C1—C13—H13108.2C15—O2—C16117.05 (14)
O5—C4—C5—C6178.30 (16)C13—C12—C11—N10.2 (3)
C3—C4—C5—C60.0 (3)C15—C12—C11—C102.3 (3)
C4—C5—C6—C10.7 (3)C13—C12—C11—C10178.40 (16)
C5—C6—C1—C20.0 (2)C12—C11—C10—Cl103.68 (19)
C5—C6—C1—C13176.89 (15)N1—C11—C10—Cl75.01 (18)
C6—C1—C2—O3176.62 (14)C11—C12—C15—O19.9 (3)
C13—C1—C2—O36.5 (2)C13—C12—C15—O1169.41 (18)
C6—C1—C2—C31.4 (2)C11—C12—C15—O2171.87 (16)
C13—C1—C2—C3175.49 (14)C13—C12—C15—O28.8 (2)
O5—C4—C3—O45.7 (2)O6—C14—N2—C13173.33 (17)
C5—C4—C3—O4172.75 (15)N1—C14—N2—C137.7 (3)
O5—C4—C3—C2179.86 (15)C1—C13—N2—C14112.29 (19)
C5—C4—C3—C21.4 (3)C12—C13—N2—C1411.9 (2)
O3—C2—C3—O410.1 (2)O6—C14—N1—C11177.08 (18)
C1—C2—C3—O4171.86 (15)N2—C14—N1—C111.9 (3)
O3—C2—C3—C4175.89 (15)C12—C11—N1—C145.6 (3)
C1—C2—C3—C42.1 (2)C10—C11—N1—C14173.14 (17)
C6—C1—C13—N272.80 (18)C5—C4—O5—C71.3 (3)
C2—C1—C13—N2104.02 (16)C3—C4—O5—C7179.67 (18)
C6—C1—C13—C1249.8 (2)C4—C3—O4—C8114.3 (2)
C2—C1—C13—C12133.40 (15)C2—C3—O4—C871.6 (2)
N2—C13—C12—C117.4 (2)C3—C2—O3—C971.6 (2)
C1—C13—C12—C11114.95 (17)C1—C2—O3—C9110.4 (2)
N2—C13—C12—C15173.26 (14)O1—C15—O2—C162.5 (3)
C1—C13—C12—C1564.41 (19)C12—C15—O2—C16175.83 (15)
C15—C12—C11—N1179.15 (15)C17—C16—O2—C15168.35 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/C11–C13/N2/C14 pyrimidine ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.861.952.812 (2)178
N2—H2N···O4ii0.862.373.160 (2)153
C17—H17C···Cgiii0.962.833.676 (4)147
C10—H10A···O10.972.142.864 (3)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z; (iii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/C11–C13/N2/C14 pyrimidine ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.861.952.812 (2)178.4
N2—H2N···O4ii0.862.373.160 (2)153.4
C17—H17C···Cgiii0.962.833.676 (4)147
C10—H10A···O10.972.142.864 (3)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H21ClN2O6
Mr384.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.479 (5), 10.080 (5), 10.320 (5)
α, β, γ (°)108.552 (5), 102.886 (5), 94.406 (5)
V3)899.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.952, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
12878, 3737, 3025
Rint0.025
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.04
No. of reflections3737
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsghari, S., Tajbakhsh, M., Kenari, B. J. & Khaksar, S. (2011). Chin. Chem. Lett. 22, 127–130.  CrossRef CAS Google Scholar
First citationBeena, K. P. & Akelesh, T. (2012). Int. Res. J. Pharm. 3, 303–304.  CAS Google Scholar
First citationBharanidharan, S., Saleem, H., Gunasekaran, B., Padusha, M. S. A. & Suresh, M. (2014). Acta Cryst. E70, o1185–o1186.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKettmann, V., Světlík, J. & Veizerová, L. (2008). Acta Cryst. E64, o1092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNovina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2015). Acta Cryst. E71, o206–o207.  CSD CrossRef IUCr Journals Google Scholar
First citationSharma, A., Khare, R., Kumar, V., Gupta, G. K. & Beniwal, V. (2014). Int. J. Pharm. Pharm. Sci. 6, 171–175.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaisalini, N. B., Rao, N. V., Harika, V. B. M. L., Desu, P. K. & Nama, S. (2012). Int. J. Pharm. Chem. Res. 1, 2278–8700.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds