organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the pyridine–diiodine (1/1) adduct

aUniversity of Jyvaskyla, Department of Chemistry, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland
*Correspondence e-mail: matti.o.haukka@jyu.fi

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 17 April 2015; accepted 1 June 2015; online 13 June 2015)

In the title adduct, C5H5N·I2, the N—I distance [2.424 (8) Å] is remarkably shorter than the sum of the van der Waals radii. The line through the I atoms forms an angle of 78.39 (16)° with the normal to the pyridine ring.

1. Related literature

For the structure of the pyridine–I2 1:2 adduct, see: Hassel & Hope (1961[Hassel, O. & Hope, H. (1961). Acta Chem. Scand. 15, 407-416.]). For the crystal structures of pyridine with ICl and IBr, see: Rømming (1972[Rømming, C. (1972). Acta Chem. Scand. 26, 1555-1560.]); Dahl et al. (1967[Dahl, T., Hassel, O. & Sky, K. (1967). Acta Chem. Scand. 21, 592-593.]). For van der Walls radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For the I—I distance of iodine, see: Buontempo et al. (1997[Buontempo, U., DiCicco, A., Filipponi, A., Nardone, M. & Postorino, P. (1997). J. Chem. Phys. 107, 5720-5726.]). For I—IN angles in halogen bonding, see: Desiraju et al. (2013[Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H5N·I2

  • Mr = 332.90

  • Monoclinic, P 2/c

  • a = 9.2432 (6) Å

  • b = 4.3392 (2) Å

  • c = 20.1953 (13) Å

  • β = 98.468 (3)°

  • V = 801.16 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.76 mm−1

  • T = 120 K

  • 0.09 × 0.07 × 0.02 mm

2.2. Data collection

  • Bruker KAPPA APEX II CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker,2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.574, Tmax = 0.902

  • 6585 measured reflections

  • 1853 independent reflections

  • 1437 reflections with I > 2σ(I)

  • Rint = 0.062

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.091

  • S = 1.07

  • 1853 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −1.26 e Å−3

Data collection: Collect (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Diiodine is capable to act as halogen bond donor and form stable halogen bonds with Lewis bases, such as pyridine, due to the strong charge transfer. In the case of the pyridine-I2 1:2 adduct (Hassel & Hope, 1961), the interaction eventually results in the heterolytic cleavage of I2 and formaton of [py2I]+ I3- ion pairs. Although the crystal structures involving pyridine and interhalogens ICl and IBr are known (Rømming, 1972; Dahl et al., 1967), the title pyI2 1:1 adduct has not been reported earlier. The N1—I1 distance in pyI2 (2.425 (8) Å) is remarkably shorter than the sum of the van der Walls radii of iodine and nitrogen (3.53 Å; Bondi, 1964). The I—I distance (2.8043 (9) Å) is significantly longer than that observed in free diiodine in solid state (2.715 Å; Buontempo et al., 1997). The I—I···N angle is approximately linear (176.44 (18)°) as expected in halogen bonds (Desiraju et al., 2013).

Related literature top

For the structure of the pyridine– I2 1:2 adduct, see: Hassel & Hope (1961). For the crystal structures of pyridine with ICl and IBr, see: Rømming (1972); Dahl et al. (1967). For van der Walls radii, see: Bondi (1964). For the I—I distance of iodine, see: Buontempo et al. (1997). For I—I···N angles in halogen bonding, see: Desiraju et al. (2013).

Experimental top

The title compound was synthesized by dissolving iodine (200 mg) in ethanol (5 ml) and adding pyridine (1 ml) into this solution. The solution was left to evaporate unde ambient conditions and after a couple of days light yellow crystals were formed.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: Collect (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.
Pyridine–diiodine (1/1) top
Crystal data top
C5H5N·I2F(000) = 592
Mr = 332.90Dx = 2.760 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 9.2432 (6) ÅCell parameters from 1865 reflections
b = 4.3392 (2) Åθ = 1.0–27.5°
c = 20.1953 (13) ŵ = 7.76 mm1
β = 98.468 (3)°T = 120 K
V = 801.16 (8) Å3Plate, clear light yellow
Z = 40.09 × 0.07 × 0.02 mm
Data collection top
Bruker KAPPA APEX II CCD
diffractometer
1853 independent reflections
Radiation source: fine-focus sealed tube1437 reflections with I > 2σ(I)
Curved graphite crystal monochromatorRint = 0.062
Detector resolution: 16 pixels mm-1θmax = 27.6°, θmin = 2.2°
ϕ scans and ω scans with κ offseth = 1111
Absorption correction: numerical
(SADABS; Bruker,2012)
k = 55
Tmin = 0.574, Tmax = 0.902l = 2625
6585 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0153P)2 + 9.3396P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1853 reflectionsΔρmax = 1.11 e Å3
73 parametersΔρmin = 1.26 e Å3
0 restraints
Crystal data top
C5H5N·I2V = 801.16 (8) Å3
Mr = 332.90Z = 4
Monoclinic, P2/cMo Kα radiation
a = 9.2432 (6) ŵ = 7.76 mm1
b = 4.3392 (2) ÅT = 120 K
c = 20.1953 (13) Å0.09 × 0.07 × 0.02 mm
β = 98.468 (3)°
Data collection top
Bruker KAPPA APEX II CCD
diffractometer
1853 independent reflections
Absorption correction: numerical
(SADABS; Bruker,2012)
1437 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.902Rint = 0.062
6585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.07Δρmax = 1.11 e Å3
1853 reflectionsΔρmin = 1.26 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.27234 (6)0.59684 (13)0.54587 (3)0.02083 (16)
I20.32645 (6)0.35101 (14)0.67558 (3)0.02480 (18)
N10.2243 (7)0.8407 (18)0.4368 (4)0.0243 (18)
C50.3349 (9)0.933 (2)0.4053 (4)0.0207 (19)
H50.43230.87430.42230.025*
C30.1668 (10)1.198 (2)0.3214 (5)0.028 (2)
H30.14711.31780.28180.033*
C10.0849 (10)0.921 (2)0.4121 (5)0.030 (2)
H10.00690.85290.43420.035*
C20.0549 (10)1.098 (2)0.3558 (5)0.030 (2)
H20.04341.15330.33990.036*
C40.3076 (10)1.112 (2)0.3480 (5)0.030 (2)
H40.38721.17830.32660.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0189 (3)0.0224 (3)0.0212 (3)0.0010 (2)0.0027 (2)0.0016 (3)
I20.0253 (3)0.0267 (3)0.0222 (4)0.0029 (2)0.0031 (3)0.0011 (3)
N10.016 (4)0.032 (4)0.024 (4)0.003 (3)0.004 (3)0.007 (4)
C50.017 (4)0.031 (5)0.013 (5)0.001 (4)0.001 (3)0.000 (4)
C30.031 (5)0.035 (6)0.014 (5)0.002 (4)0.003 (4)0.004 (4)
C10.019 (5)0.039 (6)0.031 (6)0.009 (4)0.007 (4)0.005 (5)
C20.014 (4)0.049 (7)0.026 (6)0.002 (4)0.003 (4)0.002 (5)
C40.025 (5)0.042 (6)0.022 (6)0.006 (4)0.005 (4)0.003 (5)
Geometric parameters (Å, º) top
I1—I22.8043 (9)C5—C41.388 (13)
I1—N12.425 (8)C3—C21.397 (12)
N1—C51.342 (10)C3—C41.383 (13)
N1—C11.357 (12)C1—C21.364 (14)
N1—I1—I2176.44 (18)C4—C3—C2116.6 (9)
C5—N1—I1120.7 (6)N1—C1—C2121.1 (8)
C5—N1—C1119.8 (8)C1—C2—C3120.9 (9)
C1—N1—I1118.9 (6)C3—C4—C5121.2 (8)
N1—C5—C4120.3 (8)
I1—N1—C5—C4170.3 (7)C5—N1—C1—C20.8 (15)
I1—N1—C1—C2170.4 (8)C1—N1—C5—C40.8 (14)
N1—C5—C4—C30.9 (15)C2—C3—C4—C51.0 (15)
N1—C1—C2—C31.0 (16)C4—C3—C2—C11.0 (15)

Experimental details

Crystal data
Chemical formulaC5H5N·I2
Mr332.90
Crystal system, space groupMonoclinic, P2/c
Temperature (K)120
a, b, c (Å)9.2432 (6), 4.3392 (2), 20.1953 (13)
β (°) 98.468 (3)
V3)801.16 (8)
Z4
Radiation typeMo Kα
µ (mm1)7.76
Crystal size (mm)0.09 × 0.07 × 0.02
Data collection
DiffractometerBruker KAPPA APEX II CCD
diffractometer
Absorption correctionNumerical
(SADABS; Bruker,2012)
Tmin, Tmax0.574, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
6585, 1853, 1437
Rint0.062
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.091, 1.07
No. of reflections1853
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 1.26

Computer programs: Collect (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012), SHELXL97 (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).

 

Acknowledgements

Financial support provided by the Academy of Finland (project No. 129171) is gratefully acknowledged.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuontempo, U., DiCicco, A., Filipponi, A., Nardone, M. & Postorino, P. (1997). J. Chem. Phys. 107, 5720–5726.  CAS Google Scholar
First citationDahl, T., Hassel, O. & Sky, K. (1967). Acta Chem. Scand. 21, 592–593.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHassel, O. & Hope, H. (1961). Acta Chem. Scand. 15, 407–416.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRømming, C. (1972). Acta Chem. Scand. 26, 1555–1560.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds