research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 827-831

Crystal structures of two triazola-dioxola-benzena­cyclo­nona­phanes

CROSSMARK_Color_square_no_text.svg

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 March 2015; accepted 12 June 2015; online 24 June 2015)

In the title compounds, C25H29BrN5O7, (I) [systematic name: (Z)-15-bromo-32,32-dimethyl-21-nitro-22,23,25,26,27,27a,33a,35,36,36a-deca­hydro-21H,61H-4,9-dioxa-2(3,2)-pyrrolizina-6(4,1)-triazola-3(5,6)-furo[2,3-d][1,3]dioxola-1(1,2)-benzena­cyclo­nona­phane], and C24H29N5O7S, (II) [systematic name: (Z)-32,32-dimethyl-27-nitro-25,26,27,27a,33a,35,36,36a-octa­hydro-21H,23H,61H-4,9-dioxa-2(5,6)-pyrrolo­[1,2-c]thia­zola-6(4,1)-triazola-3(5,6)-furo[2,3-d][1,3]dioxola-1(1,2)-benzena­cyclo­nona­phane], the triazole rings adopt almost planar conformations. In (I), the fused pyrrolidine rings adopt envelope conformations with the C atoms opposite the fused N—C bond as the flap in each ring, and their mean planes are inclined to one another by 52.8 (3)°. In (II), the pyrrolidine and thia­zole rings are both twisted on the fused N—C bond, and their mean planes are inclined to one another by 70.8 (2)°. In both (I) and (II), the furan ring adopts an envelope conformation with the adjacent C atom of the macrocycle as the flap. In the crystal of (I), mol­ecules are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming sheets parallel to (10-1), while in (II), mol­ecules are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming helical chains propagating along [010], which are linked via C—H⋯S hydrogen bonds, forming slabs parallel to (001).

1. Chemical context

Triazoles and their derivatives are of great importance in medicinal chemistry and can be used for the synthesis of many heterocyclic compounds with different biological activities such as anti­viral, anti­bacterial, anti­fungal (Mange et al., 2013[Mange, Y. J., Isloor, A. M., Malladi, S., Isloor, S. & Fun, H. K. (2013). Arab. J. Chem. 6, 177-181.]), anti­cancer (Singhal et al., 2011[Singhal, N., Sharma, P. K., Dudhe, R & Nitin Kumar. (2011). J. Chem. Pharm. Res. 3 126-133.]), anti­tuberculosis, anti­convulsant, anti­depressant (Sahin et al., 2012[Sahin, D., Bayrak, H., Demirbas, A., Demirbas, N. & Alpay Karaoglu, S. (2012). Turk. J. Chem. 36, 411-426.]) and anti-inflammatory activities. They have been reported to be inhib­itors of glycogen synthase kinase-3, antagonists of GABA receptors, agonists of muscarine receptors and have been shown to possess anti-HIV-1, cytotoxic, anti­histaminic and anti­proliferative activities (Pokhodylo et al., 2013[Pokhodylo, N., Shyyka, O. & Matiychuk, V. (2013). Sci. Pharm. 81, 663-676.]). Triazoles are stable to acid and basic hydrolysis and reductive and oxidative conditions because of their high aromatic stabilization. In addition, this heterocycle has a high dipole moment and might participate in hydrogen-bond formation as well as in dipole–dipole and π-stacking inter­actions (Pertino et al., 2013[Pertino, M. W., Lopez, C., Theoduloz, C. & Hirschmann, G. S. (2013). Molecules, 18, 7661-7674.]).

2. Structural commentary

The molecular structures of compounds (I) and (II) are illustrated in Figs. 1[link] and 2[link], respectively. The triazole rings (A = N3–N5/C22/C23) adopt almost planar conformations in both compounds. In compound (I)[link], the pyrrolidine rings (D = N1/C11–C13/C7 and E = N1/C8–C11) and the furan ring (B = O3/C15/C19/C20/C14) have envelope conformations with the maximum deviations from the respective mean planes of 0.465 (5) Å for atom C13, 0.490 (7) Å for C9 and 0.500 (4) Å for C14. The dioxalane ring (C = O4/C15/C19/O5/C16) has a twisted conformation on bond O5—C15. The mean planes of rings B and C are inclined to one another by 70.0 (3)°, and the mean planes of rings D and E are inclined to one another by 52.8 (3)°.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.

In compound (II)[link], the pyrrolidine (D) and thia­zole rings (E = N1/C8/S9/C10/C11) have twist conformations on bond N1—C11. The furan and dioxolane rings (B and C) adopt envelope conformations with maximum deviations from the mean planes of 0.631 (3) Å for atom C14 and 0.319 (4) Å for C16. The mean planes of rings B and C are inclined to one another by 68.5 (2)° and the mean planes of rings D and E are inclined to one another by 70.8 (2)°. This latter dihedral angle is much larger than that in compound (I)[link], cf. 52.8 (3)°.

In compound (I)[link], the triazole ring (A) makes dihedral angles of 74.0 (3), 65.8 (3) and 65.8 (3)° with the mean planes of rings B and D and the benzene ring (C1–C6), respectively. The corresponding dihedral angles in compound (II)[link] are 51.9 (2), 37.1 (2) and 60.9 (2)°, respectively. The most notable differences between the compounds involve dihedral angles A/B and A/D; 74.0 (3) and 65.8 (3), respectively, for (I[link]), and 51.9 (2) and 37.1 (2)°, respectively, for (II[link]).

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming sheets parallel to (10[\overline{1}]); Table 1[link] and Fig. 3[link]. In the crystal of (II)[link], mol­ecules are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming helical chains propagating along [010], which are linked via C—H⋯S hydrogen bonds, forming slabs parallel to (001); Table 2[link] and Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O4i 0.97 2.51 3.295 (7) 138
C18—H18C⋯O2ii 0.96 2.57 3.509 (9) 164
C25—H25A⋯N3iii 0.97 2.62 3.589 (7) 173
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+2]; (ii) x, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯N3i 0.93 2.58 3.433 (6) 152
C25—H25A⋯N3i 0.97 2.60 3.553 (6) 168
C25—H25B⋯S9ii 0.97 2.80 3.591 (4) 140
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
The crystal packing of compound (I)[link], viewed approximately normal to plane (10[\overline{1}]). H atoms not involved in hydrogen bonding (dashed lines; Table 1[link]) have been excluded for clarity.
[Figure 4]
Figure 4
A view along the c axis of the crystal packing of compound (II)[link], showing the hydrogen-bonded helical chains along [010], linked by C—H⋯S hydrogen bonds forming slabs parallel to the ab plane. H atoms not involved in hydrogen bonding (dashed lines; Table 2[link]) have been excluded for clarity.

4. Synthesis and crystallization

Compound (I): A solution of 5-bromo-2-(2-{4-[({(3aS,6R,6aS)-2,2-dimethyl-5-[(Z)-2-nitro­vin­yl]tetra­hydro­furo[2,3-d][1,3]di­oxol-6-yl}­oxy)meth­yl]-1H-1,2,3-triazol-1-yl}eth­oxy)benzalde­hyde (1 mmol) and proline (1.5 mmol) was refluxed in dry aceto­nitrile (50 ml) under a nitro­gen atmosphere for 9 h. After completion of the reaction, as indicated by TLC, the aceto­nitrile was evaporated under reduced pressure. The crude product was purified by column chromatography using hexa­ne/EtOAc (3:7) as eluent (yield 75%). After purification the compound was recrystallized in CHCl3 by slow evaporation yielding colourless block-like crystals.

Compound (II): A solution of 5-bromo-2-(2-{4-[({(3aS,6R,6aS)-2,2-dimethyl-5-[(Z)-2-nitro­vin­yl]tetra­hydro­furo[2,3-d][1,3]dioxol-6-yl}­oxy)meth­yl]-1H-1,2,3-triazol-1-yl}eth­oxy)benzalde­hyde (1 mmol) and thia­zolidine-4-carb­oxy­lic acid (1.5 m mol) was refluxed in dry aceto­nitrile (50 ml) under a nitro­gen atmosphere for 9 h. After completion of reaction, as indicated by TLC,the aceto­nitrile was evaporated under reduced pressure. The crude product was purified by column chromatography using hexa­ne/EtOAc (4:6) as eluent (yield 75%). After purification the compound was recrystallized in CHCl3 by slow evaporation yielding colourless block-like crystals.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were placed in calculated positions and refined as riding: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Compound (I) was refined using the instructions TWIN/BASF (see Table 3[link]).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C25H29BrN5O7 C24H29N5O7S
Mr 591.44 531.58
Crystal system, space group Monoclinic, P21 Monoclinic, P21
Temperature (K) 293 293
a, b, c (Å) 9.913 (5), 11.414 (5), 12.144 (5) 8.756 (5), 10.811 (5), 13.569 (5)
β (°) 99.903 (5) 101.122 (5)
V3) 1353.6 (11) 1260.3 (10)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.57 0.18
Crystal size (mm) 0.20 × 0.15 × 0.10 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII area detector Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.744, 0.859 0.964, 0.982
No. of measured, independent and observed [I > 2σ(I)] reflections 12444, 6278, 3587 11813, 4712, 2862
Rint 0.040 0.041
(sin θ/λ)max−1) 0.669 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.105, 0.95 0.046, 0.103, 1.00
No. of reflections 6278 4712
No. of parameters 346 336
No. of restraints 1 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.46 0.17, −0.24
Absolute structure Refined as an inversion twin. Flack x determined using 794 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.007 (11) −0.10 (9)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

Triazoles and their derivatives are of great importance in medicinal chemistry and can be used for the synthesis of many heterocyclic compounds with different biological activities such as anti­viral, anti­bacterial, anti­fungal (Mange et al., 2013), anti­cancer (Singhal et al., 2011), anti­tuberculosis, anti­convulsant, anti­depressant (Sahin et al., 2012) and anti-inflammatory activities. They have been reported to be inhibitors of glycogen synthase kinase-3, antagonists of GABA receptors, agonists of muscarine receptors and have been shown to possess anti-HIV-1, cytotoxic, anti­histaminic and anti­proliferative activities (Pokhodylo et al., 2013). Triazoles are stable to acid and basic hydrolysis and reductive and oxidative conditions because of their high aromatic stabilization. In addition, this heterocycle has a high dipole moment and might participate actively in hydrogen-bond formation as well as in dipole–dipole and π-stacking inter­actions (Pertino et al., 2013).

Structural commentary top

The title compounds crystallize in the monoclinic chiral space group P21, but have opposite absolute configuration at atom C11 (Figs. 1 and 2); S in (I) and R in (II). The triazole rings (A = N3–N5/C22/C23) adopts planar conformations in both compounds. In compound (I), the two pyrrolidine rings (D = N1/C11–C13/C7 and E = N1/C8–C11) and the furan ring (B = O3/C15/C19/C20/C14) have envelope conformations with the maximum deviations from the respective mean planes of 0.465 (5) Å for atom C13, 0.490 (7) Å for C9 and 0.500 (4) Å for C14. The dioxalane ring (C = O4/C15/C19/O5/C16) has a twisted conformation on bond O5—C15. The mean planes of rings B and C are inclined to one another by 70.0 (3)°, and the mean planes of rings D and E are inclined to one another by 52.8 (3)°.

In compound (II), the pyrrolidine (D) and thia­zole rings (E = N1/C8/S9/C10/C11) have twist conformations on bond N1—C11. The furan and dioxolane rings (B and C) adopt envelope conformations with maximum deviations from the mean planes of 0.631 (3) Å for atom C14 and 0.319 (4) Å for C16. The mean planes of rings B and C are inclined to one another by 68.5 (2)° and the mean planes of rings D and E are inclined to one another by 70.8 (2)°. This latter dihedral angle is much larger than that in compound (I), cf. 52.8 (3)°.

In compound (I), the triazole ring (A) makes dihedral angles of 74.0 (3), 65.8 (3) and 65.8 (3)° with the mean planes of rings B and D and the benzene ring (C1—C6), respectively. The corresponding dihedral angles in compound (II) are 51.9 (2), 37.1 (2) and 60.9 (2)°, respectively. The most notable differences in the two compounds involve dihedral angles A/B and A/D; 74.0 (3) cf. 51.9 (2) and 65.8 (3) cf. 37.1 (2)°.

Supra­molecular features top

In the crystal of (I), molecules are linked via C—H···N and C—H···O hydrogen bonds, forming sheets parallel to (101); Table 1 and Fig. 3. In the crystal of (II), molecules are linked via C—H···N and C—H···O hydrogen bonds, forming helical chains propagating along [010], which are linked via C—H···S hydrogen bonds, forming slabs parallel to (001); Table 2 and Fig. 4.

Synthesis and crystallization top

Compound (I): A solution of 5-bromo-2-(2-(4-((((3aS,6R,6aS)-2,2-di­methyl-5-[(Z)-2-nitro­vinyl)­tetra­hydro­furo[2,3-d][1,3]dioxol-6-yl)­oxy]methyl)-1H-1,2,3-triazol-1-yl)eth­oxy)­benzaldehyde (1 mmol) and proline (1.5 mmol) was refluxed in dry aceto­nitrile (50 ml) under a nitro­gen atmosphere for 9 h. After completion of the reaction, as indicated by TLC, the aceto­nitrile was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane/EtOAc (3:7) as eluent (yield 75 %). After purification the compound was recrystallized in CHCl3 by slow evaporation yielding colourless block-like crystals.

Compound (II): A solution of 5-bromo-2-(2-(4-((((3aS,6R,6aS)-2,2-di­methyl-5-((Z)-2-nitro­vinyl)­tetra­hydro­furo[2,3-d][1,3]dioxol-6-yl)­oxy)methyl)-1H-1,2,3-triazol-1-yl)eth­oxy benzaldehyde (1 mmol) and thia­zolidine-4-carb­oxy­lic acid (1.5 m mol) was refluxed in dry aceto­nitrile (50 ml) under a nitro­gen atmosphere for 9 h. After completion of reaction, as indicated by TLC,the aceto­nitrile was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane/EtOAc (4:6) as eluent (yield 75%). After purification the compound was recrystallized in CHCl3 by slow evaporation yielding colourless block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were placed in calculated positions and refined as riding: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Mange et al. (2013); Pertino et al. (2013); Pokhodylo et al. (2013); Sahin et al. (2012); Singhal et al. (2011).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 10% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 3] Fig. 3. The crystal packing of compound (I), viewed approximately normal to plane (101). H atoms not involved in hydrogen bonding (dashed lines; Table 1) have been excluded for clarity.
[Figure 4] Fig. 4. A view along the c axis of the crystal packing of compound (II), showing the hydrogen-bonded helical chains along [010], linked by C—H···S hydrogen bonds forming slabs parallel to the ab plane. H atoms not involved in hydrogen bonding (dashed lines; Table 2) have been excluded for clarity.
(I) (Z)-15-Bromo-32,32-dimethyl-21-nitro-22,23,25,26,27,27a,33a,35,36,36a-decahydro-21H,61H-4,9-dioxa-2(3,2)-pyrrolizina-6(4,1)-triazola-3(5,6)-furo[2,3-d][1,3]dioxola-1(1,2)-benzenacyclononaphane top
Crystal data top
C25H29BrN5O7F(000) = 610
Mr = 591.44Dx = 1.451 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.913 (5) ÅCell parameters from 6278 reflections
b = 11.414 (5) Åθ = 1.7–28.4°
c = 12.144 (5) ŵ = 1.57 mm1
β = 99.903 (5)°T = 293 K
V = 1353.6 (11) Å3Block, colourless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6278 independent reflections
Radiation source: fine-focus sealed tube3587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1213
Tmin = 0.744, Tmax = 0.859k = 1415
12444 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0281P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.57 e Å3
6278 reflectionsΔρmin = 0.46 e Å3
346 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.007 (11)
Crystal data top
C25H29BrN5O7V = 1353.6 (11) Å3
Mr = 591.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.913 (5) ŵ = 1.57 mm1
b = 11.414 (5) ÅT = 293 K
c = 12.144 (5) Å0.20 × 0.15 × 0.10 mm
β = 99.903 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6278 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3587 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.859Rint = 0.040
12444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.57 e Å3
S = 0.95Δρmin = 0.46 e Å3
6278 reflectionsAbsolute structure: Refined as an inversion twin.
346 parametersAbsolute structure parameter: 0.007 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.67368 (6)0.19346 (6)0.79878 (5)0.0761 (2)
O10.1833 (5)0.4138 (4)0.6920 (4)0.0819 (13)
O20.0613 (5)0.4254 (4)0.8212 (5)0.0979 (16)
O30.2313 (4)0.0525 (3)0.9095 (3)0.0615 (10)
O40.2390 (5)0.1342 (4)0.9764 (4)0.0874 (14)
O50.0701 (3)0.1835 (4)0.8366 (3)0.0654 (9)
O60.0509 (3)0.1090 (3)0.7772 (3)0.0521 (9)
O70.2747 (4)0.1097 (3)0.4964 (3)0.0565 (9)
N10.4472 (4)0.2353 (4)0.8095 (3)0.0452 (10)
N20.1474 (5)0.3774 (4)0.7764 (5)0.0640 (14)
N30.0839 (5)0.2712 (4)0.5621 (4)0.0660 (13)
N40.0173 (5)0.2785 (4)0.4772 (4)0.0655 (12)
N50.0008 (4)0.1692 (4)0.4422 (4)0.0550 (11)
C10.3678 (5)0.0384 (4)0.5593 (4)0.0477 (12)
C20.4117 (6)0.0673 (6)0.5232 (5)0.0692 (17)
H20.37910.09240.45060.083*
C30.5033 (6)0.1362 (5)0.5932 (5)0.0659 (16)
H30.53250.20750.56850.079*
C40.5503 (5)0.0981 (5)0.6990 (5)0.0521 (13)
C50.5094 (4)0.0081 (4)0.7364 (4)0.0440 (12)
H50.54480.03300.80850.053*
C60.4170 (4)0.0775 (4)0.6685 (4)0.0400 (11)
C70.3603 (4)0.1881 (4)0.7103 (4)0.0387 (11)
H70.35330.24710.65090.046*
C80.5485 (5)0.3221 (6)0.7870 (4)0.0616 (15)
H8A0.55980.31830.70930.074*
H8B0.63650.30740.83380.074*
C90.4947 (6)0.4396 (6)0.8129 (6)0.0737 (18)
H9A0.43500.47180.74830.088*
H9B0.56890.49410.83710.088*
C100.4158 (6)0.4135 (5)0.9067 (5)0.0657 (16)
H10A0.34040.46790.90540.079*
H10B0.47520.41840.97890.079*
C110.3630 (4)0.2884 (4)0.8834 (4)0.0458 (12)
H110.37930.24530.95430.055*
C120.2136 (5)0.2693 (4)0.8294 (4)0.0460 (12)
H120.16190.24140.88610.055*
C130.2173 (5)0.1730 (4)0.7424 (4)0.0389 (11)
H130.14750.18970.67670.047*
C140.1887 (4)0.0524 (4)0.7888 (4)0.0423 (11)
H140.24180.00680.75620.051*
C150.1610 (6)0.0349 (5)0.9550 (4)0.0501 (14)
H150.13130.00701.02340.060*
C160.1832 (6)0.2298 (4)0.9097 (5)0.0566 (14)
C170.2849 (7)0.2733 (7)0.8436 (7)0.101 (3)
H17A0.24840.34020.80070.152*
H17B0.36720.29520.89320.152*
H17C0.30520.21270.79420.152*
C180.1389 (8)0.3214 (6)0.9836 (6)0.087 (2)
H18A0.07230.28891.02370.130*
H18B0.21680.34821.03570.130*
H18C0.09920.38610.93890.130*
C190.0388 (5)0.0700 (4)0.8692 (4)0.0482 (13)
H190.04720.06700.89860.058*
C200.0399 (4)0.0145 (4)0.7713 (4)0.0429 (11)
H200.01540.02690.69990.051*
C210.1598 (5)0.1165 (6)0.6832 (5)0.0614 (15)
H21A0.22840.17120.69970.074*
H21B0.20280.04030.66940.074*
C220.1072 (5)0.1562 (5)0.5805 (5)0.0551 (14)
C230.0554 (5)0.0906 (5)0.5042 (4)0.0523 (13)
C240.0826 (6)0.1482 (5)0.3571 (4)0.0568 (14)
H24A0.12090.22190.33730.068*
H24B0.02520.11730.29060.068*
C250.1960 (6)0.0642 (5)0.3954 (4)0.0567 (14)
H25A0.15910.01210.40910.068*
H25B0.25330.05570.33870.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0711 (3)0.0748 (4)0.0813 (4)0.0282 (4)0.0100 (3)0.0041 (4)
O10.107 (3)0.052 (3)0.077 (3)0.006 (2)0.011 (3)0.013 (2)
O20.105 (3)0.074 (3)0.115 (4)0.041 (3)0.018 (3)0.016 (3)
O30.071 (2)0.050 (2)0.054 (2)0.015 (2)0.0156 (18)0.0142 (19)
O40.098 (3)0.046 (2)0.096 (4)0.009 (2)0.047 (3)0.010 (2)
O50.078 (2)0.046 (2)0.063 (2)0.002 (2)0.0130 (18)0.006 (2)
O60.0474 (18)0.058 (2)0.051 (2)0.0146 (18)0.0077 (16)0.0018 (17)
O70.077 (2)0.046 (2)0.041 (2)0.0036 (19)0.0054 (18)0.0087 (17)
N10.047 (2)0.046 (2)0.040 (2)0.001 (2)0.0014 (19)0.0033 (19)
N20.071 (3)0.044 (3)0.071 (4)0.010 (3)0.005 (3)0.009 (3)
N30.082 (3)0.046 (3)0.063 (3)0.018 (2)0.008 (2)0.002 (2)
N40.094 (3)0.036 (3)0.061 (3)0.007 (2)0.002 (3)0.004 (2)
N50.065 (3)0.049 (3)0.045 (3)0.002 (2)0.007 (2)0.005 (2)
C10.056 (3)0.046 (3)0.040 (3)0.001 (3)0.008 (2)0.003 (2)
C20.088 (4)0.068 (4)0.050 (4)0.015 (4)0.008 (3)0.018 (3)
C30.077 (4)0.055 (3)0.067 (4)0.021 (3)0.017 (3)0.013 (3)
C40.048 (3)0.051 (3)0.059 (4)0.005 (3)0.015 (3)0.001 (3)
C50.041 (2)0.045 (3)0.048 (3)0.000 (2)0.013 (2)0.006 (2)
C60.041 (2)0.043 (3)0.039 (3)0.002 (2)0.014 (2)0.003 (2)
C70.049 (3)0.035 (2)0.031 (2)0.005 (2)0.005 (2)0.004 (2)
C80.057 (3)0.073 (4)0.052 (3)0.018 (3)0.001 (2)0.011 (3)
C90.075 (4)0.054 (4)0.089 (5)0.017 (3)0.003 (4)0.006 (3)
C100.074 (4)0.043 (3)0.074 (4)0.002 (3)0.003 (3)0.022 (3)
C110.057 (3)0.041 (3)0.038 (2)0.003 (3)0.007 (2)0.002 (2)
C120.058 (3)0.035 (3)0.046 (3)0.006 (2)0.012 (2)0.001 (2)
C130.048 (3)0.031 (2)0.037 (3)0.003 (2)0.003 (2)0.002 (2)
C140.046 (2)0.039 (3)0.041 (3)0.001 (2)0.004 (2)0.002 (2)
C150.068 (3)0.048 (3)0.035 (3)0.007 (3)0.011 (3)0.004 (2)
C160.068 (3)0.041 (3)0.057 (3)0.008 (3)0.001 (3)0.012 (3)
C170.093 (5)0.072 (5)0.149 (8)0.017 (4)0.051 (5)0.031 (5)
C180.135 (6)0.062 (4)0.064 (4)0.021 (4)0.018 (4)0.013 (4)
C190.050 (3)0.046 (3)0.049 (3)0.008 (3)0.009 (2)0.001 (3)
C200.045 (3)0.045 (3)0.040 (3)0.004 (2)0.010 (2)0.002 (2)
C210.043 (3)0.077 (4)0.063 (4)0.015 (3)0.006 (3)0.003 (3)
C220.048 (3)0.061 (4)0.051 (3)0.010 (3)0.007 (2)0.001 (3)
C230.058 (3)0.056 (3)0.039 (3)0.006 (3)0.003 (2)0.004 (3)
C240.082 (4)0.053 (3)0.032 (3)0.008 (3)0.001 (3)0.005 (2)
C250.080 (3)0.056 (3)0.033 (3)0.012 (3)0.007 (3)0.008 (3)
Geometric parameters (Å, º) top
Br1—C41.908 (5)C9—C101.519 (8)
O1—N21.214 (6)C9—H9A0.9700
O2—N21.218 (6)C9—H9B0.9700
O3—C151.385 (6)C10—C111.530 (8)
O3—C141.454 (5)C10—H10A0.9700
O4—C151.372 (7)C10—H10B0.9700
O4—C161.414 (7)C11—C121.529 (7)
O5—C191.405 (6)C11—H110.9800
O5—C161.408 (6)C12—C131.530 (7)
O6—C201.415 (6)C12—H120.9800
O6—C211.433 (6)C13—C141.533 (7)
O7—C11.362 (6)C13—H130.9800
O7—C251.432 (6)C14—C201.516 (6)
N1—C71.458 (6)C14—H140.9800
N1—C111.459 (6)C15—C191.510 (7)
N1—C81.469 (6)C15—H150.9800
N2—C121.490 (7)C16—C171.478 (8)
N3—N41.319 (6)C16—C181.492 (8)
N3—C221.358 (7)C17—H17A0.9600
N4—N51.337 (6)C17—H17B0.9600
N5—C231.344 (6)C17—H17C0.9600
N5—C241.450 (6)C18—H18A0.9600
C1—C21.380 (8)C18—H18B0.9600
C1—C61.405 (7)C18—H18C0.9600
C2—C31.378 (8)C19—C201.533 (7)
C2—H20.9300C19—H190.9800
C3—C41.361 (8)C20—H200.9800
C3—H30.9300C21—C221.501 (8)
C4—C51.380 (7)C21—H21A0.9700
C5—C61.373 (7)C21—H21B0.9700
C5—H50.9300C22—C231.359 (7)
C6—C71.506 (6)C24—C251.490 (8)
C7—C131.542 (6)C24—H24A0.9700
C7—H70.9800C24—H24B0.9700
C8—C91.497 (9)C25—H25A0.9700
C8—H8A0.9700C25—H25B0.9700
C8—H8B0.9700
C15—O3—C14108.8 (4)C12—C13—C14111.3 (4)
C15—O4—C16112.1 (4)C12—C13—C7103.1 (4)
C19—O5—C16111.0 (4)C14—C13—C7115.5 (4)
C20—O6—C21113.8 (4)C12—C13—H13108.9
C1—O7—C25118.7 (4)C14—C13—H13108.9
C7—N1—C11110.0 (3)C7—C13—H13108.9
C7—N1—C8114.9 (4)O3—C14—C20104.4 (3)
C11—N1—C8108.4 (4)O3—C14—C13109.3 (4)
O1—N2—O2123.5 (6)C20—C14—C13116.2 (4)
O1—N2—C12118.5 (5)O3—C14—H14108.9
O2—N2—C12118.0 (5)C20—C14—H14108.9
N4—N3—C22108.2 (4)C13—C14—H14108.9
N3—N4—N5107.1 (4)O4—C15—O3111.4 (4)
N4—N5—C23111.2 (4)O4—C15—C19105.7 (4)
N4—N5—C24119.7 (5)O3—C15—C19108.3 (4)
C23—N5—C24128.6 (4)O4—C15—H15110.4
O7—C1—C2124.4 (5)O3—C15—H15110.4
O7—C1—C6115.6 (4)C19—C15—H15110.4
C2—C1—C6120.1 (5)O5—C16—O4105.2 (4)
C3—C2—C1120.8 (5)O5—C16—C17109.1 (5)
C3—C2—H2119.6O4—C16—C17109.5 (5)
C1—C2—H2119.6O5—C16—C18110.9 (5)
C4—C3—C2118.9 (5)O4—C16—C18108.8 (5)
C4—C3—H3120.6C17—C16—C18113.0 (5)
C2—C3—H3120.6C16—C17—H17A109.5
C3—C4—C5121.3 (5)C16—C17—H17B109.5
C3—C4—Br1119.7 (4)H17A—C17—H17B109.5
C5—C4—Br1119.0 (4)C16—C17—H17C109.5
C6—C5—C4120.8 (5)H17A—C17—H17C109.5
C6—C5—H5119.6H17B—C17—H17C109.5
C4—C5—H5119.6C16—C18—H18A109.5
C5—C6—C1118.1 (4)C16—C18—H18B109.5
C5—C6—C7122.0 (4)H18A—C18—H18B109.5
C1—C6—C7119.7 (4)C16—C18—H18C109.5
N1—C7—C6112.7 (4)H18A—C18—H18C109.5
N1—C7—C13105.7 (3)H18B—C18—H18C109.5
C6—C7—C13113.8 (4)O5—C19—C15104.5 (4)
N1—C7—H7108.1O5—C19—C20109.3 (4)
C6—C7—H7108.1C15—C19—C20104.9 (4)
C13—C7—H7108.1O5—C19—H19112.5
N1—C8—C9106.6 (4)C15—C19—H19112.5
N1—C8—H8A110.4C20—C19—H19112.5
C9—C8—H8A110.4O6—C20—C14112.8 (4)
N1—C8—H8B110.4O6—C20—C19110.5 (3)
C9—C8—H8B110.4C14—C20—C19102.0 (4)
H8A—C8—H8B108.6O6—C20—H20110.4
C8—C9—C10103.3 (5)C14—C20—H20110.4
C8—C9—H9A111.1C19—C20—H20110.4
C10—C9—H9A111.1O6—C21—C22111.0 (4)
C8—C9—H9B111.1O6—C21—H21A109.4
C10—C9—H9B111.1C22—C21—H21A109.4
H9A—C9—H9B109.1O6—C21—H21B109.4
C9—C10—C11104.4 (4)C22—C21—H21B109.4
C9—C10—H10A110.9H21A—C21—H21B108.0
C11—C10—H10A110.9N3—C22—C23109.0 (5)
C9—C10—H10B110.9N3—C22—C21121.5 (5)
C11—C10—H10B110.9C23—C22—C21128.7 (5)
H10A—C10—H10B108.9N5—C23—C22104.5 (5)
N1—C11—C12106.9 (4)N5—C24—C25112.1 (4)
N1—C11—C10106.7 (4)N5—C24—H24A109.2
C12—C11—C10119.2 (4)C25—C24—H24A109.2
N1—C11—H11107.9N5—C24—H24B109.2
C12—C11—H11107.9C25—C24—H24B109.2
C10—C11—H11107.9H24A—C24—H24B107.9
N2—C12—C11112.9 (4)O7—C25—C24107.7 (4)
N2—C12—C13111.0 (4)O7—C25—H25A110.2
C11—C12—C13105.2 (4)C24—C25—H25A110.2
N2—C12—H12109.2O7—C25—H25B110.2
C11—C12—H12109.2C24—C25—H25B110.2
C13—C12—H12109.2H25A—C25—H25B108.5
C22—N3—N4—N50.7 (6)C6—C7—C13—C12153.8 (4)
N3—N4—N5—C230.4 (6)N1—C7—C13—C1492.1 (5)
N3—N4—N5—C24173.2 (4)C6—C7—C13—C1432.2 (5)
C25—O7—C1—C213.2 (7)C15—O3—C14—C2032.4 (5)
C25—O7—C1—C6165.4 (4)C15—O3—C14—C13157.4 (4)
O7—C1—C2—C3178.0 (5)C12—C13—C14—O327.6 (5)
C6—C1—C2—C30.4 (8)C7—C13—C14—O389.5 (4)
C1—C2—C3—C40.2 (9)C12—C13—C14—C2090.2 (5)
C2—C3—C4—C50.8 (8)C7—C13—C14—C20152.8 (4)
C2—C3—C4—Br1178.5 (4)C16—O4—C15—O3114.9 (5)
C3—C4—C5—C61.6 (7)C16—O4—C15—C192.5 (6)
Br1—C4—C5—C6177.7 (3)C14—O3—C15—O498.4 (5)
C4—C5—C6—C11.3 (6)C14—O3—C15—C1917.4 (5)
C4—C5—C6—C7174.1 (4)C19—O5—C16—O411.1 (5)
O7—C1—C6—C5178.9 (4)C19—O5—C16—C17128.5 (5)
C2—C1—C6—C50.3 (7)C19—O5—C16—C18106.4 (5)
O7—C1—C6—C73.4 (6)C15—O4—C16—O54.9 (6)
C2—C1—C6—C7175.2 (4)C15—O4—C16—C17122.1 (5)
C11—N1—C7—C6145.0 (4)C15—O4—C16—C18114.0 (5)
C8—N1—C7—C692.3 (5)C16—O5—C19—C1512.4 (5)
C11—N1—C7—C1320.1 (5)C16—O5—C19—C20124.2 (4)
C8—N1—C7—C13142.8 (4)O4—C15—C19—O58.9 (5)
C5—C6—C7—N121.8 (6)O3—C15—C19—O5110.5 (4)
C1—C6—C7—N1162.9 (4)O4—C15—C19—C20123.9 (4)
C5—C6—C7—C1398.6 (5)O3—C15—C19—C204.4 (5)
C1—C6—C7—C1376.7 (5)C21—O6—C20—C14128.0 (4)
C7—N1—C8—C9103.5 (5)C21—O6—C20—C19118.6 (4)
C11—N1—C8—C920.0 (5)O3—C14—C20—O685.4 (4)
N1—C8—C9—C1031.6 (6)C13—C14—C20—O635.0 (5)
C8—C9—C10—C1130.9 (6)O3—C14—C20—C1933.1 (5)
C7—N1—C11—C122.2 (5)C13—C14—C20—C19153.5 (4)
C8—N1—C11—C12128.6 (4)O5—C19—C20—O6151.2 (4)
C7—N1—C11—C10126.4 (4)C15—C19—C20—O697.2 (4)
C8—N1—C11—C100.0 (5)O5—C19—C20—C1488.6 (4)
C9—C10—C11—N119.4 (6)C15—C19—C20—C1422.9 (5)
C9—C10—C11—C12101.6 (5)C20—O6—C21—C2271.5 (6)
O1—N2—C12—C1170.1 (6)N4—N3—C22—C230.8 (6)
O2—N2—C12—C11108.9 (5)N4—N3—C22—C21169.5 (4)
O1—N2—C12—C1347.7 (6)O6—C21—C22—N381.0 (6)
O2—N2—C12—C13133.3 (5)O6—C21—C22—C2387.3 (7)
N1—C11—C12—N2104.5 (5)N4—N5—C23—C220.1 (6)
C10—C11—C12—N216.4 (6)C24—N5—C23—C22172.0 (5)
N1—C11—C12—C1316.7 (5)N3—C22—C23—N50.5 (6)
C10—C11—C12—C13137.6 (4)C21—C22—C23—N5168.9 (5)
N2—C12—C13—C14141.1 (4)N4—N5—C24—C25123.3 (5)
C11—C12—C13—C1496.5 (4)C23—N5—C24—C2548.1 (7)
N2—C12—C13—C794.6 (5)C1—O7—C25—C24167.4 (4)
C11—C12—C13—C727.9 (5)N5—C24—C25—O756.2 (6)
N1—C7—C13—C1229.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.972.513.295 (7)138
C18—H18C···O2ii0.962.573.509 (9)164
C25—H25A···N3iii0.972.623.589 (7)173
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y1, z; (iii) x, y1/2, z+1.
(II) (Z)-32,32-Dimethyl-27-nitro-25,26,27,27a,33a,35,36,36a-octahydro-21H,23H,61H-4,9-dioxa-2(5,6)-pyrrolo[1,2-c]thiazola-6(4,1)-triazola-3(5,6)-furo[2,3-d][1,3]dioxola-1(1,2)-benzenacyclononaphane top
Crystal data top
C24H29N5O7SF(000) = 560
Mr = 531.58Dx = 1.401 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.756 (5) ÅCell parameters from 4712 reflections
b = 10.811 (5) Åθ = 1.5–22.3°
c = 13.569 (5) ŵ = 0.18 mm1
β = 101.122 (5)°T = 293 K
V = 1260.3 (10) Å3Block, colourless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4712 independent reflections
Radiation source: fine-focus sealed tube2862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and ϕ scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.964, Tmax = 0.982k = 1314
11813 measured reflectionsl = 1718
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.17 e Å3
4712 reflectionsΔρmin = 0.24 e Å3
336 parametersAbsolute structure: Flack x determined using 794 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.10 (9)
Crystal data top
C24H29N5O7SV = 1260.3 (10) Å3
Mr = 531.58Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.756 (5) ŵ = 0.18 mm1
b = 10.811 (5) ÅT = 293 K
c = 13.569 (5) Å0.20 × 0.15 × 0.10 mm
β = 101.122 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4712 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2862 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.982Rint = 0.041
11813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.24 e Å3
4712 reflectionsAbsolute structure: Flack x determined using 794 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
336 parametersAbsolute structure parameter: 0.10 (9)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S90.85963 (16)0.08380 (12)0.26658 (11)0.0856 (5)
O10.2482 (4)0.0495 (3)0.0593 (3)0.0996 (13)
O20.2983 (4)0.0548 (3)0.2195 (3)0.0873 (11)
O30.2622 (3)0.2632 (2)0.11689 (17)0.0547 (7)
O40.2164 (3)0.4638 (3)0.06070 (18)0.0578 (7)
O50.2374 (4)0.5327 (2)0.2191 (2)0.0631 (8)
O60.2153 (3)0.2254 (2)0.31708 (18)0.0496 (7)
O70.8007 (3)0.2715 (2)0.43718 (18)0.0538 (7)
N10.7152 (3)0.1098 (3)0.1692 (2)0.0434 (8)
N20.3210 (4)0.0163 (3)0.1400 (3)0.0598 (10)
N30.4307 (4)0.0753 (3)0.4787 (3)0.0597 (9)
N40.5760 (4)0.0738 (3)0.5266 (3)0.0600 (10)
N50.6117 (4)0.1899 (3)0.5601 (2)0.0521 (9)
C10.7925 (4)0.3522 (4)0.3582 (3)0.0441 (9)
C20.8434 (5)0.4733 (4)0.3693 (3)0.0553 (11)
H20.88650.50380.43260.066*
C30.8302 (5)0.5485 (4)0.2866 (4)0.0615 (12)
H30.86150.63070.29460.074*
C40.7715 (4)0.5040 (4)0.1926 (4)0.0558 (12)
H40.76420.55510.13680.067*
C50.7234 (4)0.3827 (4)0.1817 (3)0.0512 (10)
H50.68630.35180.11760.061*
C60.7288 (4)0.3054 (4)0.2638 (3)0.0400 (9)
C70.6631 (4)0.1762 (3)0.2522 (3)0.0404 (9)
H70.70200.13100.31460.049*
C80.8712 (5)0.0606 (4)0.1945 (3)0.0629 (12)
H8B0.94000.11960.23480.076*
H8A0.91100.04310.13400.076*
C100.6519 (5)0.0954 (4)0.2256 (3)0.0644 (12)
H10A0.62320.17680.19800.077*
H10B0.59900.08060.28110.077*
C110.6090 (4)0.0046 (4)0.1445 (3)0.0458 (10)
H110.61630.02890.07840.055*
C120.4536 (4)0.0711 (3)0.1392 (3)0.0405 (9)
H120.43140.11850.07650.049*
C130.4804 (4)0.1625 (3)0.2271 (2)0.0359 (8)
H130.44810.12220.28440.043*
C140.3855 (4)0.2812 (3)0.2042 (2)0.0377 (8)
H140.45420.34780.19000.045*
C150.1637 (5)0.3661 (3)0.1128 (3)0.0474 (10)
H150.05600.34420.08320.057*
C160.2264 (5)0.5744 (4)0.1192 (3)0.0458 (10)
C170.3722 (5)0.6412 (5)0.1111 (4)0.0824 (16)
H17A0.45880.58520.12550.124*
H17B0.38810.70830.15820.124*
H17C0.36380.67310.04420.124*
C180.0832 (5)0.6512 (4)0.0852 (3)0.0667 (13)
H18C0.07920.67750.01710.100*
H18B0.08640.72240.12780.100*
H18A0.00750.60290.08880.100*
C190.1766 (4)0.4125 (4)0.2205 (3)0.0453 (9)
H190.07630.41130.24230.054*
C200.2947 (4)0.3260 (3)0.2824 (3)0.0398 (9)
H200.36170.36940.33790.048*
C210.2186 (5)0.2264 (5)0.4235 (3)0.0630 (12)
H21A0.14190.16850.43890.076*
H21B0.19110.30830.44360.076*
C220.3746 (5)0.1924 (4)0.4809 (3)0.0504 (10)
C230.4913 (5)0.2649 (4)0.5322 (3)0.0548 (11)
H230.48700.34920.54490.066*
C240.7723 (5)0.2219 (4)0.6012 (3)0.0624 (12)
H24A0.83730.14890.60360.075*
H24B0.78060.25270.66920.075*
C250.8274 (5)0.3194 (4)0.5369 (3)0.0585 (11)
H25A0.76990.39570.53930.070*
H25B0.93730.33610.56030.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S90.0720 (8)0.0642 (8)0.1050 (10)0.0174 (7)0.0215 (7)0.0085 (8)
O10.097 (3)0.087 (3)0.096 (3)0.032 (2)0.028 (2)0.016 (2)
O20.104 (3)0.072 (3)0.095 (3)0.032 (2)0.042 (2)0.011 (2)
O30.0668 (19)0.0457 (16)0.0421 (15)0.0084 (15)0.0129 (13)0.0093 (13)
O40.085 (2)0.0445 (16)0.0423 (15)0.0019 (16)0.0087 (14)0.0044 (14)
O50.107 (2)0.0362 (15)0.0420 (17)0.0049 (16)0.0050 (16)0.0013 (13)
O60.0474 (15)0.0523 (17)0.0492 (16)0.0038 (13)0.0098 (12)0.0093 (13)
O70.0715 (19)0.0501 (17)0.0370 (14)0.0061 (15)0.0041 (12)0.0081 (13)
N10.0393 (18)0.0464 (19)0.0439 (18)0.0011 (15)0.0064 (14)0.0083 (15)
N20.063 (2)0.040 (2)0.075 (3)0.001 (2)0.008 (2)0.010 (2)
N30.068 (3)0.048 (2)0.059 (2)0.000 (2)0.0015 (19)0.0108 (18)
N40.075 (3)0.039 (2)0.059 (2)0.0001 (19)0.004 (2)0.0038 (18)
N50.066 (2)0.046 (2)0.0411 (19)0.0018 (19)0.0010 (16)0.0059 (16)
C10.040 (2)0.042 (2)0.049 (2)0.0014 (18)0.0069 (18)0.002 (2)
C20.054 (3)0.052 (3)0.061 (3)0.006 (2)0.012 (2)0.010 (2)
C30.049 (3)0.041 (2)0.096 (4)0.005 (2)0.020 (3)0.000 (3)
C40.039 (2)0.053 (3)0.073 (3)0.003 (2)0.004 (2)0.020 (2)
C50.044 (2)0.050 (3)0.056 (3)0.003 (2)0.0004 (19)0.007 (2)
C60.035 (2)0.040 (2)0.044 (2)0.0013 (17)0.0037 (16)0.0001 (18)
C70.042 (2)0.040 (2)0.037 (2)0.0005 (18)0.0015 (16)0.0002 (17)
C80.044 (2)0.067 (3)0.076 (3)0.012 (2)0.005 (2)0.008 (3)
C100.069 (3)0.046 (2)0.074 (3)0.008 (2)0.002 (2)0.005 (2)
C110.045 (2)0.049 (2)0.039 (2)0.0041 (19)0.0012 (17)0.0080 (18)
C120.045 (2)0.036 (2)0.040 (2)0.0010 (18)0.0073 (16)0.0034 (17)
C130.040 (2)0.035 (2)0.0319 (19)0.0008 (17)0.0051 (15)0.0013 (16)
C140.039 (2)0.038 (2)0.0340 (19)0.0019 (17)0.0022 (15)0.0017 (16)
C150.044 (2)0.038 (2)0.053 (3)0.0008 (19)0.0082 (18)0.0029 (19)
C160.052 (2)0.037 (2)0.046 (2)0.001 (2)0.0051 (18)0.0005 (19)
C170.056 (3)0.068 (3)0.124 (4)0.008 (3)0.019 (3)0.008 (3)
C180.061 (3)0.059 (3)0.080 (3)0.015 (2)0.012 (2)0.016 (3)
C190.044 (2)0.044 (2)0.050 (2)0.005 (2)0.0130 (18)0.005 (2)
C200.042 (2)0.035 (2)0.042 (2)0.0008 (18)0.0079 (16)0.0038 (18)
C210.060 (3)0.077 (3)0.057 (3)0.008 (3)0.025 (2)0.018 (3)
C220.055 (3)0.053 (3)0.045 (2)0.006 (2)0.014 (2)0.014 (2)
C230.072 (3)0.044 (2)0.051 (2)0.008 (2)0.017 (2)0.006 (2)
C240.073 (3)0.072 (3)0.038 (2)0.006 (3)0.000 (2)0.001 (2)
C250.061 (3)0.069 (3)0.042 (2)0.009 (2)0.0005 (19)0.014 (2)
Geometric parameters (Å, º) top
S9—C101.801 (4)C8—H8B0.9700
S9—C81.855 (5)C8—H8A0.9700
O1—N21.210 (4)C10—C111.536 (6)
O2—N21.207 (4)C10—H10A0.9700
O3—C151.402 (4)C10—H10B0.9700
O3—C141.454 (4)C11—C121.528 (5)
O4—C151.398 (5)C11—H110.9800
O4—C161.428 (5)C12—C131.532 (5)
O5—C191.406 (5)C12—H120.9800
O5—C161.415 (4)C13—C141.528 (5)
O6—C201.418 (4)C13—H130.9800
O6—C211.439 (4)C14—C201.523 (5)
O7—C11.373 (4)C14—H140.9800
O7—C251.425 (4)C15—C191.528 (5)
N1—C81.445 (5)C15—H150.9800
N1—C111.466 (5)C16—C171.490 (6)
N1—C71.480 (4)C16—C181.501 (5)
N2—C121.498 (5)C17—H17A0.9600
N3—N41.312 (4)C17—H17B0.9600
N3—C221.360 (5)C17—H17C0.9600
N4—N51.351 (4)C18—H18C0.9600
N5—C231.326 (5)C18—H18B0.9600
N5—C241.451 (5)C18—H18A0.9600
C1—C21.382 (6)C19—C201.521 (5)
C1—C61.390 (5)C19—H190.9800
C2—C31.372 (6)C20—H200.9800
C2—H20.9300C21—C221.483 (6)
C3—C41.366 (6)C21—H21A0.9700
C3—H30.9300C21—H21B0.9700
C4—C51.377 (6)C22—C231.366 (6)
C4—H40.9300C23—H230.9300
C5—C61.385 (5)C24—C251.506 (6)
C5—H50.9300C24—H24A0.9700
C6—C71.508 (5)C24—H24B0.9700
C7—C131.576 (5)C25—H25A0.9700
C7—H70.9800C25—H25B0.9700
C10—S9—C892.9 (2)C12—C13—H13107.8
C15—O3—C14106.3 (3)C7—C13—H13107.8
C15—O4—C16110.0 (3)O3—C14—C20101.8 (3)
C19—O5—C16110.5 (3)O3—C14—C13110.0 (3)
C20—O6—C21114.3 (3)C20—C14—C13117.5 (3)
C1—O7—C25119.0 (3)O3—C14—H14109.0
C8—N1—C11107.3 (3)C20—C14—H14109.0
C8—N1—C7114.5 (3)C13—C14—H14109.0
C11—N1—C7106.0 (3)O4—C15—O3111.0 (3)
O2—N2—O1123.8 (4)O4—C15—C19105.4 (3)
O2—N2—C12119.1 (4)O3—C15—C19106.9 (3)
O1—N2—C12117.0 (4)O4—C15—H15111.1
N4—N3—C22108.7 (4)O3—C15—H15111.1
N3—N4—N5107.1 (3)C19—C15—H15111.1
C23—N5—N4110.6 (4)O5—C16—O4104.6 (3)
C23—N5—C24128.5 (4)O5—C16—C17108.9 (4)
N4—N5—C24119.7 (4)O4—C16—C17109.0 (4)
O7—C1—C2123.3 (4)O5—C16—C18111.7 (3)
O7—C1—C6116.1 (3)O4—C16—C18109.5 (3)
C2—C1—C6120.6 (4)C17—C16—C18112.7 (4)
C3—C2—C1119.8 (4)C16—C17—H17A109.5
C3—C2—H2120.1C16—C17—H17B109.5
C1—C2—H2120.1H17A—C17—H17B109.5
C4—C3—C2120.8 (4)C16—C17—H17C109.5
C4—C3—H3119.6H17A—C17—H17C109.5
C2—C3—H3119.6H17B—C17—H17C109.5
C3—C4—C5119.2 (4)C16—C18—H18C109.5
C3—C4—H4120.4C16—C18—H18B109.5
C5—C4—H4120.4H18C—C18—H18B109.5
C4—C5—C6121.7 (4)C16—C18—H18A109.5
C4—C5—H5119.1H18C—C18—H18A109.5
C6—C5—H5119.1H18B—C18—H18A109.5
C5—C6—C1117.8 (4)O5—C19—C20110.9 (3)
C5—C6—C7121.5 (3)O5—C19—C15104.4 (3)
C1—C6—C7120.7 (3)C20—C19—C15104.1 (3)
N1—C7—C6111.2 (3)O5—C19—H19112.3
N1—C7—C13103.8 (3)C20—C19—H19112.3
C6—C7—C13117.4 (3)C15—C19—H19112.3
N1—C7—H7108.0O6—C20—C19109.3 (3)
C6—C7—H7108.0O6—C20—C14110.1 (3)
C13—C7—H7108.0C19—C20—C14101.6 (3)
N1—C8—S9106.9 (3)O6—C20—H20111.8
N1—C8—H8B110.4C19—C20—H20111.8
S9—C8—H8B110.4C14—C20—H20111.8
N1—C8—H8A110.4O6—C21—C22111.3 (3)
S9—C8—H8A110.4O6—C21—H21A109.4
H8B—C8—H8A108.6C22—C21—H21A109.4
C11—C10—S9105.4 (3)O6—C21—H21B109.4
C11—C10—H10A110.7C22—C21—H21B109.4
S9—C10—H10A110.7H21A—C21—H21B108.0
C11—C10—H10B110.7N3—C22—C23107.9 (4)
S9—C10—H10B110.7N3—C22—C21121.3 (4)
H10A—C10—H10B108.8C23—C22—C21130.3 (4)
N1—C11—C1299.5 (3)N5—C23—C22105.7 (4)
N1—C11—C10109.0 (3)N5—C23—H23127.2
C12—C11—C10117.2 (4)C22—C23—H23127.2
N1—C11—H11110.2N5—C24—C25109.8 (3)
C12—C11—H11110.2N5—C24—H24A109.7
C10—C11—H11110.2C25—C24—H24A109.7
N2—C12—C11112.8 (3)N5—C24—H24B109.7
N2—C12—C13113.8 (3)C25—C24—H24B109.7
C11—C12—C13105.4 (3)H24A—C24—H24B108.2
N2—C12—H12108.2O7—C25—C24106.5 (3)
C11—C12—H12108.2O7—C25—H25A110.4
C13—C12—H12108.2C24—C25—H25A110.4
C14—C13—C12112.9 (3)O7—C25—H25B110.4
C14—C13—C7117.0 (3)C24—C25—H25B110.4
C12—C13—C7103.0 (3)H25A—C25—H25B108.6
C14—C13—H13107.8
C22—N3—N4—N50.6 (4)N1—C7—C13—C128.4 (3)
N3—N4—N5—C231.2 (4)C6—C7—C13—C12131.5 (3)
N3—N4—N5—C24169.7 (3)C15—O3—C14—C2043.5 (3)
C25—O7—C1—C215.5 (5)C15—O3—C14—C13168.8 (3)
C25—O7—C1—C6164.5 (3)C12—C13—C14—O316.1 (4)
O7—C1—C2—C3179.6 (4)C7—C13—C14—O3135.5 (3)
C6—C1—C2—C30.4 (6)C12—C13—C14—C20131.9 (3)
C1—C2—C3—C42.0 (6)C7—C13—C14—C20108.7 (4)
C2—C3—C4—C50.9 (6)C16—O4—C15—O3128.7 (3)
C3—C4—C5—C61.9 (6)C16—O4—C15—C1913.3 (4)
C4—C5—C6—C13.4 (6)C14—O3—C15—O486.5 (3)
C4—C5—C6—C7174.6 (4)C14—O3—C15—C1928.0 (4)
O7—C1—C6—C5177.8 (3)C19—O5—C16—O422.5 (4)
C2—C1—C6—C52.2 (5)C19—O5—C16—C17138.9 (4)
O7—C1—C6—C74.2 (5)C19—O5—C16—C1896.0 (4)
C2—C1—C6—C7175.8 (4)C15—O4—C16—O522.0 (4)
C8—N1—C7—C679.3 (4)C15—O4—C16—C17138.3 (4)
C11—N1—C7—C6162.6 (3)C15—O4—C16—C1897.9 (4)
C8—N1—C7—C13153.6 (3)C16—O5—C19—C20126.0 (3)
C11—N1—C7—C1335.5 (3)C16—O5—C19—C1514.4 (4)
C5—C6—C7—N147.2 (4)O4—C15—C19—O50.6 (4)
C1—C6—C7—N1134.8 (3)O3—C15—C19—O5117.6 (3)
C5—C6—C7—C1372.0 (5)O4—C15—C19—C20116.9 (3)
C1—C6—C7—C13105.9 (4)O3—C15—C19—C201.2 (4)
C11—N1—C8—S938.5 (3)C21—O6—C20—C19110.0 (3)
C7—N1—C8—S978.8 (3)C21—O6—C20—C14139.3 (3)
C10—S9—C8—N116.8 (3)O5—C19—C20—O6156.1 (3)
C8—S9—C10—C118.6 (3)C15—C19—C20—O692.2 (3)
C8—N1—C11—C12170.2 (3)O5—C19—C20—C1487.7 (4)
C7—N1—C11—C1247.5 (3)C15—C19—C20—C1424.1 (4)
C8—N1—C11—C1047.0 (4)O3—C14—C20—O675.0 (3)
C7—N1—C11—C1075.7 (4)C13—C14—C20—O645.2 (4)
S9—C10—C11—N132.5 (4)O3—C14—C20—C1940.6 (3)
S9—C10—C11—C12144.4 (3)C13—C14—C20—C19160.8 (3)
O2—N2—C12—C1183.3 (5)C20—O6—C21—C2273.2 (4)
O1—N2—C12—C1192.5 (4)N4—N3—C22—C230.1 (4)
O2—N2—C12—C1336.8 (5)N4—N3—C22—C21173.3 (3)
O1—N2—C12—C13147.5 (4)O6—C21—C22—N369.4 (5)
N1—C11—C12—N2165.7 (3)O6—C21—C22—C23102.1 (5)
C10—C11—C12—N248.5 (5)N4—N5—C23—C221.2 (4)
N1—C11—C12—C1341.0 (3)C24—N5—C23—C22168.4 (4)
C10—C11—C12—C1376.2 (4)N3—C22—C23—N50.8 (4)
N2—C12—C13—C1488.8 (4)C21—C22—C23—N5173.1 (4)
C11—C12—C13—C14147.1 (3)C23—N5—C24—C2549.6 (5)
N2—C12—C13—C7144.0 (3)N4—N5—C24—C25116.7 (4)
C11—C12—C13—C719.9 (4)C1—O7—C25—C24159.4 (3)
N1—C7—C13—C14116.0 (3)N5—C24—C25—O755.0 (4)
C6—C7—C13—C147.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···N3i0.932.583.433 (6)152
C25—H25A···N3i0.972.603.553 (6)168
C25—H25B···S9ii0.972.803.591 (4)140
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.972.513.295 (7)138
C18—H18C···O2ii0.962.573.509 (9)164
C25—H25A···N3iii0.972.623.589 (7)173
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x, y1, z; (iii) x, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C23—H23···N3i0.932.583.433 (6)152
C25—H25A···N3i0.972.603.553 (6)168
C25—H25B···S9ii0.972.803.591 (4)140
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC25H29BrN5O7C24H29N5O7S
Mr591.44531.58
Crystal system, space groupMonoclinic, P21Monoclinic, P21
Temperature (K)293293
a, b, c (Å)9.913 (5), 11.414 (5), 12.144 (5)8.756 (5), 10.811 (5), 13.569 (5)
β (°) 99.903 (5) 101.122 (5)
V3)1353.6 (11)1260.3 (10)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.570.18
Crystal size (mm)0.20 × 0.15 × 0.100.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Bruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.744, 0.8590.964, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
12444, 6278, 3587 11813, 4712, 2862
Rint0.0400.041
(sin θ/λ)max1)0.6690.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.105, 0.95 0.046, 0.103, 1.00
No. of reflections62784712
No. of parameters346336
No. of restraints11
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.460.17, 0.24
Absolute structureRefined as an inversion twin.Flack x determined using 794 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.007 (11)0.10 (9)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

VV and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collections. VV thanks the DBT, Government of India, for a fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMange, Y. J., Isloor, A. M., Malladi, S., Isloor, S. & Fun, H. K. (2013). Arab. J. Chem. 6, 177–181.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPertino, M. W., Lopez, C., Theoduloz, C. & Hirschmann, G. S. (2013). Molecules, 18, 7661–7674.  CrossRef CAS PubMed Google Scholar
First citationPokhodylo, N., Shyyka, O. & Matiychuk, V. (2013). Sci. Pharm. 81, 663–676.  CrossRef CAS PubMed Google Scholar
First citationSahin, D., Bayrak, H., Demirbas, A., Demirbas, N. & Alpay Karaoglu, S. (2012). Turk. J. Chem. 36, 411–426.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinghal, N., Sharma, P. K., Dudhe, R & Nitin Kumar. (2011). J. Chem. Pharm. Res. 3 126–133.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 827-831
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds