organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o506-o507

Crystal structure of 1,2-bis­­(2,6-di­methyl­phen­yl)-3-phenyl­guanidine

CROSSMARK_Color_square_no_text.svg

aThe School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: hfhan001@163.com

Edited by S. Parkin, University of Kentucky, USA (Received 13 June 2015; accepted 20 June 2015; online 27 June 2015)

In the title compound, C23H25N3, the dihedral angles between the planes of the benzene ring and the two substituent di­methyl­phenyl rings are 60.94 (7)° and 88.08 (7)°, and the dihedral angle between the planes of the two di­methyl­phenyl rings is 58.01 (7)°. In the crystal, weak C—H⋯N inter­actions exist between adjacent mol­ecules. One of the di­methyl­phenyl rings has a small amount of ππ overlap with the phenyl ring of an adjacent mol­ecule [centroid-to-centroid distance = 3.9631 (12) Å].

1. Related literature

For similar structures of various related compounds, see: Boeré et al. (2000[Boeré, R. E., Boeré, R. T., Masuda, J. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 1613-1619.]); Brazeau et al. (2012[Brazeau, A. L., Hänninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398-5414.]); Ghosh et al. (2008[Ghosh, H., Yella, R., Nath, J. & Patel, B. K. (2008). Eur. J. Org. Chem. pp, 6189-6196.]); Han & Huynh (2009[Han, Y. & Huynh, H. V. (2009). Dalton Trans., pp. 2201-2209.]); Chlupatý & Padělková (2014[Chlupatý, T. & Padělková, Z. (2014). Acta Cryst. E70, o785.]); Yildirim et al. (2007[Yıldırım, S. Ö., Akkurt, M., Servi, S., Şekerci, M. & Heinemann, F. W. (2007). Acta Cryst. E63, o2130-o2132.]); Zhang et al. (2009[Zhang, W.-X., Li, D., Wang, Z. & Xi, Z. (2009). Organometallics, 28, 882-887.]). For applications of guanidines, see: Berlinck (2002[Berlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617-649.]); Heys et al. (2000[Heys, L., Moore, C. G. & Murphy, P. J. (2000). Chem. Soc. Rev. 29, 57-67.]); Laeckmann et al. (2002[Laeckmann, D., Rogister, F., Dejardin, J.-V., Prosperi-Meys, C., Géczy, J., Delarge, J. & Masereel, B. (2002). Bioorg. Med. Chem. 10, 1793-1804.]); Kelley et al. (2001[Kelley, M. T., Bürckstümmer, T., Wenzel-Seifert, K., Dove, S., Buschauer, A. & Seifert, R. (2001). Mol. Pharmacol. 60, 1210-1225.]); Moroni et al. (2001[Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130-133.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H25N3

  • Mr = 343.46

  • Orthorhombic, P c a 21

  • a = 19.003 (7) Å

  • b = 7.924 (3) Å

  • c = 13.056 (5) Å

  • V = 1966.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 194 K

  • 0.35 × 0.33 × 0.30 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.980

  • 10737 measured reflections

  • 3547 independent reflections

  • 2649 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.02

  • 3547 reflections

  • 239 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.95 2.61 3.457 (3) 148
Symmetry code: (i) [x+{\script{1\over 2}}, -y+2, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Guanidines are important compounds due to their possible application in medicine, biology and chemistry (Berlinck et al., 2002; Heys et al., 2000). In particular, they have received increasing inter­est as medicinal agents with anti­tumour, anti-hypertensive, anti­glaucoma and cardiotonic activities (Laeckmann et al., 2002; Kelley et al., 2001; Moroni et al., 2001). In search of guanidinato metal complexes and their catalytic behaviors, we synthesized a new substituted guanidine by insertion of phenyl­amine with a symmetric carbodi­imine, the crystal structure of which is presented here. In addition to two examples of phenyl-substituted benzimidazol amines (Ghosh et al., 2008; Yildirim et al., 2007), the title compound is structurally similar to the known compounds, 1-cyclo­hexyl-2,3-di­phenyl­guanidine (Zhang et al., 2009), 1-(2,6-diiso­propyl­phenyl)-2,3-dimesitylguanidine (Brazeau et al., 2012), N,N',N''-tris­(2,6-di­methyl­phenyl)­guanidine (Han & Huynh, 2009), 2-[2,6-Bis(propan-2-yl)phenyl]-1,3-di­cyclo­hexyl­guanidine (Chlupatý & Padělková, 2014) and N,N',N''-tris­(2,6-di-iso­propyl­phenyl)­guanidine (Boere et al., 2000).

The molecular structure of the title compound is illustrated in Fig. 1. The C9—N2 bond in the guanidine unit is 1.266 (2) Å, and is characteristic for a CN imine double bond. The bond lengths of C9—N1 and C9—N3 are 1.365 (2) and 1.376 (2) Å, showing single bond character (Allen et al., 1987). The N—C9—N angles are 124.15 (18)° (N1—C9—N2), 121.58 (17)° (N2—C9—N3) and 114.26 (17)° (N1—C9—N3), indicating a deviation of the CN3 plane from an ideal trigonal planar geometry. The dihedral angles between the planes of the benzene ring and the two substituent di­methyl­phenyl rings are 60.94 (7) and 88.08 (7)°, and the dihedral angle between the planes of the two di­methyl­phenyl rings is 58.01 (7)°. In the crystal, in addition to van der Waals inter­actions, weak C—H···N and N—H···C inter­actions exist between adjacent molecules. One of the di­methyl­phenyl rings has a small amount of π···π overlap with the phenyl ring of an adjacent (1-x, 2-y, 0.5+z) molecule [centroid-to-centroid distance = 3.9631 (12) Å].

Synthesis and crystallization top

To a stirred solution of phenyl­amine (1.863 g, 20 mmol) in hexane was added N,N'-di­methyl­phenyl carbodi­imine (5.007 g, 20 mmol), followed by the addition of the tri­methyl­aluminum (2.5 M, 0.40 mL, 1 mmol). After stirring for 2 h, the white precipitate was collected by suction filtration and recrystallized from hexane-di­ethyl­ether (1:1) solution to obtain colorless crystals of 1,2-bis­(2,6-di­methyl­phenyl)-3-phenyl­guanidine (yield: 90%). Anal. Calc. for C23H25N3: C, 80.43; H, 7.34; N, 12.23. Found: C, 80.32; H, 7.25; N, 12.31%. 1H NMR (300 MHz, CDCl3, 25 °C) δ p.p.m. 2.35 (d, 12H, CH3), 5.06 (s, 1H, NH), 5.56 (s, 1H, NH), 6.91 (s, 2H, PhH), 7.00 (s, 2H, PhH), 7.14 (s, 4H, PhH), 7.28 (s, 1H, PhH) , 7.58 (s, 2H, PhH).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The N—H hydrogen atoms were located in a difference Fourier map and constrained (N—H = 0.87 Å). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 - 0.98 Å with Uiso (H) = 1.2 or 1.5Ueq (CMe).

Related literature top

For similar structures of various related compounds, see: Boeré et al. (2000); Brazeau et al. (2012); Ghosh et al. (2008); Han & Huynh (2009); Chlupatý & Padělková (2014); Yildirim et al. (2007); Zhang et al. (2009). For applications of guanidines, see: Berlinck (2002); Heys et al. (2000); Laeckmann et al. (2002); Kelley et al. (2001); Moroni et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
1,2-Bis(2,6-dimethylphenyl)-3-phenylguanidine top
Crystal data top
C23H25N3F(000) = 736
Mr = 343.46Dx = 1.160 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2316 reflections
a = 19.003 (7) Åθ = 2.8–23.5°
b = 7.924 (3) ŵ = 0.07 mm1
c = 13.056 (5) ÅT = 194 K
V = 1966.0 (13) Å3Block, colourless
Z = 40.35 × 0.33 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3547 independent reflections
Radiation source: fine-focus sealed tube2649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.976, Tmax = 0.980k = 95
10737 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0564P)2]
where P = (Fo2 + 2Fc2)/3
3547 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C23H25N3V = 1966.0 (13) Å3
Mr = 343.46Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 19.003 (7) ŵ = 0.07 mm1
b = 7.924 (3) ÅT = 194 K
c = 13.056 (5) Å0.35 × 0.33 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3547 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2649 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.038
10737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
3547 reflectionsΔρmin = 0.14 e Å3
239 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51390 (8)0.8726 (2)0.22933 (14)0.0499 (4)
H10.50010.81290.28150.060*
N20.39761 (8)0.9417 (2)0.19326 (13)0.0470 (4)
N30.48706 (8)1.0319 (2)0.08715 (13)0.0494 (5)
H30.53001.01090.06800.059*
C10.58760 (9)0.8820 (3)0.21187 (15)0.0414 (5)
C20.62483 (11)1.0196 (3)0.24776 (18)0.0535 (6)
C30.69708 (12)1.0198 (4)0.2354 (2)0.0693 (7)
H3A0.72381.11360.25860.083*
C40.73035 (12)0.8867 (4)0.1904 (2)0.0695 (7)
H40.78010.88790.18400.083*
C50.69327 (12)0.7521 (4)0.15447 (18)0.0612 (6)
H50.71730.66140.12230.073*
C60.62094 (10)0.7464 (3)0.16442 (17)0.0482 (5)
C70.58943 (16)1.1640 (3)0.3014 (2)0.0825 (8)
H7A0.56311.12130.36050.124*
H7B0.55701.22020.25390.124*
H7C0.62501.24480.32470.124*
C80.57928 (15)0.5980 (3)0.1261 (2)0.0732 (7)
H8A0.54230.63750.07960.110*
H8B0.55780.53920.18430.110*
H8C0.61060.52040.08940.110*
C90.46259 (9)0.9480 (3)0.17228 (15)0.0392 (4)
C100.37336 (10)0.8594 (3)0.28195 (16)0.0470 (5)
C110.36221 (11)0.9503 (4)0.37126 (18)0.0592 (7)
C120.32944 (14)0.8739 (5)0.4525 (2)0.0830 (9)
H120.32140.93660.51330.100*
C130.30812 (15)0.7093 (6)0.4476 (3)0.0950 (12)
H130.28520.65840.50440.114*
C140.32015 (14)0.6189 (4)0.3606 (3)0.0918 (11)
H140.30590.50410.35800.110*
C150.35250 (11)0.6897 (3)0.2757 (2)0.0628 (7)
C160.38379 (16)1.1319 (4)0.3781 (2)0.0814 (9)
H16A0.37311.18880.31330.122*
H16B0.43441.13890.39160.122*
H16C0.35801.18680.43380.122*
C170.36204 (16)0.5931 (4)0.1775 (3)0.0942 (10)
H17A0.33810.65260.12170.141*
H17B0.34190.47990.18500.141*
H17C0.41230.58390.16190.141*
C180.44829 (10)1.1495 (3)0.02788 (14)0.0437 (5)
C190.37790 (11)1.1326 (3)0.00775 (16)0.0546 (6)
H190.35291.03720.03260.065*
C200.34337 (13)1.2550 (3)0.04892 (17)0.0641 (7)
H200.29431.24460.06110.077*
C210.37888 (15)1.3896 (3)0.0873 (2)0.0685 (7)
H210.35461.47310.12580.082*
C220.44980 (15)1.4048 (3)0.07045 (19)0.0666 (7)
H220.47491.49760.09850.080*
C230.48466 (11)1.2853 (3)0.01269 (16)0.0533 (5)
H230.53381.29640.00070.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0348 (8)0.0591 (10)0.0557 (10)0.0034 (8)0.0009 (8)0.0171 (9)
N20.0339 (9)0.0611 (11)0.0460 (10)0.0061 (8)0.0012 (7)0.0097 (9)
N30.0358 (9)0.0664 (12)0.0461 (9)0.0083 (8)0.0054 (7)0.0140 (10)
C10.0336 (10)0.0483 (11)0.0424 (11)0.0002 (9)0.0060 (8)0.0072 (10)
C20.0533 (12)0.0528 (13)0.0543 (13)0.0053 (11)0.0068 (11)0.0059 (11)
C30.0564 (14)0.0834 (19)0.0682 (15)0.0248 (14)0.0165 (13)0.0080 (15)
C40.0356 (11)0.111 (2)0.0622 (15)0.0066 (13)0.0028 (11)0.0113 (17)
C50.0477 (13)0.0820 (18)0.0540 (13)0.0115 (12)0.0023 (10)0.0007 (13)
C60.0432 (11)0.0551 (13)0.0461 (11)0.0001 (10)0.0039 (10)0.0016 (11)
C70.0967 (19)0.0517 (14)0.099 (2)0.0000 (14)0.0121 (17)0.0118 (17)
C80.0800 (18)0.0600 (17)0.0795 (17)0.0056 (14)0.0001 (14)0.0135 (14)
C90.0368 (10)0.0428 (11)0.0379 (10)0.0029 (9)0.0032 (9)0.0003 (9)
C100.0295 (9)0.0615 (14)0.0498 (12)0.0091 (10)0.0007 (9)0.0086 (11)
C110.0449 (13)0.0842 (18)0.0483 (13)0.0202 (13)0.0008 (10)0.0096 (13)
C120.0684 (18)0.127 (3)0.0534 (15)0.0326 (18)0.0107 (13)0.0181 (18)
C130.0656 (17)0.129 (3)0.091 (2)0.0279 (19)0.0308 (16)0.058 (2)
C140.0606 (16)0.078 (2)0.137 (3)0.0074 (15)0.0213 (18)0.044 (2)
C150.0420 (12)0.0628 (15)0.0837 (17)0.0046 (11)0.0078 (12)0.0096 (15)
C160.088 (2)0.085 (2)0.0710 (17)0.0123 (17)0.0064 (15)0.0176 (17)
C170.0784 (18)0.0710 (18)0.133 (3)0.0084 (15)0.015 (2)0.023 (2)
C180.0450 (11)0.0506 (13)0.0355 (10)0.0058 (9)0.0019 (9)0.0008 (10)
C190.0453 (12)0.0729 (17)0.0455 (12)0.0040 (11)0.0026 (9)0.0083 (12)
C200.0533 (13)0.0902 (19)0.0487 (12)0.0137 (13)0.0040 (11)0.0067 (14)
C210.0819 (18)0.0696 (18)0.0541 (14)0.0251 (15)0.0055 (13)0.0062 (14)
C220.090 (2)0.0497 (15)0.0606 (15)0.0046 (13)0.0032 (13)0.0051 (13)
C230.0574 (13)0.0517 (13)0.0509 (12)0.0007 (11)0.0028 (11)0.0014 (12)
Geometric parameters (Å, º) top
N1—C91.365 (2)C11—C121.370 (4)
N1—C11.421 (2)C11—C161.499 (4)
N1—H10.8700C12—C131.368 (5)
N2—C91.266 (2)C12—H120.9500
N2—C101.407 (3)C13—C141.363 (5)
N3—C91.376 (2)C13—H130.9500
N3—C181.418 (3)C14—C151.386 (4)
N3—H30.8699C14—H140.9500
C1—C21.381 (3)C15—C171.503 (4)
C1—C61.393 (3)C16—H16A0.9800
C2—C31.382 (3)C16—H16B0.9800
C2—C71.501 (4)C16—H16C0.9800
C3—C41.363 (4)C17—H17A0.9800
C3—H3A0.9500C17—H17B0.9800
C4—C51.362 (3)C17—H17C0.9800
C4—H40.9500C18—C191.370 (3)
C5—C61.381 (3)C18—C231.385 (3)
C5—H50.9500C19—C201.385 (3)
C6—C81.503 (3)C19—H190.9500
C7—H7A0.9800C20—C211.358 (3)
C7—H7B0.9800C20—H200.9500
C7—H7C0.9800C21—C221.371 (4)
C8—H8A0.9800C21—H210.9500
C8—H8B0.9800C22—C231.380 (3)
C8—H8C0.9800C22—H220.9500
C10—C111.387 (3)C23—H230.9500
C10—C151.405 (3)
C9—N1—C1126.42 (17)C12—C11—C16120.2 (3)
C9—N1—H1116.8C10—C11—C16120.5 (2)
C1—N1—H1116.8C13—C12—C11121.3 (3)
C9—N2—C10121.07 (16)C13—C12—H12119.3
C9—N3—C18125.64 (16)C11—C12—H12119.3
C9—N3—H3117.2C14—C13—C12119.3 (3)
C18—N3—H3117.2C14—C13—H13120.3
C2—C1—C6121.78 (17)C12—C13—H13120.3
C2—C1—N1119.46 (19)C13—C14—C15121.9 (3)
C6—C1—N1118.63 (17)C13—C14—H14119.0
C1—C2—C3118.0 (2)C15—C14—H14119.0
C1—C2—C7122.0 (2)C14—C15—C10117.8 (3)
C3—C2—C7119.9 (2)C14—C15—C17122.0 (3)
C4—C3—C2120.7 (2)C10—C15—C17120.2 (2)
C4—C3—H3A119.7C11—C16—H16A109.5
C2—C3—H3A119.7C11—C16—H16B109.5
C5—C4—C3121.0 (2)H16A—C16—H16B109.5
C5—C4—H4119.5C11—C16—H16C109.5
C3—C4—H4119.5H16A—C16—H16C109.5
C4—C5—C6120.5 (2)H16B—C16—H16C109.5
C4—C5—H5119.7C15—C17—H17A109.5
C6—C5—H5119.7C15—C17—H17B109.5
C5—C6—C1118.0 (2)H17A—C17—H17B109.5
C5—C6—C8121.2 (2)C15—C17—H17C109.5
C1—C6—C8120.80 (18)H17A—C17—H17C109.5
C2—C7—H7A109.5H17B—C17—H17C109.5
C2—C7—H7B109.5C19—C18—C23119.3 (2)
H7A—C7—H7B109.5C19—C18—N3123.2 (2)
C2—C7—H7C109.5C23—C18—N3117.43 (18)
H7A—C7—H7C109.5C18—C19—C20119.8 (2)
H7B—C7—H7C109.5C18—C19—H19120.1
C6—C8—H8A109.5C20—C19—H19120.1
C6—C8—H8B109.5C21—C20—C19120.8 (2)
H8A—C8—H8B109.5C21—C20—H20119.6
C6—C8—H8C109.5C19—C20—H20119.6
H8A—C8—H8C109.5C20—C21—C22119.9 (2)
H8B—C8—H8C109.5C20—C21—H21120.1
N2—C9—N1124.15 (18)C22—C21—H21120.1
N2—C9—N3121.58 (17)C21—C22—C23120.0 (2)
N1—C9—N3114.26 (16)C21—C22—H22120.0
C11—C10—C15120.2 (2)C23—C22—H22120.0
C11—C10—N2120.1 (2)C22—C23—C18120.2 (2)
C15—C10—N2119.2 (2)C22—C23—H23119.9
C12—C11—C10119.4 (3)C18—C23—H23119.9
C9—N1—C1—C282.9 (3)C15—C10—C11—C121.3 (3)
C9—N1—C1—C6101.1 (2)N2—C10—C11—C12170.91 (19)
C6—C1—C2—C30.0 (3)C15—C10—C11—C16179.4 (2)
N1—C1—C2—C3175.9 (2)N2—C10—C11—C167.3 (3)
C6—C1—C2—C7178.4 (2)C10—C11—C12—C130.7 (4)
N1—C1—C2—C72.5 (3)C16—C11—C12—C13178.9 (3)
C1—C2—C3—C40.9 (4)C11—C12—C13—C140.5 (4)
C7—C2—C3—C4177.5 (2)C12—C13—C14—C151.0 (5)
C2—C3—C4—C51.4 (4)C13—C14—C15—C100.4 (4)
C3—C4—C5—C61.0 (4)C13—C14—C15—C17176.4 (3)
C4—C5—C6—C10.1 (3)C11—C10—C15—C140.7 (3)
C4—C5—C6—C8179.4 (2)N2—C10—C15—C14171.5 (2)
C2—C1—C6—C50.4 (3)C11—C10—C15—C17177.6 (2)
N1—C1—C6—C5175.5 (2)N2—C10—C15—C175.4 (3)
C2—C1—C6—C8179.9 (2)C9—N3—C18—C1937.2 (3)
N1—C1—C6—C84.0 (3)C9—N3—C18—C23144.1 (2)
C10—N2—C9—N12.6 (3)C23—C18—C19—C202.8 (3)
C10—N2—C9—N3178.32 (19)N3—C18—C19—C20178.5 (2)
C1—N1—C9—N2177.0 (2)C18—C19—C20—C211.8 (3)
C1—N1—C9—N33.9 (3)C19—C20—C21—C220.3 (4)
C18—N3—C9—N215.3 (3)C20—C21—C22—C231.4 (4)
C18—N3—C9—N1165.6 (2)C21—C22—C23—C180.4 (4)
C9—N2—C10—C1194.0 (2)C19—C18—C23—C221.8 (3)
C9—N2—C10—C1593.7 (2)N3—C18—C23—C22179.54 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.952.613.457 (3)148
Symmetry code: (i) x+1/2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.952.613.457 (3)148
Symmetry code: (i) x+1/2, y+2, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 21272142), the Special Fund for Agro-Scientific Research in the Public Inter­est (No. 201303106), and the Patent Promotion Program of Shanxi Province (No. 141006) are gratefully acknowledged.

References

First citationBerlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617–649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoeré, R. E., Boeré, R. T., Masuda, J. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 1613–1619.  Google Scholar
First citationBrazeau, A. L., Hänninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398–5414.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChlupatý, T. & Padělková, Z. (2014). Acta Cryst. E70, o785.  CSD CrossRef IUCr Journals Google Scholar
First citationGhosh, H., Yella, R., Nath, J. & Patel, B. K. (2008). Eur. J. Org. Chem. pp, 6189–6196.  CSD CrossRef Google Scholar
First citationHan, Y. & Huynh, H. V. (2009). Dalton Trans., pp. 2201–2209.  Google Scholar
First citationHeys, L., Moore, C. G. & Murphy, P. J. (2000). Chem. Soc. Rev. 29, 57–67.  Web of Science CrossRef CAS Google Scholar
First citationKelley, M. T., Bürckstümmer, T., Wenzel-Seifert, K., Dove, S., Buschauer, A. & Seifert, R. (2001). Mol. Pharmacol. 60, 1210–1225.  PubMed CAS Google Scholar
First citationLaeckmann, D., Rogister, F., Dejardin, J.-V., Prosperi-Meys, C., Géczy, J., Delarge, J. & Masereel, B. (2002). Bioorg. Med. Chem. 10, 1793–1804.  CrossRef PubMed CAS Google Scholar
First citationMoroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130–133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Servi, S., Şekerci, M. & Heinemann, F. W. (2007). Acta Cryst. E63, o2130–o2132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W.-X., Li, D., Wang, Z. & Xi, Z. (2009). Organometallics, 28, 882–887.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o506-o507
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds