organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o519-o520

Crystal structure of ethyl (4R)-2-amino-7-hy­dr­oxy-4-phenyl-4H-chromene-3-carboxyl­ate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bFaculty of Science & Engineering, School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. McArdle, National University of Ireland, Ireland (Received 21 June 2015; accepted 23 June 2015; online 27 June 2015)

In the title compound, C18H17NO4, the dihedral angle between the phenyl ring and the fused six-membered ring is 77.65 (4)°. The conformation of the mol­ecule is determined in part by an intra­molecular N—H⋯O hydrogen bond between the amino H atom and the carbonyl O atom, forming an S(6) motif. In the crystal, mol­ecules are linked into N—H⋯O hydrogen-bonded inversion dimers which are then connected into chains along [001], forming a two-dimensional network parallel to (100) via O—H⋯O hydrogen bonds. C—H⋯O interactions further contribute to the crystal stability. The ethyl group is disordered over two sets of sites in a 0.801 (5):0.199 (5) ratio.

1. Related literature

For background to the synthesis and biological activity of mol­ecules having a 4H-chromene or 4H-benzochromene residue, see: Kiyani & Ghorbani (2014[Kiyani, H. & Ghorbani, F. (2014). J. Saudi Chem. Soc. 18, 689-701.]); Kale et al. (2013[Kale, S. R., Kahandal, S. S., Burange, A. S., Gawande, M. B. & Jayaram, R. V. (2013). Catal. Sci. Technol. 3, 2050-2056.]); Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]); Kidwai et al. (2010[Kidwai, M., Poddar, R., Bhardwaj, S., Singh, S. & Luthra, M. P. (2010). Eur. J. Med. Chem. 45, 5031-5038.]); Mungra et al. (2011[Mungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192-4200.]); Cingolani et al. (1969[Cingolani, G., Gualtieri, F. & Pigini, M. (1969). J. Med. Chem. 12, 531-532.]); Wu et al. (2003[Wu, J. Y. C., Fong, W. F., Zhang, J. X., Leung, C. H., Kwong, H. L., Yang, M. S., Li, D. & Cheung, H. (2003). Eur. J. Pharmacol. 473, 9-17.]); Perrella et al. (1994[Perrella, F. W., Chen, S. F., Behrens, D. L., Kaltenbach, R. F. & Seitz, S. P. (1994). J. Med. Chem. 37, 2232-2237.]); Patil et al. (1993[Patil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., Caranfa, M. J., Breen, A. L., Bartus, H. R., Johnson, R. K., et al. (1993). J. Med. Chem. 36, 4131-4138.]); Emmadi et al. (2012[Emmadi, N. R., Atmakur, K., Chityal, G. K., Pombala, S. & Nanubolu, J. B. (2012). Bioorg. Med. Chem. Lett. 22, 7261-7264.]); Wang et al. (2003[Wang, X. S., Shi, D. Q., Tu, S. T. & Yao, C. S. (2003). Synth. Commun. 33, 119-126.]); Armesto et al. (1989[Armesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069-3072.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H17NO4

  • Mr = 311.32

  • Monoclinic, C 2/c

  • a = 31.5071 (7) Å

  • b = 5.8582 (1) Å

  • c = 21.2249 (5) Å

  • β = 130.180 (1)°

  • V = 2993.11 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 150 K

  • 0.22 × 0.18 × 0.02 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.91, Tmax = 0.98

  • 11241 measured reflections

  • 2891 independent reflections

  • 2348 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.05

  • 2891 reflections

  • 227 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2i 0.99 2.58 3.312 (3) 131
C6—H6⋯O1ii 0.95 2.56 3.4736 (17) 163
N1—H1B⋯O3 0.88 (2) 1.998 (19) 2.6840 (18) 133.7 (16)
N1—H1A⋯O2ii 0.93 (2) 2.15 (2) 3.0710 (18) 169.6 (17)
O2—H2A⋯O3iii 0.90 (2) 1.83 (2) 2.7331 (15) 179 (2)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Besides the various biological properties of 2-Amino-4H-Chromenes, they also act as important synthetic building blocks for various bio-active molecules (Kiyani & Ghorbani, 2014; Kale et al., 2013; Sabry et al., 2011; Kidwai et al., 2010). During the last decade, such compounds had shown interesting pharmacological properties such as antimicrobial and anti-tuberculosis agents (Mungra et al., 2011), anticoagulant (Cingolani et al., 1969), anticancer (Wu et al., 2003), antitumour (Perrella, et al., 1994), cytotoxic and anti-HIV activities (Patil et al., 1993; Emmadi, et al., 2012). Also, chromenes are also structural features of various natural products (Wang et al., 2003) and possess useful photochemical properties (Armesto et al., 1989).

In the title molecule, the dihedral angle between the phenyl ring (C13–C18) and the C2–C7 ring is 77.65 (4)°. A puckering analysis of the heterocyclic ring gave Q = 0.118 (2) Å, θ = 95.1 (8)° and ϕ = 352.0 (8)°. The conformation of the molecule is determined in part by an intramolecular N1—H1B···O3 hydrogen bond. Pairwise N1—H1A···O2i (i: 1 - x, -y, 1 - z) hydrogen bonds form dimers which are then connected into chains via O2—H2A···O3ii (ii: x, 1 - y, -1/2 + z) hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For background to the synthesis and biological activity of molecules having a 4H-chromene or 4H-benzochromene residue, see: Kiyani & Ghorbani (2014); Kale et al. (2013); Sabry et al. (2011); Kidwai et al. (2010); Mungra et al. (2011); Cingolani et al. (1969); Wu et al. (2003); Perrella et al. (1994); Patil et al. (1993); Emmadi et al. (2012); Wang et al. (2003); Armesto et al. (1989).

Experimental top

The title compound was synthesized by the reaction of (E)-ethyl 3-(phenyl)-2-cyanoacrylate (1 mmol, 201 mg) and 1,3-Benzenediol (1 mmol, 110 mg) catalyzed by Et3N in 10 ml e thanol at the refuxing temperature. After cooling, the solvent was removed under reduced pressure and the residue was washed with cold ethanol and recrystallized from ethanol to afford pure colourless crystals suitable for X-ray diffraction in 92% yeild and M.p 491 K.

Refinement top

H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. The ethyl group (C11,C12) is disordered over two sites. The components of the disorder were refined subject to restraints that their geometries be approximately the same.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with labeling scheme and 50% probability ellipsoids. Only one orientation of the disordered ethyl group is shown.
[Figure 2] Fig. 2. Packing viewed down the b axis. N—H···O and O—H···O hydrogen bonds are shown, respectively as blue and red dotted lines.
Ethyl (4R)-2-amino-7-hydroxy-4-phenyl-4H-chromene-3-carboxylate top
Crystal data top
C18H17NO4F(000) = 1312
Mr = 311.32Dx = 1.382 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 31.5071 (7) ÅCell parameters from 6704 reflections
b = 5.8582 (1) Åθ = 3.7–72.2°
c = 21.2249 (5) ŵ = 0.81 mm1
β = 130.180 (1)°T = 150 K
V = 2993.11 (11) Å3Plate, colourless
Z = 80.22 × 0.18 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2891 independent reflections
Radiation source: INCOATEC IµS micro–focus source2348 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
ω scansθmax = 72.2°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 3836
Tmin = 0.91, Tmax = 0.98k = 67
11241 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.049P)2 + 1.7699P]
where P = (Fo2 + 2Fc2)/3
2891 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H17NO4V = 2993.11 (11) Å3
Mr = 311.32Z = 8
Monoclinic, C2/cCu Kα radiation
a = 31.5071 (7) ŵ = 0.81 mm1
b = 5.8582 (1) ÅT = 150 K
c = 21.2249 (5) Å0.22 × 0.18 × 0.02 mm
β = 130.180 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2891 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
2348 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.98Rint = 0.033
11241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
2891 reflectionsΔρmin = 0.25 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. The ethyl group (C11,C12) is disordered over two sites. The components of the disorder were refined subject to restraints that their geometries be approximately the same.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.45362 (4)0.22755 (17)0.51953 (6)0.0270 (2)
O20.46127 (4)0.21959 (19)0.30568 (6)0.0302 (3)
H2A0.4494 (9)0.294 (4)0.2598 (14)0.056 (6)*
O30.42602 (4)0.5543 (2)0.66661 (6)0.0340 (3)
O40.37668 (5)0.82032 (19)0.56697 (6)0.0338 (3)
N10.46907 (5)0.2182 (3)0.63712 (8)0.0305 (3)
H1A0.4890 (8)0.084 (4)0.6479 (12)0.049 (5)*
H1B0.4647 (8)0.277 (3)0.6709 (12)0.039 (5)*
C10.38998 (6)0.6527 (2)0.46364 (8)0.0242 (3)
H10.40370.81390.47680.029*
C20.40953 (5)0.5419 (2)0.42173 (8)0.0228 (3)
C30.39849 (6)0.6388 (3)0.35231 (8)0.0256 (3)
H30.37890.77950.33180.031*
C40.41512 (6)0.5365 (3)0.31246 (8)0.0260 (3)
H40.40700.60630.26540.031*
C50.44383 (6)0.3298 (2)0.34225 (8)0.0241 (3)
C60.45583 (6)0.2297 (2)0.41125 (8)0.0243 (3)
H60.47540.08920.43200.029*
C70.43866 (5)0.3386 (2)0.44957 (8)0.0227 (3)
C80.44500 (6)0.3350 (3)0.56735 (8)0.0244 (3)
C90.41527 (5)0.5333 (3)0.54438 (8)0.0248 (3)
C100.40769 (6)0.6307 (3)0.59859 (9)0.0274 (3)
C110.35861 (16)0.9101 (9)0.60985 (17)0.0450 (8)0.801 (5)
H11A0.39040.97380.66410.054*0.801 (5)
H11B0.34090.78920.61850.054*0.801 (5)
C120.31703 (14)1.0965 (6)0.55374 (19)0.0619 (10)0.801 (5)
H12A0.30291.16560.57910.093*0.801 (5)
H12B0.33531.21370.54560.093*0.801 (5)
H12C0.28611.03030.50030.093*0.801 (5)
C11A0.3518 (6)0.940 (5)0.5958 (8)0.0450 (8)0.199 (5)
H11C0.36771.09510.61490.054*0.199 (5)
H11D0.35860.85610.64210.054*0.199 (5)
C12A0.2899 (5)0.953 (3)0.5230 (7)0.0619 (10)0.199 (5)
H12D0.27121.03300.53970.093*0.199 (5)
H12E0.28381.03610.47770.093*0.199 (5)
H12F0.27480.79830.50470.093*0.199 (5)
C130.32653 (6)0.6603 (2)0.40441 (8)0.0248 (3)
C140.29555 (6)0.4724 (3)0.39345 (9)0.0289 (3)
H140.31390.33680.42400.035*
C150.23796 (6)0.4812 (3)0.33820 (10)0.0369 (4)
H150.21710.35200.33140.044*
C160.21071 (7)0.6774 (3)0.29294 (10)0.0415 (4)
H160.17130.68360.25550.050*
C170.24104 (7)0.8635 (3)0.30240 (10)0.0399 (4)
H170.22250.99750.27070.048*
C180.29867 (7)0.8557 (3)0.35817 (9)0.0328 (3)
H180.31930.98540.36480.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0334 (5)0.0318 (5)0.0209 (5)0.0037 (4)0.0198 (4)0.0024 (4)
O20.0346 (6)0.0392 (6)0.0237 (5)0.0060 (5)0.0220 (5)0.0032 (5)
O30.0372 (6)0.0470 (7)0.0225 (5)0.0043 (5)0.0214 (5)0.0005 (5)
O40.0401 (6)0.0395 (6)0.0287 (5)0.0059 (5)0.0254 (5)0.0007 (5)
N10.0331 (7)0.0414 (8)0.0214 (6)0.0060 (6)0.0196 (6)0.0041 (6)
C10.0266 (7)0.0270 (7)0.0210 (7)0.0031 (6)0.0163 (6)0.0034 (6)
C20.0209 (6)0.0280 (7)0.0191 (6)0.0036 (6)0.0127 (5)0.0033 (6)
C30.0240 (7)0.0293 (7)0.0235 (7)0.0011 (6)0.0153 (6)0.0008 (6)
C40.0264 (7)0.0328 (8)0.0208 (7)0.0026 (6)0.0161 (6)0.0015 (6)
C50.0216 (6)0.0334 (8)0.0192 (6)0.0036 (6)0.0140 (5)0.0044 (6)
C60.0227 (7)0.0287 (7)0.0202 (7)0.0003 (6)0.0134 (6)0.0001 (6)
C70.0221 (6)0.0297 (7)0.0156 (6)0.0045 (5)0.0118 (5)0.0011 (5)
C80.0221 (7)0.0349 (8)0.0174 (6)0.0044 (6)0.0132 (6)0.0036 (6)
C90.0220 (7)0.0334 (8)0.0182 (6)0.0026 (6)0.0127 (6)0.0031 (6)
C100.0241 (7)0.0358 (8)0.0225 (7)0.0031 (6)0.0151 (6)0.0042 (6)
C110.0614 (14)0.050 (2)0.0456 (14)0.0246 (12)0.0448 (12)0.0156 (16)
C120.079 (2)0.074 (2)0.0624 (18)0.0394 (17)0.0588 (18)0.0292 (16)
C11A0.0614 (14)0.050 (2)0.0456 (14)0.0246 (12)0.0448 (12)0.0156 (16)
C12A0.079 (2)0.074 (2)0.0624 (18)0.0394 (17)0.0588 (18)0.0292 (16)
C130.0276 (7)0.0305 (7)0.0194 (6)0.0023 (6)0.0166 (6)0.0012 (6)
C140.0298 (7)0.0344 (8)0.0252 (7)0.0014 (6)0.0190 (6)0.0008 (6)
C150.0302 (8)0.0528 (10)0.0314 (8)0.0043 (7)0.0216 (7)0.0079 (8)
C160.0257 (8)0.0665 (12)0.0272 (8)0.0113 (8)0.0148 (7)0.0040 (8)
C170.0418 (9)0.0470 (10)0.0285 (8)0.0186 (8)0.0216 (7)0.0054 (7)
C180.0407 (9)0.0333 (8)0.0283 (8)0.0068 (7)0.0241 (7)0.0021 (7)
Geometric parameters (Å, º) top
O1—C81.3622 (16)C9—C101.4358 (19)
O1—C71.3954 (16)C11—C121.521 (4)
O2—C51.3679 (17)C11—H11A0.9900
O2—H2A0.90 (2)C11—H11B0.9900
O3—C101.2419 (18)C12—H12A0.9800
O4—C101.3387 (18)C12—H12B0.9800
O4—C111.448 (2)C12—H12C0.9800
O4—C11A1.448 (4)C11A—C12A1.519 (6)
N1—C81.3366 (19)C11A—H11C0.9900
N1—H1A0.93 (2)C11A—H11D0.9900
N1—H1B0.88 (2)C12A—H12D0.9800
C1—C21.5164 (18)C12A—H12E0.9800
C1—C91.5165 (19)C12A—H12F0.9800
C1—C131.5284 (19)C13—C141.388 (2)
C1—H11.0000C13—C181.390 (2)
C2—C71.382 (2)C14—C151.387 (2)
C2—C31.3976 (19)C14—H140.9500
C3—C41.386 (2)C15—C161.384 (2)
C3—H30.9500C15—H150.9500
C4—C51.395 (2)C16—C171.376 (3)
C4—H40.9500C16—H160.9500
C5—C61.3846 (19)C17—C181.388 (2)
C6—C71.3886 (19)C17—H170.9500
C6—H60.9500C18—H180.9500
C8—C91.369 (2)
C8—O1—C7118.99 (11)O4—C11—H11A110.8
C5—O2—H2A110.5 (14)C12—C11—H11A110.8
C10—O4—C11116.23 (19)O4—C11—H11B110.8
C10—O4—C11A127.5 (10)C12—C11—H11B110.8
C8—N1—H1A120.8 (12)H11A—C11—H11B108.8
C8—N1—H1B115.2 (12)C11—C12—H12A109.5
H1A—N1—H1B124.0 (17)C11—C12—H12B109.5
C2—C1—C9110.43 (12)H12A—C12—H12B109.5
C2—C1—C13109.92 (11)C11—C12—H12C109.5
C9—C1—C13113.43 (11)H12A—C12—H12C109.5
C2—C1—H1107.6H12B—C12—H12C109.5
C9—C1—H1107.6O4—C11A—C12A106.5 (7)
C13—C1—H1107.6O4—C11A—H11C110.4
C7—C2—C3116.48 (12)C12A—C11A—H11C110.4
C7—C2—C1121.82 (12)O4—C11A—H11D110.4
C3—C2—C1121.69 (13)C12A—C11A—H11D110.4
C4—C3—C2122.18 (14)H11C—C11A—H11D108.6
C4—C3—H3118.9C11A—C12A—H12D109.5
C2—C3—H3118.9C11A—C12A—H12E109.5
C3—C4—C5119.26 (13)H12D—C12A—H12E109.5
C3—C4—H4120.4C11A—C12A—H12F109.5
C5—C4—H4120.4H12D—C12A—H12F109.5
O2—C5—C6117.71 (13)H12E—C12A—H12F109.5
O2—C5—C4122.20 (12)C14—C13—C18118.64 (14)
C6—C5—C4120.09 (13)C14—C13—C1121.35 (13)
C5—C6—C7118.79 (13)C18—C13—C1119.98 (14)
C5—C6—H6120.6C15—C14—C13120.48 (15)
C7—C6—H6120.6C15—C14—H14119.8
C2—C7—C6123.19 (12)C13—C14—H14119.8
C2—C7—O1122.14 (12)C16—C15—C14120.31 (16)
C6—C7—O1114.67 (12)C16—C15—H15119.8
N1—C8—O1110.23 (13)C14—C15—H15119.8
N1—C8—C9126.67 (13)C17—C16—C15119.66 (15)
O1—C8—C9123.09 (12)C17—C16—H16120.2
C8—C9—C10118.78 (13)C15—C16—H16120.2
C8—C9—C1122.26 (12)C16—C17—C18120.10 (16)
C10—C9—C1118.96 (13)C16—C17—H17119.9
O3—C10—O4121.56 (13)C18—C17—H17119.9
O3—C10—C9126.52 (14)C17—C18—C13120.79 (16)
O4—C10—C9111.92 (12)C17—C18—H18119.6
O4—C11—C12105.0 (2)C13—C18—H18119.6
C9—C1—C2—C79.72 (18)C13—C1—C9—C8115.70 (15)
C13—C1—C2—C7116.18 (14)C2—C1—C9—C10171.99 (12)
C9—C1—C2—C3170.99 (12)C13—C1—C9—C1064.11 (17)
C13—C1—C2—C363.11 (17)C11—O4—C10—O39.3 (3)
C7—C2—C3—C40.7 (2)C11A—O4—C10—O311.6 (12)
C1—C2—C3—C4178.58 (13)C11—O4—C10—C9169.8 (3)
C2—C3—C4—C50.0 (2)C11A—O4—C10—C9167.5 (12)
C3—C4—C5—O2179.81 (13)C8—C9—C10—O30.7 (2)
C3—C4—C5—C60.5 (2)C1—C9—C10—O3179.51 (14)
O2—C5—C6—C7179.87 (12)C8—C9—C10—O4178.39 (12)
C4—C5—C6—C70.1 (2)C1—C9—C10—O41.43 (18)
C3—C2—C7—C61.1 (2)C10—O4—C11—C12170.7 (3)
C1—C2—C7—C6178.23 (13)C10—O4—C11A—C12A123.6 (13)
C3—C2—C7—O1178.25 (12)C2—C1—C13—C1482.33 (16)
C1—C2—C7—O12.4 (2)C9—C1—C13—C1441.85 (18)
C5—C6—C7—C20.7 (2)C2—C1—C13—C1895.55 (15)
C5—C6—C7—O1178.71 (12)C9—C1—C13—C18140.28 (13)
C8—O1—C7—C27.73 (19)C18—C13—C14—C150.8 (2)
C8—O1—C7—C6171.67 (11)C1—C13—C14—C15178.73 (13)
C7—O1—C8—N1170.97 (11)C13—C14—C15—C160.4 (2)
C7—O1—C8—C99.47 (19)C14—C15—C16—C170.6 (2)
N1—C8—C9—C100.6 (2)C15—C16—C17—C181.2 (2)
O1—C8—C9—C10178.86 (12)C16—C17—C18—C130.7 (2)
N1—C8—C9—C1179.56 (13)C14—C13—C18—C170.3 (2)
O1—C8—C9—C11.0 (2)C1—C13—C18—C17178.21 (13)
C2—C1—C9—C88.20 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.992.583.312 (3)131
C6—H6···O1ii0.952.563.4736 (17)163
N1—H1B···O30.88 (2)1.998 (19)2.6840 (18)133.7 (16)
N1—H1A···O2ii0.93 (2)2.15 (2)3.0710 (18)169.6 (17)
O2—H2A···O3iii0.90 (2)1.83 (2)2.7331 (15)179 (2)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O2i0.992.583.312 (3)131
C6—H6···O1ii0.952.563.4736 (17)163
N1—H1B···O30.88 (2)1.998 (19)2.6840 (18)133.7 (16)
N1—H1A···O2ii0.93 (2)2.15 (2)3.0710 (18)169.6 (17)
O2—H2A···O3iii0.90 (2)1.83 (2)2.7331 (15)179 (2)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1, z1/2.
 

Acknowledgements

The support of NSF–MRI (grant No. 1228232) for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationArmesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069–3072.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCingolani, G., Gualtieri, F. & Pigini, M. (1969). J. Med. Chem. 12, 531–532.  CrossRef CAS PubMed Google Scholar
First citationEmmadi, N. R., Atmakur, K., Chityal, G. K., Pombala, S. & Nanubolu, J. B. (2012). Bioorg. Med. Chem. Lett. 22, 7261–7264.  CSD CrossRef CAS PubMed Google Scholar
First citationKale, S. R., Kahandal, S. S., Burange, A. S., Gawande, M. B. & Jayaram, R. V. (2013). Catal. Sci. Technol. 3, 2050–2056.  CrossRef CAS Google Scholar
First citationKidwai, M., Poddar, R., Bhardwaj, S., Singh, S. & Luthra, M. P. (2010). Eur. J. Med. Chem. 45, 5031–5038.  CrossRef CAS PubMed Google Scholar
First citationKiyani, H. & Ghorbani, F. (2014). J. Saudi Chem. Soc. 18, 689–701.  CrossRef Google Scholar
First citationMungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192–4200.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPatil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., Caranfa, M. J., Breen, A. L., Bartus, H. R., Johnson, R. K., et al. (1993). J. Med. Chem. 36, 4131–4138.  CSD CrossRef CAS PubMed Google Scholar
First citationPerrella, F. W., Chen, S. F., Behrens, D. L., Kaltenbach, R. F. & Seitz, S. P. (1994). J. Med. Chem. 37, 2232–2237.  CrossRef CAS PubMed Google Scholar
First citationSabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X. S., Shi, D. Q., Tu, S. T. & Yao, C. S. (2003). Synth. Commun. 33, 119–126.  CSD CrossRef CAS Google Scholar
First citationWu, J. Y. C., Fong, W. F., Zhang, J. X., Leung, C. H., Kwong, H. L., Yang, M. S., Li, D. & Cheung, H. (2003). Eur. J. Pharmacol. 473, 9–17.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o519-o520
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds