organic compounds
of the pyridine–diiodine (1/1) adduct
aUniversity of Jyvaskyla, Department of Chemistry, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland
*Correspondence e-mail: matti.o.haukka@jyu.fi
In the title adduct, C5H5N·I2, the N—I distance [2.424 (8) Å] is remarkably shorter than the sum of the van der Waals radii. The line through the I atoms forms an angle of 78.39 (16)° with the normal to the pyridine ring.
Keywords: pyridine; diiodine; halogen bonding; crystal structure.
CCDC reference: 1404151
1. Related literature
For the structure of the pyridine–I2 1:2 adduct, see: Hassel & Hope (1961). For the crystal structures of pyridine with ICl and IBr, see: Rømming (1972); Dahl et al. (1967). For van der Walls radii, see: Bondi (1964). For the I—I distance of iodine, see: Buontempo et al. (1997). For I—I⋯N angles in halogen bonding, see: Desiraju et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: Collect (Nonius, 2000); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1404151
10.1107/S2056989015010518/rz5157sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015010518/rz5157Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015010518/rz5157Isup3.cml
The title compound was synthesized by dissolving iodine (200 mg) in ethanol (5 ml) and adding pyridine (1 ml) into this solution. The solution was left to evaporate unde ambient conditions and after a couple of days light yellow crystals were formed.
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 Ueq(C).
Data collection: Collect (Nonius, 2000); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms. |
C5H5N·I2 | F(000) = 592 |
Mr = 332.90 | Dx = 2.760 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2432 (6) Å | Cell parameters from 1865 reflections |
b = 4.3392 (2) Å | θ = 1.0–27.5° |
c = 20.1953 (13) Å | µ = 7.76 mm−1 |
β = 98.468 (3)° | T = 120 K |
V = 801.16 (8) Å3 | Plate, clear light yellow |
Z = 4 | 0.09 × 0.07 × 0.02 mm |
Bruker KAPPA APEX II CCD diffractometer | 1853 independent reflections |
Radiation source: fine-focus sealed tube | 1437 reflections with I > 2σ(I) |
Curved graphite crystal monochromator | Rint = 0.062 |
Detector resolution: 16 pixels mm-1 | θmax = 27.6°, θmin = 2.2° |
ϕ scans and ω scans with κ offset | h = −11→11 |
Absorption correction: numerical (SADABS; Bruker,2012) | k = −5→5 |
Tmin = 0.574, Tmax = 0.902 | l = −26→25 |
6585 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0153P)2 + 9.3396P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
1853 reflections | Δρmax = 1.11 e Å−3 |
73 parameters | Δρmin = −1.26 e Å−3 |
0 restraints |
C5H5N·I2 | V = 801.16 (8) Å3 |
Mr = 332.90 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 9.2432 (6) Å | µ = 7.76 mm−1 |
b = 4.3392 (2) Å | T = 120 K |
c = 20.1953 (13) Å | 0.09 × 0.07 × 0.02 mm |
β = 98.468 (3)° |
Bruker KAPPA APEX II CCD diffractometer | 1853 independent reflections |
Absorption correction: numerical (SADABS; Bruker,2012) | 1437 reflections with I > 2σ(I) |
Tmin = 0.574, Tmax = 0.902 | Rint = 0.062 |
6585 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.11 e Å−3 |
1853 reflections | Δρmin = −1.26 e Å−3 |
73 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.27234 (6) | 0.59684 (13) | 0.54587 (3) | 0.02083 (16) | |
I2 | 0.32645 (6) | 0.35101 (14) | 0.67558 (3) | 0.02480 (18) | |
N1 | 0.2243 (7) | 0.8407 (18) | 0.4368 (4) | 0.0243 (18) | |
C5 | 0.3349 (9) | 0.933 (2) | 0.4053 (4) | 0.0207 (19) | |
H5 | 0.4323 | 0.8743 | 0.4223 | 0.025* | |
C3 | 0.1668 (10) | 1.198 (2) | 0.3214 (5) | 0.028 (2) | |
H3 | 0.1471 | 1.3178 | 0.2818 | 0.033* | |
C1 | 0.0849 (10) | 0.921 (2) | 0.4121 (5) | 0.030 (2) | |
H1 | 0.0069 | 0.8529 | 0.4342 | 0.035* | |
C2 | 0.0549 (10) | 1.098 (2) | 0.3558 (5) | 0.030 (2) | |
H2 | −0.0434 | 1.1533 | 0.3399 | 0.036* | |
C4 | 0.3076 (10) | 1.112 (2) | 0.3480 (5) | 0.030 (2) | |
H4 | 0.3872 | 1.1783 | 0.3266 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0189 (3) | 0.0224 (3) | 0.0212 (3) | −0.0010 (2) | 0.0027 (2) | −0.0016 (3) |
I2 | 0.0253 (3) | 0.0267 (3) | 0.0222 (4) | 0.0029 (2) | 0.0031 (3) | 0.0011 (3) |
N1 | 0.016 (4) | 0.032 (4) | 0.024 (4) | −0.003 (3) | 0.004 (3) | −0.007 (4) |
C5 | 0.017 (4) | 0.031 (5) | 0.013 (5) | −0.001 (4) | −0.001 (3) | 0.000 (4) |
C3 | 0.031 (5) | 0.035 (6) | 0.014 (5) | −0.002 (4) | −0.003 (4) | 0.004 (4) |
C1 | 0.019 (5) | 0.039 (6) | 0.031 (6) | −0.009 (4) | 0.007 (4) | 0.005 (5) |
C2 | 0.014 (4) | 0.049 (7) | 0.026 (6) | −0.002 (4) | −0.003 (4) | 0.002 (5) |
C4 | 0.025 (5) | 0.042 (6) | 0.022 (6) | −0.006 (4) | 0.005 (4) | 0.003 (5) |
I1—I2 | 2.8043 (9) | C5—C4 | 1.388 (13) |
I1—N1 | 2.425 (8) | C3—C2 | 1.397 (12) |
N1—C5 | 1.342 (10) | C3—C4 | 1.383 (13) |
N1—C1 | 1.357 (12) | C1—C2 | 1.364 (14) |
N1—I1—I2 | 176.44 (18) | C4—C3—C2 | 116.6 (9) |
C5—N1—I1 | 120.7 (6) | N1—C1—C2 | 121.1 (8) |
C5—N1—C1 | 119.8 (8) | C1—C2—C3 | 120.9 (9) |
C1—N1—I1 | 118.9 (6) | C3—C4—C5 | 121.2 (8) |
N1—C5—C4 | 120.3 (8) | ||
I1—N1—C5—C4 | −170.3 (7) | C5—N1—C1—C2 | −0.8 (15) |
I1—N1—C1—C2 | 170.4 (8) | C1—N1—C5—C4 | 0.8 (14) |
N1—C5—C4—C3 | −0.9 (15) | C2—C3—C4—C5 | 1.0 (15) |
N1—C1—C2—C3 | 1.0 (16) | C4—C3—C2—C1 | −1.0 (15) |
Experimental details
Crystal data | |
Chemical formula | C5H5N·I2 |
Mr | 332.90 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 120 |
a, b, c (Å) | 9.2432 (6), 4.3392 (2), 20.1953 (13) |
β (°) | 98.468 (3) |
V (Å3) | 801.16 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.76 |
Crystal size (mm) | 0.09 × 0.07 × 0.02 |
Data collection | |
Diffractometer | Bruker KAPPA APEX II CCD diffractometer |
Absorption correction | Numerical (SADABS; Bruker,2012) |
Tmin, Tmax | 0.574, 0.902 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6585, 1853, 1437 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.091, 1.07 |
No. of reflections | 1853 |
No. of parameters | 73 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.11, −1.26 |
Computer programs: Collect (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012), SHELXL97 (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).
Acknowledgements
Financial support provided by the Academy of Finland (project No. 129171) is gratefully acknowledged.
References
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buontempo, U., DiCicco, A., Filipponi, A., Nardone, M. & Postorino, P. (1997). J. Chem. Phys. 107, 5720–5726. CAS Google Scholar
Dahl, T., Hassel, O. & Sky, K. (1967). Acta Chem. Scand. 21, 592–593. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hassel, O. & Hope, H. (1961). Acta Chem. Scand. 15, 407–416. CrossRef CAS Web of Science Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rømming, C. (1972). Acta Chem. Scand. 26, 1555–1560. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Diiodine is capable to act as halogen bond donor and form stable halogen bonds with Lewis bases, such as pyridine, due to the strong charge transfer. In the case of the pyridine-I2 1:2 adduct (Hassel & Hope, 1961), the interaction eventually results in the heterolytic cleavage of I2 and formaton of [py2I]+ I3- ion pairs. Although the crystal structures involving pyridine and interhalogens ICl and IBr are known (Rømming, 1972; Dahl et al., 1967), the title pyI2 1:1 adduct has not been reported earlier. The N1—I1 distance in pyI2 (2.425 (8) Å) is remarkably shorter than the sum of the van der Walls radii of iodine and nitrogen (3.53 Å; Bondi, 1964). The I—I distance (2.8043 (9) Å) is significantly longer than that observed in free diiodine in solid state (2.715 Å; Buontempo et al., 1997). The I—I···N angle is approximately linear (176.44 (18)°) as expected in halogen bonds (Desiraju et al., 2013).