organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of oxadiarg­yl

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 5 June 2015; accepted 15 June 2015; online 20 June 2015)

In the title compound {systematic name: 5-tert-butyl-3-[2,4-di­chloro-5-(prop-2-yn­yloxy)phen­yl]-1,3,4-oxa­diazol-2(3H)-one}, C15H14Cl2N2O3, which is an oxa­diazo­lone herbicide, the dihedral angle between the planes of the oxa­diazo­lone and benzene rings is 65.84 (6)°. In the crystal, weak inter­molecular Cl⋯Cl [3.3600 (7) Å] short contacts link adjacent mol­ecules, forming chains along the b-axis direction. These chains are linked by C—H⋯O, C—H⋯N and C—H⋯Cl hydrogen bonds, generating a three-dimensional network. Weak C—H⋯π inter­actions are also present.

1. Related literature

For information on the herbicidal properties of the title compound, see: Saber-Tehrani et al. (2012[Saber-Tehrani, M., Pourhabib, A., Husain, S. W. & Arvand, M. (2012). Electroanalysis, 24, 2395-2404.]). For a related crystal structure, see: Zhang (2006[Zhang, G.-L. (2006). Acta Cryst. E62, o1556-o1557.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H14Cl2N2O3

  • Mr = 341.18

  • Monoclinic, P 21 /c

  • a = 12.9132 (6) Å

  • b = 15.3893 (7) Å

  • c = 8.4792 (4) Å

  • β = 107.559 (1)°

  • V = 1606.52 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 173 K

  • 0.32 × 0.14 × 0.04 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.984

  • 14639 measured reflections

  • 3673 independent reflections

  • 3126 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.03

  • 3673 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the O3/C10/N1/N2/C11 and C4–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.47 3.401 (3) 168
C13—H13B⋯O2ii 0.98 2.51 3.429 (2) 155
C3—H3B⋯N2iii 0.99 2.64 3.607 (2) 166
C13—H13A⋯Cl1iv 0.98 2.85 3.811 (2) 168
C14—H14b⋯Cg2ii 0.98 2.99 3.396 (2) 106
C15—H15c⋯Cg1v 0.98 2.80 3.497 (2) 129
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y, z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+2, -z+1; (v) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Oxadiargyl [systematic name: 5-tert-butyl-3-[2,4-dichloro-5-(prop-2- ynyloxy)phenyl]-1,3,4-oxadiazol-2(3H)-one] is an oxadiazolone herbicide that has been developed for the control of annual grasses, sedges and broad-leaf weeds in rice fields (Saber-Tehrani et al., 2012). However, until now its crystal structure has not been reported. In the title compound (Fig. 1), the dihedral angle between the planes of the oxadiazolone and benzene rings is 65.84 (6)°. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Zhang 2006).

In the crystal structure (Fig. 2), weak intermolecular Cl1···Cl2v [3.3600 (7) Å] short contacts link adjacent molecules, forming one-dimensional chains along the b-axis. The chains are linked by C—H···O, C—H···N, and C—H···Cl hydrogen bonds (Table 1), resulting in a three-dimensional architecture. In addition, weak C—H···π interactions involving the C14 and C15 methyl groups and the oxadiazolone and benzene rings are also found, Table 1.

Related literature top

For information on the herbicidal properties of the title compound, see: Saber-Tehrani et al. (2012). For a related crystal structure, see: Zhang (2006).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH3CN gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.98 Å, Uiso = 1.2Ueq(C) for the methyl groups, d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for the methylene C—H and d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic and alkyne C—H.

Computing details top

Data collection: APEX2 (Bruker 2009); cell refinement: SAINT (Bruker 2009); data reduction: SAINT (Bruker 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing viewed along the b axis. The C—H···O and C—H···N, C—H···Cl hydrogen bonds and short Cl···Cl contacts are shown as dashed lines.
5-tert-Butyl-3-[2,4-dichloro-5-(prop-2-ynyloxy)phenyl]-1,3,4-oxadiazol-2(3H)-one top
Crystal data top
C15H14Cl2N2O3F(000) = 704
Mr = 341.18Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9132 (6) ÅCell parameters from 5206 reflections
b = 15.3893 (7) Åθ = 2.7–27.4°
c = 8.4792 (4) ŵ = 0.42 mm1
β = 107.559 (1)°T = 173 K
V = 1606.52 (13) Å3Block, colourless
Z = 40.32 × 0.14 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
3126 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 27.5°, θmin = 2.1°
Tmin = 0.878, Tmax = 0.984h = 1615
14639 measured reflectionsk = 2019
3673 independent reflectionsl = 811
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.7866P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3673 reflectionsΔρmax = 0.37 e Å3
202 parametersΔρmin = 0.50 e Å3
Crystal data top
C15H14Cl2N2O3V = 1606.52 (13) Å3
Mr = 341.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9132 (6) ŵ = 0.42 mm1
b = 15.3893 (7) ÅT = 173 K
c = 8.4792 (4) Å0.32 × 0.14 × 0.04 mm
β = 107.559 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3673 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3126 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.984Rint = 0.030
14639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
3673 reflectionsΔρmin = 0.50 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51241 (4)0.84758 (3)0.07299 (7)0.04172 (14)
Cl20.42630 (4)1.13566 (3)0.36463 (6)0.03708 (13)
O10.34909 (9)0.76748 (7)0.18615 (15)0.0285 (3)
O20.15195 (11)1.12537 (8)0.23434 (14)0.0353 (3)
O30.13661 (9)1.11525 (7)0.49542 (13)0.0263 (3)
N10.24959 (11)1.02745 (8)0.43361 (16)0.0234 (3)
N20.25036 (11)1.00602 (8)0.59469 (15)0.0231 (3)
C10.07451 (17)0.77324 (15)0.0073 (3)0.0496 (5)
H10.00870.79370.06830.060*
C20.15618 (15)0.74788 (11)0.1011 (2)0.0357 (4)
C30.26062 (15)0.71962 (10)0.2137 (2)0.0317 (4)
H3A0.26060.72810.32950.038*
H3B0.27070.65690.19710.038*
C40.35972 (12)0.85268 (9)0.23138 (19)0.0215 (3)
C50.44020 (13)0.89889 (10)0.1882 (2)0.0249 (3)
C60.46160 (13)0.98461 (10)0.2306 (2)0.0264 (3)
H60.51841.01420.20310.032*
C70.39940 (13)1.02756 (10)0.3143 (2)0.0249 (3)
C80.31715 (12)0.98351 (10)0.35432 (18)0.0218 (3)
C90.29737 (12)0.89626 (10)0.31370 (18)0.0217 (3)
H90.24110.86650.34230.026*
C100.17873 (14)1.09254 (10)0.3692 (2)0.0259 (3)
C110.18252 (13)1.05977 (10)0.62444 (19)0.0226 (3)
C120.14869 (13)1.06873 (10)0.7774 (2)0.0262 (3)
C130.18132 (16)1.15945 (12)0.8505 (2)0.0381 (4)
H13A0.26021.16640.87760.057*
H13B0.15971.16630.95110.057*
H13C0.14491.20360.76950.057*
C140.2053 (2)0.99878 (14)0.8999 (2)0.0506 (6)
H14A0.18040.94140.85390.076*
H14B0.18801.00671.00390.076*
H14C0.28401.00320.92090.076*
C150.02549 (16)1.05801 (14)0.7315 (3)0.0433 (5)
H15A0.01001.10300.65160.065*
H15B0.00251.06360.83110.065*
H15C0.00491.00050.68220.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0476 (3)0.0308 (2)0.0615 (3)0.00758 (19)0.0387 (2)0.0042 (2)
Cl20.0460 (3)0.0210 (2)0.0434 (3)0.00999 (18)0.0122 (2)0.00547 (17)
O10.0335 (6)0.0178 (5)0.0382 (7)0.0008 (5)0.0168 (5)0.0026 (5)
O20.0489 (8)0.0344 (7)0.0234 (6)0.0135 (6)0.0120 (5)0.0092 (5)
O30.0342 (6)0.0235 (6)0.0217 (6)0.0083 (5)0.0090 (5)0.0022 (4)
N10.0316 (7)0.0208 (6)0.0188 (6)0.0047 (5)0.0090 (5)0.0025 (5)
N20.0299 (7)0.0211 (6)0.0181 (6)0.0018 (5)0.0071 (5)0.0007 (5)
C10.0382 (11)0.0554 (13)0.0528 (13)0.0060 (10)0.0100 (10)0.0193 (11)
C20.0393 (10)0.0300 (9)0.0424 (11)0.0101 (8)0.0195 (9)0.0130 (8)
C30.0430 (10)0.0182 (7)0.0392 (10)0.0064 (7)0.0206 (8)0.0025 (7)
C40.0243 (8)0.0176 (7)0.0218 (8)0.0016 (6)0.0057 (6)0.0016 (6)
C50.0241 (8)0.0255 (8)0.0268 (8)0.0058 (6)0.0102 (6)0.0044 (6)
C60.0235 (8)0.0258 (8)0.0307 (9)0.0018 (6)0.0093 (6)0.0050 (7)
C70.0284 (8)0.0184 (7)0.0253 (8)0.0036 (6)0.0042 (6)0.0004 (6)
C80.0249 (8)0.0216 (7)0.0185 (7)0.0024 (6)0.0059 (6)0.0001 (6)
C90.0227 (7)0.0204 (7)0.0226 (8)0.0010 (6)0.0079 (6)0.0018 (6)
C100.0327 (9)0.0220 (7)0.0232 (8)0.0018 (7)0.0088 (7)0.0007 (6)
C110.0277 (8)0.0193 (7)0.0189 (7)0.0008 (6)0.0043 (6)0.0008 (6)
C120.0313 (8)0.0263 (8)0.0228 (8)0.0048 (7)0.0106 (7)0.0001 (6)
C130.0452 (11)0.0388 (10)0.0341 (10)0.0050 (8)0.0178 (8)0.0130 (8)
C140.0790 (16)0.0499 (12)0.0287 (10)0.0289 (11)0.0250 (10)0.0130 (9)
C150.0384 (10)0.0552 (12)0.0413 (11)0.0089 (9)0.0196 (9)0.0069 (9)
Geometric parameters (Å, º) top
Cl1—C51.7310 (16)C6—C71.389 (2)
Cl2—C71.7266 (16)C6—H60.9500
O1—C41.3613 (18)C7—C81.386 (2)
O1—C31.4365 (19)C8—C91.391 (2)
O2—C101.2017 (19)C9—H90.9500
O3—C111.3733 (18)C11—C121.495 (2)
O3—C101.3836 (19)C12—C141.521 (2)
N1—C101.355 (2)C12—C151.528 (2)
N1—N21.4022 (17)C12—C131.534 (2)
N1—C81.4228 (19)C13—H13A0.9800
N2—C111.284 (2)C13—H13B0.9800
C1—C21.179 (3)C13—H13C0.9800
C1—H10.9500C14—H14A0.9800
C2—C31.464 (3)C14—H14B0.9800
C3—H3A0.9900C14—H14C0.9800
C3—H3B0.9900C15—H15A0.9800
C4—C91.387 (2)C15—H15B0.9800
C4—C51.396 (2)C15—H15C0.9800
C5—C61.373 (2)
C4—O1—C3117.74 (12)C8—C9—H9120.0
C11—O3—C10106.45 (12)O2—C10—N1131.27 (15)
C10—N1—N2111.83 (12)O2—C10—O3124.23 (15)
C10—N1—C8126.62 (13)N1—C10—O3104.49 (13)
N2—N1—C8121.56 (12)N2—C11—O3113.59 (13)
C11—N2—N1103.60 (12)N2—C11—C12128.70 (14)
C2—C1—H1180.0O3—C11—C12117.71 (13)
C1—C2—C3177.0 (2)C11—C12—C14108.73 (13)
O1—C3—C2111.27 (14)C11—C12—C15108.86 (14)
O1—C3—H3A109.4C14—C12—C15110.28 (16)
C2—C3—H3A109.4C11—C12—C13108.54 (14)
O1—C3—H3B109.4C14—C12—C13110.56 (16)
C2—C3—H3B109.4C15—C12—C13109.82 (15)
H3A—C3—H3B108.0C12—C13—H13A109.5
O1—C4—C9125.65 (14)C12—C13—H13B109.5
O1—C4—C5115.88 (14)H13A—C13—H13B109.5
C9—C4—C5118.47 (14)C12—C13—H13C109.5
C6—C5—C4121.82 (15)H13A—C13—H13C109.5
C6—C5—Cl1119.08 (12)H13B—C13—H13C109.5
C4—C5—Cl1119.08 (12)C12—C14—H14A109.5
C5—C6—C7119.30 (15)C12—C14—H14B109.5
C5—C6—H6120.4H14A—C14—H14B109.5
C7—C6—H6120.4C12—C14—H14C109.5
C8—C7—C6119.77 (14)H14A—C14—H14C109.5
C8—C7—Cl2121.50 (12)H14B—C14—H14C109.5
C6—C7—Cl2118.73 (12)C12—C15—H15A109.5
C7—C8—C9120.57 (14)C12—C15—H15B109.5
C7—C8—N1120.52 (14)H15A—C15—H15B109.5
C9—C8—N1118.89 (14)C12—C15—H15C109.5
C4—C9—C8120.03 (14)H15A—C15—H15C109.5
C4—C9—H9120.0H15B—C15—H15C109.5
C10—N1—N2—C111.55 (17)O1—C4—C9—C8179.41 (15)
C8—N1—N2—C11178.49 (14)C5—C4—C9—C81.3 (2)
C4—O1—C3—C270.42 (18)C7—C8—C9—C40.4 (2)
C3—O1—C4—C95.2 (2)N1—C8—C9—C4177.85 (14)
C3—O1—C4—C5174.11 (14)N2—N1—C10—O2176.02 (18)
O1—C4—C5—C6178.05 (14)C8—N1—C10—O23.9 (3)
C9—C4—C5—C62.6 (2)N2—N1—C10—O32.34 (17)
O1—C4—C5—Cl13.8 (2)C8—N1—C10—O3177.70 (14)
C9—C4—C5—Cl1175.58 (12)C11—O3—C10—O2176.34 (16)
C4—C5—C6—C72.1 (2)C11—O3—C10—N12.17 (16)
Cl1—C5—C6—C7176.10 (12)N1—N2—C11—O30.07 (17)
C5—C6—C7—C80.3 (2)N1—N2—C11—C12179.98 (15)
C5—C6—C7—Cl2179.26 (12)C10—O3—C11—N21.36 (18)
C6—C7—C8—C91.0 (2)C10—O3—C11—C12178.56 (14)
Cl2—C7—C8—C9179.51 (12)N2—C11—C12—C142.4 (2)
C6—C7—C8—N1177.28 (14)O3—C11—C12—C14177.51 (15)
Cl2—C7—C8—N12.2 (2)N2—C11—C12—C15122.58 (19)
C10—N1—C8—C765.3 (2)O3—C11—C12—C1557.33 (19)
N2—N1—C8—C7114.74 (16)N2—C11—C12—C13117.92 (18)
C10—N1—C8—C9112.99 (18)O3—C11—C12—C1362.17 (19)
N2—N1—C8—C966.97 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the O3/C10/N1/N2/C11 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.473.401 (3)168
C13—H13B···O2ii0.982.513.429 (2)155
C3—H3B···N2iii0.992.643.607 (2)166
C13—H13A···Cl1iv0.982.853.811 (2)168
C14—H14b···Cg2ii0.982.993.396 (2)106
C15—H15c···Cg1v0.982.803.497 (2)129
Symmetry codes: (i) x, y+2, z; (ii) x, y, z+1; (iii) x, y+3/2, z1/2; (iv) x+1, y+2, z+1; (v) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the O3/C10/N1/N2/C11 and C4–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.473.401 (3)168
C13—H13B···O2ii0.982.513.429 (2)155
C3—H3B···N2iii0.992.643.607 (2)166
C13—H13A···Cl1iv0.982.853.811 (2)168
C14—H14b···Cg2ii0.982.993.396 (2)106
C15—H15c···Cg1v0.982.803.497 (2)129
Symmetry codes: (i) x, y+2, z; (ii) x, y, z+1; (iii) x, y+3/2, z1/2; (iv) x+1, y+2, z+1; (v) x, y+2, z+2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSaber-Tehrani, M., Pourhabib, A., Husain, S. W. & Arvand, M. (2012). Electroanalysis, 24, 2395–2404.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, G.-L. (2006). Acta Cryst. E62, o1556–o1557.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds