organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o461-o462

Crystal structure of pymetrozine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 28 May 2015; accepted 4 June 2015; online 10 June 2015)

The title compound, C10H11N5O {systematic name: 6-methyl-4-[(E)-(pyridin-3-yl­methyl­idene)amino]-4,5-di­hydro-1,2,4-triazin-3(2H)-one}, C10H11N5O, is used as an anti­feedant in pest control. The asymmetric unit comprises two independent mol­ecules, A and B, in which the dihedral angles between the pyridinyl and triazinyl ring planes [r.m.s. deviations = 0.0132 and 0.0255 ] are 11.60 (6) and 18.06 (4)°, respectively. In the crystal, N—H⋯O, N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds, together with weak ππ inter­actions [ring-centroid separations = 3.5456 (9) and 3.9142 (9) Å], link the pyridinyl and triazinyl rings of A mol­ecules, generating a three-dimensional network.

1. Related literature

For information on the toxicity and insecticidal properties of the title compound, see: He et al. (2011[He, Y., Chen, L., Chen, J., Zhang, J., Chen, L., Shen, J. & Zhu, Y. C. (2011). Pest. Manag. Sci. 67, 483-491.]); Torres et al. (2003[Torres, J. B., Silva-Torres, C. S. A. & de Oliveira, J. V. (2003). Pesq. Agropec. Bras. 38, 459-466.]); Ausborn et al. (2005[Ausborn, J., Wolf, H., Mader, W. & Kayser, H. (2005). J. Exp. Biol. 208, 4451-4466.]); Barati et al. (2013[Barati, R., Golmohammadi, G., Ghajarie, H., Zarabi, M. & Mansouri, R. (2013). Pesticidi Fitomed. 28, 47-55.]). For a related crystal structure, see: Wang et al. (2012[Wang, B., Ke, S., Kishore, B., Xu, X., Zou, Z. & Li, Z. (2012). Synth. Commun. 42, 2327-2336.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H11N5O

  • Mr = 217.24

  • Monoclinic, P 21 /n

  • a = 8.0803 (2) Å

  • b = 23.7497 (6) Å

  • c = 10.7846 (3) Å

  • β = 98.962 (1)°

  • V = 2044.35 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.37 × 0.16 × 0.09 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.991

  • 19037 measured reflections

  • 3987 independent reflections

  • 3103 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.04

  • 3987 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O2i 0.88 2.32 2.9545 (17) 129
N4—H4⋯N7i 0.88 2.43 3.2346 (17) 152
N9—H9⋯N6ii 0.88 2.04 2.882 (2) 159
C19—H19A⋯N1iii 0.99 2.57 3.0852 (19) 112
C19—H19A⋯O1iv 0.99 2.60 3.5596 (19) 164
C20—H20C⋯O1v 0.98 2.53 3.3906 (19) 147
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z-1; (iii) x-1, y, z-1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pymetrozine: 4,5-dihydro-6-methyl-4-[(E)-(3-pyridinylmethylene)amino]-1,2,4-triazin-3(2H)-one, is an insecticide for the control of sucking insects, including the brown planthopper, Nilaparvata lugens, one of the most serious pests to affect rice crops (He et al., 2011). Its crystal structure is reported herein. In the title compound (Fig. 1), the asymmetric unit comprises two independent molecules (A and B) and the dihedral angles between the pyridinyl and triazinyl ring planes are 11.60 (6) and 18.06 (4)° for A and B, respectively. All bond lengths and bond angles are normal and comparable to those observed in a similar crystal structure (Wang et al., 2012).

The crystal structure, Fig. 2, is stabilized by intermolecular N—H···O, N—H···N, C—H···N and C—H···O hydrogen bonds (Table 1). In addition, weak intermolecular π···π interactions between the pyridinyl and triazinyl rings link adjacent A molecules [Cg1···Cg2i, 3.5456 (9) Å and Cg1···Cg2ii, 3.9142 (9) Å] symmetry codes: (i) = x + 1/2, -y + 1/2, z + 1/2, (ii) = x + 1, y, z; Cg1 and Cg2 are the centroids of the N1···C5 and N3···C9 rings, respectively]. The π···π interactions together with C1–H1···N5 hydrogen bonds generate sheets of A molecules in the ac plane. All of these contacts combine to generate a three dimensional network, Fig. 2.

Related literature top

For information on the toxicity and insecticidal properties of the title compound, see: He et al. (2011); Torres et al. (2003); Ausborn et al. (2005); Barati et al. (2013). For a related crystal structure, see: Wang et al. (2012).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for the amine group, d(C—H) = 0.98 Å, Uiso = 1.2Ueq(C) for the methyl group, d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for methylene C—H and d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic H atoms

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the a axis. The hydrogen bonds are shown as dashed lines.
6-Methyl-4-[(E)-(pyridin-3-ylmethylidene)amino]-4,5-dihydro-1,2,4-triazin-3(2H)-one top
Crystal data top
C10H11N5OF(000) = 912
Mr = 217.24Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.0803 (2) ÅCell parameters from 3981 reflections
b = 23.7497 (6) Åθ = 2.7–27.3°
c = 10.7846 (3) ŵ = 0.10 mm1
β = 98.962 (1)°T = 173 K
V = 2044.35 (9) Å3Block, colourless
Z = 80.37 × 0.16 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3987 independent reflections
Radiation source: fine-focus sealed tube3103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 89
Tmin = 0.964, Tmax = 0.991k = 2829
19037 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.3325P]
where P = (Fo2 + 2Fc2)/3
3987 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C10H11N5OV = 2044.35 (9) Å3
Mr = 217.24Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.0803 (2) ŵ = 0.10 mm1
b = 23.7497 (6) ÅT = 173 K
c = 10.7846 (3) Å0.37 × 0.16 × 0.09 mm
β = 98.962 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3987 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3103 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.991Rint = 0.042
19037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3987 reflectionsΔρmin = 0.31 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54588 (13)0.37396 (4)0.67454 (12)0.0371 (3)
O20.65704 (12)0.09515 (4)0.11461 (10)0.0298 (3)
N11.18740 (16)0.17122 (6)0.90565 (15)0.0353 (4)
N20.70889 (14)0.27719 (5)0.72493 (13)0.0269 (3)
N30.54303 (15)0.27730 (5)0.67218 (13)0.0272 (3)
N40.31072 (15)0.32889 (5)0.58809 (14)0.0333 (3)
H40.26100.36180.57500.040*
N50.21533 (15)0.28219 (5)0.54719 (14)0.0314 (3)
N60.56087 (18)0.08007 (6)0.54024 (13)0.0362 (3)
N70.53681 (14)0.07233 (5)0.09543 (12)0.0226 (3)
N80.43763 (14)0.06556 (5)0.01909 (12)0.0212 (3)
N90.41093 (15)0.07374 (5)0.23457 (12)0.0273 (3)
H90.45310.08500.30080.033*
N100.24931 (16)0.05238 (5)0.25699 (13)0.0266 (3)
C11.28109 (19)0.21759 (7)0.91859 (17)0.0325 (4)
H11.39400.21450.95870.039*
C21.22268 (19)0.26979 (7)0.87674 (17)0.0346 (4)
H21.29490.30160.88650.041*
C31.05822 (19)0.27537 (6)0.82046 (17)0.0319 (4)
H31.01580.31090.79000.038*
C40.95585 (18)0.22816 (6)0.80914 (15)0.0253 (3)
C51.02808 (19)0.17746 (6)0.85192 (16)0.0305 (4)
H50.95940.14480.84230.037*
C60.77874 (18)0.22966 (6)0.75433 (16)0.0269 (4)
H60.71620.19580.74070.032*
C70.47257 (18)0.32978 (6)0.64618 (16)0.0275 (4)
C80.28134 (18)0.23414 (7)0.57182 (16)0.0281 (4)
C90.45481 (18)0.22477 (6)0.63922 (16)0.0274 (4)
H9A0.44950.20290.71670.033*
H9B0.51830.20220.58530.033*
C100.1823 (2)0.18265 (7)0.53033 (19)0.0397 (5)
H10A0.06390.19270.50730.060*
H10B0.19460.15520.59890.060*
H10C0.22340.16630.45750.060*
C110.7273 (2)0.08409 (7)0.55839 (17)0.0368 (4)
H110.78390.08860.64180.044*
C120.8219 (2)0.08200 (7)0.46212 (17)0.0340 (4)
H120.94060.08420.47970.041*
C130.74117 (19)0.07667 (6)0.34017 (16)0.0283 (4)
H130.80320.07610.27220.034*
C140.56786 (18)0.07210 (6)0.31837 (15)0.0247 (3)
C150.4844 (2)0.07337 (7)0.42216 (16)0.0315 (4)
H150.36610.06920.40800.038*
C160.46794 (19)0.06629 (6)0.19390 (15)0.0250 (3)
H160.35170.05800.18600.030*
C170.51141 (17)0.07926 (6)0.12215 (14)0.0219 (3)
C180.18317 (18)0.03964 (6)0.16097 (15)0.0241 (3)
C190.26507 (17)0.04665 (6)0.02804 (15)0.0233 (3)
H19A0.20100.07440.01400.028*
H19B0.26260.01030.01640.028*
C200.01097 (18)0.01533 (7)0.17992 (17)0.0324 (4)
H20A0.03090.01250.27000.049*
H20B0.06330.03970.14020.049*
H20C0.01400.02220.14200.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0312 (6)0.0260 (6)0.0533 (9)0.0021 (5)0.0041 (5)0.0001 (6)
O20.0280 (6)0.0374 (6)0.0254 (7)0.0084 (4)0.0079 (5)0.0027 (5)
N10.0292 (7)0.0321 (7)0.0420 (10)0.0044 (6)0.0023 (6)0.0034 (7)
N20.0211 (7)0.0294 (7)0.0295 (8)0.0016 (5)0.0015 (5)0.0001 (6)
N30.0219 (6)0.0254 (7)0.0327 (8)0.0026 (5)0.0004 (6)0.0018 (6)
N40.0254 (7)0.0264 (7)0.0465 (10)0.0062 (5)0.0010 (6)0.0034 (7)
N50.0243 (7)0.0336 (7)0.0354 (9)0.0011 (5)0.0024 (6)0.0027 (6)
N60.0471 (9)0.0417 (8)0.0204 (8)0.0003 (6)0.0073 (6)0.0018 (7)
N70.0266 (7)0.0222 (6)0.0185 (7)0.0007 (5)0.0024 (5)0.0007 (6)
N80.0214 (6)0.0250 (6)0.0170 (7)0.0028 (5)0.0029 (5)0.0000 (5)
N90.0299 (7)0.0342 (7)0.0182 (7)0.0078 (5)0.0045 (5)0.0019 (6)
N100.0275 (7)0.0257 (7)0.0256 (8)0.0025 (5)0.0004 (6)0.0010 (6)
C10.0243 (8)0.0389 (9)0.0330 (10)0.0029 (7)0.0007 (7)0.0018 (8)
C20.0274 (8)0.0322 (9)0.0431 (12)0.0046 (6)0.0024 (7)0.0014 (8)
C30.0310 (9)0.0248 (8)0.0392 (11)0.0023 (6)0.0031 (7)0.0020 (8)
C40.0252 (8)0.0270 (8)0.0236 (9)0.0028 (6)0.0037 (6)0.0019 (7)
C50.0291 (8)0.0256 (8)0.0352 (10)0.0008 (6)0.0002 (7)0.0008 (7)
C60.0260 (8)0.0264 (8)0.0278 (9)0.0006 (6)0.0031 (7)0.0001 (7)
C70.0257 (8)0.0265 (8)0.0313 (10)0.0039 (6)0.0080 (7)0.0031 (7)
C80.0246 (8)0.0332 (8)0.0267 (9)0.0011 (6)0.0049 (7)0.0029 (7)
C90.0271 (8)0.0246 (8)0.0299 (10)0.0011 (6)0.0022 (7)0.0017 (7)
C100.0313 (9)0.0361 (9)0.0482 (12)0.0030 (7)0.0046 (8)0.0022 (9)
C110.0496 (11)0.0346 (9)0.0233 (10)0.0021 (8)0.0032 (8)0.0025 (8)
C120.0341 (9)0.0313 (9)0.0344 (11)0.0002 (7)0.0015 (7)0.0027 (8)
C130.0357 (9)0.0231 (8)0.0270 (9)0.0011 (6)0.0078 (7)0.0009 (7)
C140.0320 (8)0.0206 (7)0.0219 (9)0.0001 (6)0.0052 (6)0.0004 (7)
C150.0358 (9)0.0349 (9)0.0249 (9)0.0010 (7)0.0079 (7)0.0005 (8)
C160.0270 (8)0.0268 (8)0.0221 (9)0.0006 (6)0.0064 (6)0.0003 (7)
C170.0268 (8)0.0190 (7)0.0207 (8)0.0017 (6)0.0067 (6)0.0010 (6)
C180.0257 (8)0.0194 (7)0.0267 (9)0.0016 (6)0.0023 (7)0.0004 (7)
C190.0223 (7)0.0240 (7)0.0243 (9)0.0006 (5)0.0059 (6)0.0024 (7)
C200.0268 (8)0.0328 (8)0.0367 (10)0.0015 (6)0.0021 (7)0.0004 (8)
Geometric parameters (Å, º) top
O1—C71.2202 (18)C4—C51.385 (2)
O2—C171.2263 (16)C4—C61.461 (2)
N1—C11.331 (2)C5—H50.9500
N1—C51.3352 (19)C6—H60.9500
N2—C61.2797 (19)C8—C101.491 (2)
N2—N31.3719 (17)C8—C91.492 (2)
N3—C71.3807 (18)C9—H9A0.9900
N3—C91.4534 (18)C9—H9B0.9900
N4—C71.3594 (19)C10—H10A0.9800
N4—N51.3832 (17)C10—H10B0.9800
N4—H40.8800C10—H10C0.9800
N5—C81.2701 (19)C11—C121.383 (2)
N6—C111.332 (2)C11—H110.9500
N6—C151.335 (2)C12—C131.380 (2)
N7—C161.281 (2)C12—H120.9500
N7—N81.3730 (17)C13—C141.388 (2)
N8—C171.3795 (19)C13—H130.9500
N8—C191.4536 (17)C14—C151.394 (2)
N9—C171.3564 (19)C14—C161.461 (2)
N9—N101.3867 (17)C15—H150.9500
N9—H90.8800C16—H160.9500
N10—C181.274 (2)C18—C201.491 (2)
C1—C21.377 (2)C18—C191.492 (2)
C1—H10.9500C19—H19A0.9900
C2—C31.379 (2)C19—H19B0.9900
C2—H20.9500C20—H20A0.9800
C3—C41.387 (2)C20—H20B0.9800
C3—H30.9500C20—H20C0.9800
C1—N1—C5116.61 (13)N3—C9—H9B109.2
C6—N2—N3117.97 (12)C8—C9—H9B109.2
N2—N3—C7115.55 (12)H9A—C9—H9B107.9
N2—N3—C9120.66 (11)C8—C10—H10A109.5
C7—N3—C9123.66 (12)C8—C10—H10B109.5
C7—N4—N5127.42 (12)H10A—C10—H10B109.5
C7—N4—H4116.3C8—C10—H10C109.5
N5—N4—H4116.3H10A—C10—H10C109.5
C8—N5—N4117.31 (13)H10B—C10—H10C109.5
C11—N6—C15117.07 (15)N6—C11—C12123.42 (16)
C16—N7—N8117.67 (12)N6—C11—H11118.3
N7—N8—C17115.60 (11)C12—C11—H11118.3
N7—N8—C19121.02 (12)C13—C12—C11118.97 (16)
C17—N8—C19123.36 (12)C13—C12—H12120.5
C17—N9—N10127.41 (13)C11—C12—H12120.5
C17—N9—H9116.3C12—C13—C14118.91 (16)
N10—N9—H9116.3C12—C13—H13120.5
C18—N10—N9116.63 (13)C14—C13—H13120.5
N1—C1—C2123.36 (14)C13—C14—C15117.63 (15)
N1—C1—H1118.3C13—C14—C16124.17 (15)
C2—C1—H1118.3C15—C14—C16118.20 (14)
C1—C2—C3119.24 (15)N6—C15—C14123.96 (15)
C1—C2—H2120.4N6—C15—H15118.0
C3—C2—H2120.4C14—C15—H15118.0
C2—C3—C4118.79 (14)N7—C16—C14120.11 (14)
C2—C3—H3120.6N7—C16—H16119.9
C4—C3—H3120.6C14—C16—H16119.9
C5—C4—C3117.30 (14)O2—C17—N9121.57 (14)
C5—C4—C6119.41 (13)O2—C17—N8123.36 (14)
C3—C4—C6123.28 (13)N9—C17—N8115.07 (12)
N1—C5—C4124.65 (14)N10—C18—C20118.78 (14)
N1—C5—H5117.7N10—C18—C19125.12 (13)
C4—C5—H5117.7C20—C18—C19116.10 (14)
N2—C6—C4119.22 (14)N8—C19—C18112.06 (12)
N2—C6—H6120.4N8—C19—H19A109.2
C4—C6—H6120.4C18—C19—H19A109.2
O1—C7—N4121.57 (14)N8—C19—H19B109.2
O1—C7—N3123.81 (14)C18—C19—H19B109.2
N4—C7—N3114.60 (13)H19A—C19—H19B107.9
N5—C8—C10119.06 (14)C18—C20—H20A109.5
N5—C8—C9124.62 (14)C18—C20—H20B109.5
C10—C8—C9116.31 (13)H20A—C20—H20B109.5
N3—C9—C8112.26 (12)C18—C20—H20C109.5
N3—C9—H9A109.2H20A—C20—H20C109.5
C8—C9—H9A109.2H20B—C20—H20C109.5
C6—N2—N3—C7177.92 (15)C7—N3—C9—C81.3 (2)
C6—N2—N3—C96.1 (2)N5—C8—C9—N31.1 (2)
C7—N4—N5—C84.1 (2)C10—C8—C9—N3178.12 (14)
C16—N7—N8—C17172.24 (12)C15—N6—C11—C120.4 (2)
C16—N7—N8—C196.07 (19)N6—C11—C12—C131.4 (3)
C17—N9—N10—C184.7 (2)C11—C12—C13—C141.7 (2)
C5—N1—C1—C21.8 (3)C12—C13—C14—C150.2 (2)
N1—C1—C2—C31.3 (3)C12—C13—C14—C16179.96 (14)
C1—C2—C3—C40.8 (3)C11—N6—C15—C142.0 (2)
C2—C3—C4—C52.1 (2)C13—C14—C15—N61.7 (2)
C2—C3—C4—C6178.24 (16)C16—C14—C15—N6178.07 (14)
C1—N1—C5—C40.3 (3)N8—N7—C16—C14179.00 (12)
C3—C4—C5—N11.7 (3)C13—C14—C16—N78.9 (2)
C6—C4—C5—N1178.69 (16)C15—C14—C16—N7170.84 (14)
N3—N2—C6—C4179.19 (14)N10—N9—C17—O2174.79 (13)
C5—C4—C6—N2174.00 (15)N10—N9—C17—N85.0 (2)
C3—C4—C6—N26.4 (3)N7—N8—C17—O21.8 (2)
N5—N4—C7—O1177.59 (16)C19—N8—C17—O2179.92 (13)
N5—N4—C7—N33.9 (2)N7—N8—C17—N9178.42 (11)
N2—N3—C7—O14.7 (2)C19—N8—C17—N90.15 (19)
C9—N3—C7—O1179.44 (15)N9—N10—C18—C20178.69 (13)
N2—N3—C7—N4176.77 (13)N9—N10—C18—C190.8 (2)
C9—N3—C7—N41.0 (2)N7—N8—C19—C18177.33 (11)
N4—N5—C8—C10179.51 (15)C17—N8—C19—C184.49 (19)
N4—N5—C8—C91.3 (2)N10—C18—C19—N85.0 (2)
N2—N3—C9—C8174.34 (14)C20—C18—C19—N8174.58 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O2i0.882.322.9545 (17)129
N4—H4···N7i0.882.433.2346 (17)152
N9—H9···N6ii0.882.042.882 (2)159
C19—H19A···N1iii0.992.573.0852 (19)112
C19—H19A···O1iv0.992.603.5596 (19)164
C20—H20C···O1v0.982.533.3906 (19)147
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y, z1; (iii) x1, y, z1; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O2i0.882.322.9545 (17)128.7
N4—H4···N7i0.882.433.2346 (17)152.4
N9—H9···N6ii0.882.042.882 (2)159.0
C19—H19A···N1iii0.992.573.0852 (19)112.0
C19—H19A···O1iv0.992.603.5596 (19)163.8
C20—H20C···O1v0.982.533.3906 (19)147.0
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y, z1; (iii) x1, y, z1; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationAusborn, J., Wolf, H., Mader, W. & Kayser, H. (2005). J. Exp. Biol. 208, 4451–4466.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarati, R., Golmohammadi, G., Ghajarie, H., Zarabi, M. & Mansouri, R. (2013). Pesticidi Fitomed. 28, 47–55.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, Y., Chen, L., Chen, J., Zhang, J., Chen, L., Shen, J. & Zhu, Y. C. (2011). Pest. Manag. Sci. 67, 483–491.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorres, J. B., Silva-Torres, C. S. A. & de Oliveira, J. V. (2003). Pesq. Agropec. Bras. 38, 459–466.  Web of Science CrossRef Google Scholar
First citationWang, B., Ke, S., Kishore, B., Xu, X., Zou, Z. & Li, Z. (2012). Synth. Commun. 42, 2327–2336.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o461-o462
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds