organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o481-o482

Crystal structure of 3-amino-1-(4-chloro­phen­yl)-1H-benzo[f]chromene-2-carbo­nitrile

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 5 June 2015; accepted 8 June 2015; online 13 June 2015)

In the title compound, C20H13ClN2O, the chloro­benzene ring is almost perpendicular to the mean plane of the naphthalene ring system, making a dihedral angle of 81.26 (8)°. The 4H-pyran ring fused with the naphthalene ring system has a flattened boat conformation. In the crystal, N—H⋯N hydrogen bonds generate chains along the b-axis direction. Further N—H⋯N hydrogen bonds link these chains into sheets parallel to (010). The crystal packing also features C—H⋯π inter­actions. The crystal studied was an inversion twin with a 0.557 (16):0.443 (16) domain ratio.

1. Related literature

For the synthesis and biological importance of chromene compounds, see, for example: Ellis (1977[Ellis, G. P. (1977). In The Chemistry of Heterocyclic Compounds, Vol. 31, Chromenes. New York: John Wiley & Sons.]); Singh et al. (2010[Singh, O. M., Devi, N. S., Thokchom, D. S. & Sharma, G. J. (2010). Eur. J. Med. Chem. 45, 2250-2257.]); Kidwai et al. (2010[Lácová, M., Gašparová, R., Koiš, P., Boháč, A. & El-Shaaer, H. M. (2010). Tetrahedron, 66, 1410-1419.]); Lácová et al. (2005[ Kidwai, M., Saxena, S., Rahman Khan, M. K. & Thukral, S. S. (2005). Bioorg. Med. Chem. Lett. 15, 4295-4298.]); Dell & Smith (1993a[Dell, C. P. & Smith, C. W. (1993a). Chem. Abstr. (1993), 119, 139102d.],b[Dell, C. P. & Smith, C. W. (1993b). Eur. Patent Appl. 537, 949, 1993.]); Al-Soud et al. (2006[Al-Soud, Y. A., Al-Masoudi, I. A., Saeed, S., Beifuss, U. & Al-Masoudi, N. A. (2006). Chem. Heterocycl. Compd, 467, 669-676.]); Eiden & Denk (1991[Eiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353-354.]); Bruhlmann et al. (200); (Kesten et al. (1999[Kesten, S. R., Heffner, T. G., Johnson, S. G., Pugsley, T. A., Wright, J. L. & Wise, D. L. (1999). J. Med. Chem. 42, 3718-3725.]); Bruhlmann et al. (2001[Brühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195-3198.]). For a similar structure, see: Akkurt et al. (2013[Akkurt, M., Kennedy, A. R., Mohamed, S. K., Younes, S. H. H. & Miller, G. J. (2013). Acta Cryst. E69, o401.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H13ClN2O

  • Mr = 332.77

  • Monoclinic, P 21

  • a = 10.056 (7) Å

  • b = 6.172 (3) Å

  • c = 12.751 (6) Å

  • β = 99.641 (17)°

  • V = 780.2 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.23 mm−1

  • T = 100 K

  • 0.32 × 0.12 × 0.10 mm

2.2. Data collection

  • Rigaku AFC11 diffractometer

  • Absorption correction: multi-scan (CrystalClearSM Expert; Rigaku, 2012[Rigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.948, Tmax = 1.000

  • 11415 measured reflections

  • 2558 independent reflections

  • 2500 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.06

  • 2558 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Refined as an inversion twin.

  • Absolute structure parameter: 0.443 (16)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C4–C8/C13 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.88 2.22 3.005 (3) 148
N1—H1B⋯N2ii 0.88 2.32 3.129 (4) 152
C6—H6⋯Cg2iii 0.95 2.60 3.401 (3) 142
C11—H11⋯Cg3iv 0.95 2.90 3.636 (3) 135
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iv) [-x, y-{\script{1\over 2}}, -z+2].

Data collection: CrystalClearSM Expert (Rigaku, 2012[Rigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClearSM Expert; data reduction: CrystalClearSM Expert; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The chromene moiety is found in natural products and exhibits various biological activities (Ellis, 1977; Singh et al., 2010; Lácová et al., 2010; Kidwai et al., 2005). Fused chromene derivatives are biologically interesting compounds showing antiproliferation activity (Dell & Smith, 1993a,b), are effective anti-HIV agents (Al-Soud et al., 2006) and impact the central nervous system (CNS) (Eiden & Denk, 1991). Moreover, they have been employed in the treatment of Alzheimer's disease (Bruhlmann et al., 2001) and the Schizophrenia disorder (Kesten et al., 1999). In this context, we report in this study the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the choloro-benzene ring (C15–C20) is approximately perpendicular to the naphthalene ring system [C4–C13, maximum deviation = 0.012 (2) Å at atom C4] as indicated by the dihedral angle of 81.26 (5)°. The 4H-pyran ring (O1/C1–C5) in the title compound is puckered with the puckering parameters of QT = 0.143 (2) Å, θ = 86.4 (8)° and ϕ = 167.3 (9)°. All the bond lengths and angles in the title compound are within normal ranges and comparable with those reported for a similar structure (Akkurt et al., 2013).

In the crystal structure, molecules are linked into sheets parallel to (010) by the N1—H1A···N2 and N1—H1B···N2 hydrogen bonds (Table 1, Figs 2 and 3), which generate chains along [010]. The crystal packing is further stabilized by C—H···π interactions (Table 1).

Related literature top

For the synthesis and biological importance of chromene compounds, see, for example: Ellis (1977); Singh et al. (2010); Lácová et al.(2010); Kidwai (2005); Dell & Smith (1993a,b); Al-Soud et al. (2006); Eiden & Denk (1991); Bruhlmann et al. (200); (Kesten et al. (1999); Bruhlmann et al. (2001). For a similar structure, see: Akkurt et al. (2013).

Experimental top

A mixture of 4-chlorobenzylidenepropanedinitrile (188.5 mg; 1 mmol) and 2-naphthol (144 mg; 1 mmol) was refluxed with stirring for 2 h at 350 K in ethanol (10 ml) in the presence of a catalytic amount of triethylamine. After cooling to room temperature, the solid product was collected by filtration, washed with cold ethanol and dried under vacuum. High quality crystals suitable for X-ray diffraction were obtained in an excellent yield (96%) by recrystallization of the crude product from ethanol. M.p. K.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with N—H = 0.88 Å, C—H = 0.95 Å (aromatic CH), C—H = 1.00 Å (methine CH), and with Uiso(H) = 1.2Ueq(C,N). The crystal studied was an inversion twin with a 0.557 (16):0.443 (16) domain ratio.

Computing details top

Data collection: CrystalClearSM Expert (Rigaku, 2012); cell refinement: CrystalClearSM Expert (Rigaku, 2012); data reduction: CrystalClearSM Expert (Rigaku, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis, with hydrogen bonds drawn as dashed lines.
[Figure 3] Fig. 3. A view of the packing showing molecules stacked along the b axis.
3-Amino-1-(4-chlorophenyl)-1H-benzo[f]chromene-2-carbonitrile top
Crystal data top
C20H13ClN2OF(000) = 344
Mr = 332.77Dx = 1.416 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 1130 reflections
a = 10.056 (7) Åθ = 21.5–68.7°
b = 6.172 (3) ŵ = 2.23 mm1
c = 12.751 (6) ÅT = 100 K
β = 99.641 (17)°Block, light brown
V = 780.2 (8) Å30.32 × 0.12 × 0.10 mm
Z = 2
Data collection top
Rigaku AFC11
diffractometer
2558 independent reflections
Radiation source: Rotating Anode2500 reflections with I > 2σ(I)
Detector resolution: 22.2222 pixels mm-1Rint = 0.032
profile data from ω–scansθmax = 66.6°, θmin = 3.5°
Absorption correction: multi-scan
(CrystalClearSM Expert; Rigaku, 2012)
h = 1111
Tmin = 0.948, Tmax = 1.000k = 77
11415 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.1146P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.17 e Å3
2558 reflectionsΔρmin = 0.22 e Å3
219 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.443 (16)
Crystal data top
C20H13ClN2OV = 780.2 (8) Å3
Mr = 332.77Z = 2
Monoclinic, P21Cu Kα radiation
a = 10.056 (7) ŵ = 2.23 mm1
b = 6.172 (3) ÅT = 100 K
c = 12.751 (6) Å0.32 × 0.12 × 0.10 mm
β = 99.641 (17)°
Data collection top
Rigaku AFC11
diffractometer
2558 independent reflections
Absorption correction: multi-scan
(CrystalClearSM Expert; Rigaku, 2012)
2500 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 1.000Rint = 0.032
11415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.17 e Å3
S = 1.06Δρmin = 0.22 e Å3
2558 reflectionsAbsolute structure: Refined as an inversion twin.
219 parametersAbsolute structure parameter: 0.443 (16)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24323 (5)0.55572 (12)0.52362 (5)0.0334 (2)
O10.45126 (15)1.1239 (3)0.79232 (11)0.0189 (5)
N10.55640 (19)1.0368 (4)0.65748 (14)0.0214 (6)
N20.4506 (2)0.4950 (3)0.57819 (16)0.0257 (6)
C10.4675 (2)0.9698 (4)0.71956 (16)0.0166 (6)
C20.4046 (2)0.7754 (4)0.71666 (16)0.0156 (6)
C30.3043 (2)0.7152 (4)0.78878 (16)0.0149 (6)
C40.3101 (2)0.8809 (4)0.87613 (16)0.0144 (6)
C50.38290 (19)1.0685 (4)0.87480 (15)0.0156 (6)
C60.3992 (2)1.2209 (4)0.95817 (16)0.0174 (6)
C70.3399 (2)1.1839 (4)1.04481 (17)0.0180 (6)
C80.2613 (2)0.9965 (4)1.05160 (17)0.0175 (6)
C90.1991 (2)0.9560 (4)1.14178 (17)0.0212 (7)
C100.1240 (2)0.7733 (5)1.14784 (18)0.0240 (7)
C110.1072 (2)0.6218 (4)1.06388 (17)0.0214 (7)
C120.1664 (2)0.6555 (4)0.97558 (17)0.0175 (6)
C130.24556 (19)0.8423 (4)0.96678 (16)0.0149 (6)
C140.4305 (2)0.6224 (4)0.63990 (16)0.0179 (6)
C150.1641 (2)0.6784 (4)0.72333 (16)0.0150 (6)
C160.1348 (2)0.4796 (4)0.67440 (16)0.0174 (6)
C170.0094 (2)0.4409 (4)0.61165 (17)0.0202 (7)
C180.0858 (2)0.6031 (4)0.60027 (16)0.0204 (7)
C190.0595 (2)0.8037 (4)0.64830 (17)0.0201 (7)
C200.0667 (2)0.8403 (4)0.70949 (16)0.0176 (6)
H1A0.536500.978500.593400.0260*
H1B0.552801.179500.651300.0260*
H30.334500.574000.823300.0180*
H60.451101.348200.953900.0210*
H70.351501.285501.101500.0220*
H90.209801.057401.198600.0250*
H100.083000.748301.208700.0290*
H110.054600.495401.068400.0260*
H120.154000.552000.919600.0210*
H160.200900.368200.683700.0210*
H170.009800.305100.577400.0240*
H190.126300.914100.639600.0240*
H200.086400.977500.742100.0210*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0198 (3)0.0457 (4)0.0312 (3)0.0081 (3)0.0061 (2)0.0053 (3)
O10.0234 (8)0.0193 (9)0.0146 (7)0.0026 (6)0.0054 (6)0.0006 (6)
N10.0250 (9)0.0222 (11)0.0189 (9)0.0033 (9)0.0088 (7)0.0002 (8)
N20.0313 (11)0.0258 (12)0.0233 (10)0.0026 (9)0.0146 (8)0.0028 (9)
C10.0160 (10)0.0226 (12)0.0110 (9)0.0030 (9)0.0016 (8)0.0005 (8)
C20.0135 (10)0.0219 (12)0.0113 (9)0.0010 (9)0.0019 (7)0.0013 (8)
C30.0146 (11)0.0167 (12)0.0132 (9)0.0009 (8)0.0020 (8)0.0009 (8)
C40.0122 (9)0.0183 (11)0.0117 (10)0.0041 (9)0.0009 (7)0.0001 (8)
C50.0139 (9)0.0206 (12)0.0118 (9)0.0024 (9)0.0010 (7)0.0023 (9)
C60.0152 (11)0.0182 (12)0.0172 (10)0.0019 (8)0.0021 (8)0.0006 (9)
C70.0190 (11)0.0195 (12)0.0137 (9)0.0032 (9)0.0021 (8)0.0044 (9)
C80.0158 (10)0.0228 (13)0.0131 (9)0.0045 (9)0.0000 (8)0.0005 (8)
C90.0228 (12)0.0261 (13)0.0152 (10)0.0025 (10)0.0044 (9)0.0047 (10)
C100.0257 (13)0.0302 (14)0.0181 (11)0.0012 (11)0.0091 (9)0.0003 (10)
C110.0201 (11)0.0249 (13)0.0207 (11)0.0013 (9)0.0078 (9)0.0004 (9)
C120.0169 (10)0.0192 (12)0.0163 (10)0.0012 (9)0.0021 (8)0.0017 (9)
C130.0125 (10)0.0176 (12)0.0138 (10)0.0035 (8)0.0003 (8)0.0006 (8)
C140.0176 (10)0.0200 (13)0.0170 (10)0.0005 (8)0.0058 (8)0.0019 (9)
C150.0151 (10)0.0213 (12)0.0089 (9)0.0017 (9)0.0032 (7)0.0011 (8)
C160.0180 (11)0.0197 (12)0.0155 (10)0.0005 (9)0.0056 (8)0.0008 (9)
C170.0242 (12)0.0228 (13)0.0145 (10)0.0083 (10)0.0060 (8)0.0034 (9)
C180.0165 (10)0.0325 (15)0.0119 (9)0.0063 (9)0.0018 (8)0.0008 (9)
C190.0179 (11)0.0248 (13)0.0175 (11)0.0003 (10)0.0023 (8)0.0016 (9)
C200.0189 (11)0.0187 (12)0.0149 (10)0.0007 (9)0.0022 (8)0.0011 (9)
Geometric parameters (Å, º) top
Cl1—C181.740 (2)C10—C111.410 (4)
O1—C11.358 (3)C11—C121.375 (3)
O1—C51.392 (3)C12—C131.416 (3)
N1—C11.354 (3)C15—C201.390 (3)
N2—C141.154 (3)C15—C161.386 (3)
C1—C21.354 (3)C16—C171.396 (3)
N1—H1B0.8800C17—C181.376 (3)
N1—H1A0.8800C18—C191.387 (4)
C2—C141.415 (3)C19—C201.392 (3)
C2—C31.520 (3)C3—H31.0000
C3—C41.506 (3)C6—H60.9500
C3—C151.530 (3)C7—H70.9500
C4—C131.437 (3)C9—H90.9500
C4—C51.372 (3)C10—H100.9500
C5—C61.408 (3)C11—H110.9500
C6—C71.360 (3)C12—H120.9500
C7—C81.412 (3)C16—H160.9500
C8—C131.429 (3)C17—H170.9500
C8—C91.420 (3)C19—H190.9500
C9—C101.367 (4)C20—H200.9500
C1—O1—C5118.39 (19)C3—C15—C20121.9 (2)
O1—C1—N1110.6 (2)C16—C15—C20119.17 (19)
O1—C1—C2122.03 (19)C15—C16—C17120.9 (2)
N1—C1—C2127.3 (2)C16—C17—C18118.8 (2)
H1A—N1—H1B109.00Cl1—C18—C19119.09 (17)
C1—N1—H1A110.00Cl1—C18—C17119.23 (18)
C1—N1—H1B110.00C17—C18—C19121.7 (2)
C1—C2—C3123.7 (2)C18—C19—C20118.7 (2)
C1—C2—C14118.10 (19)C15—C20—C19120.8 (2)
C3—C2—C14118.2 (2)C2—C3—H3107.00
C2—C3—C4109.51 (19)C4—C3—H3107.00
C4—C3—C15114.97 (18)C15—C3—H3107.00
C2—C3—C15110.51 (17)C5—C6—H6120.00
C5—C4—C13117.6 (2)C7—C6—H6120.00
C3—C4—C5121.25 (18)C6—C7—H7120.00
C3—C4—C13121.0 (2)C8—C7—H7120.00
O1—C5—C4123.29 (19)C8—C9—H9120.00
O1—C5—C6113.4 (2)C10—C9—H9120.00
C4—C5—C6123.33 (19)C9—C10—H10120.00
C5—C6—C7119.3 (2)C11—C10—H10120.00
C6—C7—C8120.9 (2)C10—C11—H11120.00
C9—C8—C13119.2 (2)C12—C11—H11120.00
C7—C8—C9121.4 (2)C11—C12—H12120.00
C7—C8—C13119.43 (19)C13—C12—H12120.00
C8—C9—C10120.9 (2)C15—C16—H16120.00
C9—C10—C11120.1 (2)C17—C16—H16120.00
C10—C11—C12120.6 (2)C16—C17—H17121.00
C11—C12—C13121.0 (2)C18—C17—H17121.00
C8—C13—C12118.33 (19)C18—C19—H19121.00
C4—C13—C12122.3 (2)C20—C19—H19121.00
C4—C13—C8119.4 (2)C15—C20—H20120.00
N2—C14—C2178.9 (2)C19—C20—H20120.00
C3—C15—C16119.0 (2)
C5—O1—C1—N1168.57 (17)C13—C4—C5—O1179.31 (19)
C5—O1—C1—C28.9 (3)O1—C5—C6—C7178.62 (19)
C1—O1—C5—C6165.88 (18)C4—C5—C6—C70.4 (3)
C1—O1—C5—C412.3 (3)C5—C6—C7—C80.7 (3)
O1—C1—C2—C14178.26 (19)C6—C7—C8—C9179.9 (2)
O1—C1—C2—C33.8 (3)C6—C7—C8—C130.9 (3)
N1—C1—C2—C141.2 (3)C7—C8—C9—C10179.5 (2)
N1—C1—C2—C3179.1 (2)C13—C8—C9—C100.5 (3)
C1—C2—C3—C15115.5 (2)C7—C8—C13—C40.0 (3)
C1—C2—C3—C412.1 (3)C7—C8—C13—C12179.9 (2)
C14—C2—C3—C4169.96 (19)C9—C8—C13—C4179.0 (2)
C14—C2—C3—C1562.4 (3)C9—C8—C13—C120.9 (3)
C2—C3—C4—C58.7 (3)C8—C9—C10—C110.1 (3)
C15—C3—C4—C1367.1 (3)C9—C10—C11—C120.3 (3)
C2—C3—C15—C1682.1 (3)C10—C11—C12—C130.1 (3)
C2—C3—C15—C2096.3 (2)C11—C12—C13—C4179.2 (2)
C4—C3—C15—C16153.4 (2)C11—C12—C13—C80.7 (3)
C4—C3—C15—C2028.3 (3)C3—C15—C16—C17178.31 (19)
C2—C3—C4—C13167.82 (19)C20—C15—C16—C170.1 (3)
C15—C3—C4—C5116.4 (2)C3—C15—C20—C19179.08 (19)
C3—C4—C5—O12.7 (3)C16—C15—C20—C190.7 (3)
C13—C4—C5—C61.3 (3)C15—C16—C17—C180.9 (3)
C3—C4—C13—C8175.60 (19)C16—C17—C18—Cl1179.20 (16)
C3—C4—C13—C124.3 (3)C16—C17—C18—C190.8 (3)
C5—C4—C13—C81.1 (3)Cl1—C18—C19—C20180.00 (17)
C5—C4—C13—C12179.1 (2)C17—C18—C19—C200.1 (3)
C3—C4—C5—C6175.4 (2)C18—C19—C20—C150.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C4–C8/C13 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.882.223.005 (3)148
N1—H1B···N2ii0.882.323.129 (4)152
C6—H6···Cg2iii0.952.603.401 (3)142
C11—H11···Cg3iv0.952.903.636 (3)135
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y+1/2, z+2; (iv) x, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C4–C8/C13 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.882.223.005 (3)148
N1—H1B···N2ii0.882.323.129 (4)152
C6—H6···Cg2iii0.952.603.401 (3)142
C11—H11···Cg3iv0.952.903.636 (3)135
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y+1/2, z+2; (iv) x, y1/2, z+2.
 

Acknowledgements

The authors would like to express their thanks to the National Crystallography Service (NCS), Southampton, UK, for providing the X-ray data.

References

First citationAkkurt, M., Kennedy, A. R., Mohamed, S. K., Younes, S. H. H. & Miller, G. J. (2013). Acta Cryst. E69, o401.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Soud, Y. A., Al-Masoudi, I. A., Saeed, S., Beifuss, U. & Al-Masoudi, N. A. (2006). Chem. Heterocycl. Compd, 467, 669–676.  Google Scholar
First citationBrühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195–3198.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDell, C. P. & Smith, C. W. (1993b). Eur. Patent Appl. 537, 949, 1993.  Google Scholar
First citationDell, C. P. & Smith, C. W. (1993a). Chem. Abstr. (1993), 119, 139102d.  Google Scholar
First citationEiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353–354.  CrossRef CAS Web of Science Google Scholar
First citationEllis, G. P. (1977). In The Chemistry of Heterocyclic Compounds, Vol. 31, Chromenes. New York: John Wiley & Sons.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKesten, S. R., Heffner, T. G., Johnson, S. G., Pugsley, T. A., Wright, J. L. & Wise, D. L. (1999). J. Med. Chem. 42, 3718–3725.  Web of Science CrossRef PubMed CAS Google Scholar
First citation Kidwai, M., Saxena, S., Rahman Khan, M. K. & Thukral, S. S. (2005). Bioorg. Med. Chem. Lett. 15, 4295–4298.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLácová, M., Gašparová, R., Koiš, P., Boháč, A. & El-Shaaer, H. M. (2010). Tetrahedron, 66, 1410–1419.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, O. M., Devi, N. S., Thokchom, D. S. & Sharma, G. J. (2010). Eur. J. Med. Chem. 45, 2250–2257.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o481-o482
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds