organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o457-o458

Crystal structure of obscurine: a natural product isolated from the stem bark of B. obscura

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Higher Teacher Training College, University of Yaoundé 1, PO Box 47, Yaoundé, Cameroon, bDepartment of Chemistry, University of Dschang, PO Box 371, Dschang, Cameroon, and cDepartment of Chemistry, University of Bielefeld, PO Box 100131, 33501 Bielefeld, Germany
*Correspondence e-mail: lentabruno@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 April 2015; accepted 1 June 2015; online 10 June 2015)

The title compound, C24H31NO3 {systematic name: (E)-3-[(1R*,2S*,4aS*,8aR*)-2-(benzo[d][1,3]dioxol-5-yl)-1,2,4a,5,6,7,8,8a-octa­hydro­naphthalen-1-yl]-N-iso­butyl­acryl­amide}, is a natural product isolated from the stem bark of B. obscura. It is composed of an octa­hydro­naphthalene ring system substituted with an essentially planar benzodioxole ring system [r.m.s. deviation = 0.012 Å] and an extended iso­butyl­acryl­amide group. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating along [100]. The chains are linked by pairs of C—H⋯O hydrogen bonds, involving inversion-related benzodioxole ring systems, forming ribbons lying parallel to (010). There are also C—H⋯π inter­actions present within the ribbons.

1. Related literature

For background to the Beilschmiedia genus, medicinal plants used in Cameroon, see: Chouna et al. (2009[Chouna, J. R., Nkeng-Efouet, P. A., Lenta, B. N., Devkota, K. P., Neumann, B., Stammler, H. G., Kimbu, S. F. & Sewald, N. (2009). Phytochemistry, 70, 684-688.], 2010[Chouna, J. R., Nkeng-Efouet, P. A., Lenta, B. N., Wansi, J. D., Kimbu, S. F. & Sewald, N. (2010). Phytochemistry Lett. 3, 13-16.], 2011[Chouna, J. R., Nkeng-Efouet, P. A., Lenta, B. N., Wansi, D. J., Neumann, B., Stammler, H.-G., Fon Kimbu, S. & Sewald, N. (2011). Helv. Chim. Acta, 94, 1071-1076.]); Lenta et al. (2009[Lenta, B. N., Tantangmo, F., Devkota, K. P., Wansi, J. D., Chouna, J. R., Soh, R. C. F., Neumann, B., Stammler, H.-G., Tsamo, E. & Sewald, N. (2009). J. Nat. Prod. 72, 2130-2134.], 2011[Lenta, B. N., Chouna, J. R., Nkeng-Efouet, P. A., Kimbu, S. F., Tsamo, E. & Sewald, N. (2011). Nat. Prod. Commun. 6, 1591-1592.]). For related structures, see: Balawsnt et al. (1975[Balawsnt, S. J., Nerayanan, V., Dillip, H. G., Veakstachahm, B. & Wolfgang, V. P. (1975). Helv. Chim. Acta, 58, 2295-2305.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C24H31NO3

  • Mr = 381.50

  • Triclinic, [P \overline 1]

  • a = 5.14153 (16) Å

  • b = 9.7449 (3) Å

  • c = 20.4639 (5) Å

  • α = 98.839 (2)°

  • β = 90.946 (2)°

  • γ = 100.237 (3)°

  • V = 996.00 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.36 × 0.03 × 0.02 mm

2.2. Data collection

  • Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.798, Tmax = 1.000

  • 13324 measured reflections

  • 3892 independent reflections

  • 3425 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.04

  • 3892 reflections

  • 377 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the benzene ring C2–C7.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.896 (16) 2.105 (16) 2.8938 (13) 146.3 (13)
C7—H7⋯O1ii 0.984 (16) 2.503 (16) 3.4264 (15) 156.3 (12)
C1—H1BCg2i 0.978 (16) 2.595 (15) 3.4578 (12) 147.4 (11)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Plants of the Beilschmiedia genus have been the subject of research inter­est (Lenta et al., 2009, 2011; Chouna et al. 2011). Our inter­ests involve the isolation of active constituents from the stem bark and leaves of B. obscura, a medicinal plant used in Cameroon. Herein, we report on the crystal structure of the title compound, a natural product isolated from the stem bark of B. obscura.

Isolation and crystallization top

The air-dried stem bark of B. obscura (400 g) was macerated with methanol at room temperature for 72 h. The methanol extract was concentrated under reduced pressure to give a residue of 16 g, which was selectively extracted with CH2Cl2 at room temperature to afford 4 g of the CH2Cl2 soluble residue. This extract was subjected to column chromatography (CC) over silica gel (0.023-0.20 mesh, Merck) and eluted with a gradient system of n-hexane/ CH2Cl2 and ( CH2Cl2/MeOH,) to afford obscurine (4.2 mg), the solid obtained was grounded and then recrystallised from a mixture of petroleum ether/di­chloro­metahne (1:1), yielding colourless needle-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All of the H atoms were all located in difference Fourier maps and freely refined.

Related literature top

For background to the Beilschmiedia genus, medical plants used in Cameroon, see: Chouna et al. (2009, 2010, 2011); Lenta et al. (2009, 2011). For related structures, see: Balawsnt et al. (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probabilityl evel.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
(E)-3-[(1R*,2S*,4aS*,8aR*)-2-(Benzo[d][1,3]dioxol-5-yl)-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl]-N-isobutylacrylamide top
Crystal data top
C24H31NO3Z = 2
Mr = 381.50F(000) = 412
Triclinic, P1Dx = 1.272 Mg m3
a = 5.14153 (16) ÅCu Kα radiation, λ = 1.5418 Å
b = 9.7449 (3) ÅCell parameters from 7209 reflections
c = 20.4639 (5) Åθ = 4.7–76.2°
α = 98.839 (2)°µ = 0.66 mm1
β = 90.946 (2)°T = 100 K
γ = 100.237 (3)°Needle, clear colourless
V = 996.00 (5) Å30.36 × 0.03 × 0.02 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
3892 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3425 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 5.3114 pixels mm-1θmax = 72.1°, θmin = 4.4°
ω scansh = 65
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
k = 1112
Tmin = 0.798, Tmax = 1.000l = 2424
13324 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.3477P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3892 reflectionsΔρmax = 0.24 e Å3
377 parametersΔρmin = 0.22 e Å3
0 restraints
Crystal data top
C24H31NO3γ = 100.237 (3)°
Mr = 381.50V = 996.00 (5) Å3
Triclinic, P1Z = 2
a = 5.14153 (16) ÅCu Kα radiation
b = 9.7449 (3) ŵ = 0.66 mm1
c = 20.4639 (5) ÅT = 100 K
α = 98.839 (2)°0.36 × 0.03 × 0.02 mm
β = 90.946 (2)°
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
3892 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
3425 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 1.000Rint = 0.027
13324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091All H-atom parameters refined
S = 1.04Δρmax = 0.24 e Å3
3892 reflectionsΔρmin = 0.22 e Å3
377 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.99052 (16)0.81354 (9)0.86676 (4)0.01947 (19)
O10.32116 (17)0.81350 (9)0.50886 (4)0.0198 (2)
O20.26950 (17)0.59230 (9)0.54145 (4)0.0211 (2)
N10.5440 (2)0.79089 (11)0.87047 (5)0.0177 (2)
C70.7117 (2)0.92262 (12)0.58231 (6)0.0155 (2)
C60.8900 (2)0.89637 (12)0.62993 (6)0.0149 (2)
C140.9558 (2)1.40385 (13)0.81143 (6)0.0189 (3)
C180.9906 (2)1.00932 (12)0.77808 (6)0.0161 (2)
C190.7706 (2)0.94294 (12)0.80006 (6)0.0172 (2)
C40.6528 (2)0.65272 (13)0.62212 (6)0.0183 (2)
C161.2263 (2)1.23586 (12)0.74705 (6)0.0152 (2)
C171.0186 (2)1.10091 (12)0.72506 (6)0.0147 (2)
C20.5136 (2)0.81316 (12)0.55642 (6)0.0154 (2)
C220.4536 (2)0.77083 (13)0.98764 (6)0.0195 (3)
C81.1097 (2)1.01511 (12)0.66128 (6)0.0150 (2)
C30.4823 (2)0.68151 (12)0.57583 (6)0.0162 (2)
C50.8593 (2)0.76299 (12)0.64871 (6)0.0174 (2)
C200.7803 (2)0.84434 (12)0.84886 (6)0.0161 (2)
C210.5080 (2)0.69546 (13)0.91942 (6)0.0182 (3)
C121.0346 (2)1.41782 (12)0.69190 (6)0.0174 (2)
C131.0029 (3)1.50233 (13)0.75965 (6)0.0192 (3)
C91.2170 (2)1.11024 (13)0.61238 (6)0.0163 (2)
C111.2589 (2)1.33271 (12)0.69369 (6)0.0153 (2)
C101.2835 (2)1.24957 (13)0.62661 (6)0.0166 (2)
C230.3498 (3)0.66495 (16)1.03273 (7)0.0293 (3)
C151.1801 (2)1.32087 (13)0.81431 (6)0.0178 (2)
C10.1586 (2)0.67567 (13)0.49990 (6)0.0186 (3)
C240.6991 (3)0.87158 (15)1.01892 (7)0.0260 (3)
H161.402 (3)1.2038 (15)0.7515 (7)0.016 (3)*
H111.426 (3)1.4037 (15)0.7059 (7)0.015 (3)*
H170.844 (3)1.1256 (15)0.7138 (7)0.015 (3)*
H21A0.670 (3)0.6545 (15)0.9203 (7)0.019 (4)*
H15A1.345 (3)1.3876 (15)0.8301 (7)0.017 (3)*
H40.633 (3)0.5592 (17)0.6353 (8)0.026 (4)*
H91.238 (3)1.0624 (15)0.5679 (7)0.018 (3)*
H50.986 (3)0.7444 (16)0.6806 (8)0.023 (4)*
H12A0.862 (3)1.3498 (16)0.6770 (7)0.019 (4)*
H181.159 (3)0.9934 (15)0.7974 (7)0.020 (4)*
H70.730 (3)1.0156 (17)0.5680 (7)0.022 (4)*
H13A1.169 (3)1.5731 (16)0.7739 (8)0.023 (4)*
H14A0.942 (3)1.4596 (16)0.8555 (8)0.023 (4)*
H21B0.354 (3)0.6183 (16)0.9026 (7)0.022 (4)*
H10.399 (3)0.8194 (16)0.8567 (7)0.022 (4)*
H1A0.160 (3)0.6301 (16)0.4528 (8)0.023 (4)*
H81.260 (3)0.9720 (15)0.6758 (7)0.019 (4)*
H12B1.068 (3)1.4823 (16)0.6573 (8)0.021 (4)*
H14B0.780 (3)1.3357 (16)0.7997 (8)0.023 (4)*
H1B0.020 (3)0.6828 (15)0.5137 (7)0.021 (4)*
H220.313 (3)0.8255 (15)0.9805 (7)0.018 (3)*
H101.350 (3)1.3042 (16)0.5915 (8)0.023 (4)*
H15B1.146 (3)1.2548 (17)0.8489 (8)0.025 (4)*
H13B0.851 (3)1.5540 (17)0.7578 (8)0.026 (4)*
H24A0.841 (3)0.8171 (19)1.0287 (9)0.036 (5)*
H24B0.660 (3)0.9237 (19)1.0614 (9)0.037 (5)*
H23A0.483 (4)0.609 (2)1.0412 (9)0.041 (5)*
H190.599 (3)0.9535 (17)0.7834 (8)0.029 (4)*
H24C0.775 (3)0.9404 (19)0.9890 (9)0.036 (5)*
H23B0.304 (4)0.717 (2)1.0772 (10)0.043 (5)*
H23C0.187 (4)0.601 (2)1.0128 (9)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0158 (4)0.0234 (4)0.0221 (4)0.0068 (3)0.0012 (3)0.0090 (3)
O10.0191 (4)0.0170 (4)0.0230 (4)0.0005 (3)0.0059 (3)0.0060 (3)
O20.0198 (4)0.0153 (4)0.0277 (5)0.0001 (3)0.0058 (4)0.0058 (3)
N10.0154 (5)0.0214 (5)0.0187 (5)0.0052 (4)0.0010 (4)0.0087 (4)
C70.0162 (6)0.0148 (5)0.0173 (6)0.0050 (4)0.0025 (4)0.0048 (4)
C60.0153 (5)0.0152 (5)0.0152 (5)0.0049 (4)0.0034 (4)0.0031 (4)
C140.0176 (6)0.0216 (6)0.0169 (6)0.0042 (5)0.0017 (5)0.0007 (5)
C180.0175 (6)0.0160 (5)0.0157 (6)0.0054 (4)0.0008 (4)0.0029 (4)
C190.0161 (6)0.0199 (6)0.0176 (6)0.0060 (5)0.0000 (4)0.0059 (4)
C40.0207 (6)0.0143 (6)0.0218 (6)0.0047 (5)0.0027 (5)0.0069 (4)
C160.0134 (5)0.0160 (5)0.0171 (6)0.0040 (4)0.0006 (4)0.0038 (4)
C170.0134 (5)0.0166 (6)0.0154 (6)0.0048 (4)0.0001 (4)0.0041 (4)
C20.0153 (5)0.0175 (6)0.0150 (5)0.0059 (4)0.0018 (4)0.0043 (4)
C220.0195 (6)0.0213 (6)0.0200 (6)0.0066 (5)0.0031 (5)0.0070 (5)
C80.0138 (5)0.0154 (5)0.0170 (6)0.0049 (4)0.0006 (4)0.0038 (4)
C30.0147 (5)0.0146 (5)0.0188 (6)0.0020 (4)0.0022 (4)0.0019 (4)
C50.0187 (6)0.0172 (6)0.0185 (6)0.0067 (5)0.0006 (5)0.0056 (4)
C200.0175 (6)0.0158 (5)0.0156 (6)0.0043 (4)0.0004 (4)0.0027 (4)
C210.0194 (6)0.0169 (6)0.0193 (6)0.0027 (5)0.0008 (5)0.0068 (4)
C120.0185 (6)0.0172 (6)0.0181 (6)0.0060 (5)0.0004 (5)0.0045 (4)
C130.0198 (6)0.0172 (6)0.0218 (6)0.0070 (5)0.0003 (5)0.0022 (5)
C90.0141 (6)0.0189 (6)0.0164 (6)0.0039 (4)0.0017 (4)0.0032 (4)
C110.0135 (5)0.0154 (5)0.0171 (6)0.0025 (4)0.0006 (4)0.0033 (4)
C100.0145 (6)0.0187 (6)0.0176 (6)0.0031 (4)0.0021 (4)0.0061 (4)
C230.0335 (8)0.0297 (7)0.0245 (7)0.0006 (6)0.0050 (6)0.0109 (6)
C150.0181 (6)0.0186 (6)0.0164 (6)0.0026 (5)0.0014 (5)0.0026 (4)
C10.0181 (6)0.0167 (6)0.0203 (6)0.0012 (5)0.0015 (5)0.0037 (4)
C240.0296 (7)0.0235 (7)0.0233 (7)0.0028 (6)0.0010 (6)0.0018 (5)
Geometric parameters (Å, º) top
O3—C201.2363 (15)C2—C31.3838 (16)
O1—C21.3772 (14)C22—C211.5289 (17)
O1—C11.4341 (15)C22—C231.5213 (18)
O2—C31.3772 (14)C22—C241.5189 (18)
O2—C11.4386 (15)C22—H220.991 (15)
N1—C201.3443 (16)C8—C91.5120 (16)
N1—C211.4606 (15)C8—H81.006 (15)
N1—H10.894 (16)C5—H50.973 (16)
C7—C61.4093 (16)C21—H21A0.987 (16)
C7—C21.3705 (17)C21—H21B1.004 (16)
C7—H70.984 (16)C12—C131.5269 (16)
C6—C81.5199 (16)C12—C111.5384 (16)
C6—C51.3945 (16)C12—H12A1.020 (15)
C14—C131.5300 (17)C12—H12B1.014 (16)
C14—C151.5270 (17)C13—H13A1.007 (16)
C14—H14A0.988 (16)C13—H13B1.003 (17)
C14—H14B1.021 (16)C9—C101.3250 (17)
C18—C191.3216 (18)C9—H90.973 (15)
C18—C171.5007 (16)C11—C101.5024 (16)
C18—H180.994 (15)C11—H111.006 (15)
C19—C201.4944 (16)C10—H100.988 (16)
C19—H190.970 (17)C23—H23A0.98 (2)
C4—C31.3732 (17)C23—H23B1.025 (19)
C4—C51.4050 (17)C23—H23C0.99 (2)
C4—H40.978 (16)C15—H15A0.990 (15)
C16—C171.5411 (16)C15—H15B1.025 (16)
C16—C111.5421 (16)C1—H1A0.997 (16)
C16—C151.5385 (16)C1—H1B0.978 (16)
C16—H161.016 (15)C24—H24A1.010 (18)
C17—C81.5640 (16)C24—H24B0.980 (18)
C17—H171.002 (14)C24—H24C1.010 (19)
C2—O1—C1106.11 (9)C4—C5—H5118.5 (9)
C3—O2—C1105.76 (9)O3—C20—N1123.23 (11)
C20—N1—C21124.03 (10)O3—C20—C19121.94 (11)
C20—N1—H1119.1 (10)N1—C20—C19114.83 (10)
C21—N1—H1116.7 (10)N1—C21—C22112.10 (10)
C6—C7—H7121.2 (9)N1—C21—H21A106.5 (9)
C2—C7—C6117.32 (11)N1—C21—H21B106.8 (9)
C2—C7—H7121.5 (9)C22—C21—H21A112.0 (9)
C7—C6—C8119.41 (10)C22—C21—H21B110.2 (9)
C5—C6—C7119.69 (11)H21A—C21—H21B109.0 (12)
C5—C6—C8120.89 (10)C13—C12—C11111.67 (10)
C13—C14—H14A109.7 (9)C13—C12—H12A109.2 (8)
C13—C14—H14B108.9 (9)C13—C12—H12B110.8 (9)
C15—C14—C13111.11 (10)C11—C12—H12A108.9 (8)
C15—C14—H14A109.2 (9)C11—C12—H12B110.0 (9)
C15—C14—H14B109.8 (9)H12A—C12—H12B106.0 (12)
H14A—C14—H14B108.0 (12)C14—C13—H13A107.7 (9)
C19—C18—C17128.07 (11)C14—C13—H13B109.8 (9)
C19—C18—H18116.3 (9)C12—C13—C14110.15 (10)
C17—C18—H18115.5 (9)C12—C13—H13A110.0 (9)
C18—C19—C20120.79 (11)C12—C13—H13B110.4 (9)
C18—C19—H19120.9 (10)H13A—C13—H13B108.8 (12)
C20—C19—H19118.3 (10)C8—C9—H9115.5 (9)
C3—C4—C5116.89 (11)C10—C9—C8124.58 (11)
C3—C4—H4121.4 (9)C10—C9—H9119.9 (9)
C5—C4—H4121.7 (9)C16—C11—H11107.0 (8)
C17—C16—C11111.83 (9)C12—C11—C16112.87 (10)
C17—C16—H16106.3 (8)C12—C11—H11106.4 (8)
C11—C16—H16106.0 (8)C10—C11—C16110.93 (9)
C15—C16—C17114.84 (10)C10—C11—C12110.45 (10)
C15—C16—C11110.08 (9)C10—C11—H11109.0 (8)
C15—C16—H16107.2 (8)C9—C10—C11123.82 (11)
C18—C17—C16110.54 (9)C9—C10—H10119.5 (9)
C18—C17—C8108.26 (9)C11—C10—H10116.7 (9)
C18—C17—H17110.5 (8)C22—C23—H23A110.8 (11)
C16—C17—C8109.30 (9)C22—C23—H23B110.0 (11)
C16—C17—H17110.5 (8)C22—C23—H23C110.8 (11)
C8—C17—H17107.6 (8)H23A—C23—H23B108.3 (15)
O1—C2—C3109.80 (10)H23A—C23—H23C109.1 (16)
C7—C2—O1127.48 (10)H23B—C23—H23C107.8 (15)
C7—C2—C3122.71 (11)C14—C15—C16113.29 (10)
C21—C22—H22106.4 (8)C14—C15—H15A108.9 (8)
C23—C22—C21110.96 (11)C14—C15—H15B110.5 (9)
C23—C22—H22108.2 (9)C16—C15—H15A108.7 (8)
C24—C22—C21111.12 (11)C16—C15—H15B109.8 (9)
C24—C22—C23110.86 (11)H15A—C15—H15B105.3 (12)
C24—C22—H22109.2 (9)O1—C1—O2108.07 (9)
C6—C8—C17111.47 (9)O1—C1—H1A109.5 (9)
C6—C8—H8108.3 (8)O1—C1—H1B109.9 (9)
C17—C8—H8106.4 (8)O2—C1—H1A108.7 (9)
C9—C8—C6111.81 (9)O2—C1—H1B108.4 (9)
C9—C8—C17111.61 (9)H1A—C1—H1B112.2 (12)
C9—C8—H8107.0 (9)C22—C24—H24A110.3 (10)
O2—C3—C2110.17 (10)C22—C24—H24B110.8 (11)
C4—C3—O2128.50 (11)C22—C24—H24C112.1 (10)
C4—C3—C2121.32 (11)H24A—C24—H24B106.4 (14)
C6—C5—C4122.06 (11)H24A—C24—H24C107.5 (14)
C6—C5—H5119.5 (9)H24B—C24—H24C109.5 (14)
O1—C2—C3—O20.14 (14)C3—O2—C1—O12.82 (12)
O1—C2—C3—C4178.82 (11)C3—C4—C5—C60.73 (18)
C7—C6—C8—C1789.64 (12)C5—C6—C8—C1788.97 (13)
C7—C6—C8—C936.07 (14)C5—C6—C8—C9145.33 (11)
C7—C6—C5—C40.73 (18)C5—C4—C3—O2178.46 (11)
C7—C2—C3—O2179.54 (11)C5—C4—C3—C20.05 (18)
C7—C2—C3—C40.87 (19)C20—N1—C21—C22103.43 (13)
C6—C7—C2—O1178.77 (11)C21—N1—C20—O32.70 (18)
C6—C7—C2—C30.86 (17)C21—N1—C20—C19178.39 (10)
C6—C8—C9—C10140.17 (12)C12—C11—C10—C9109.46 (13)
C18—C19—C20—O35.24 (18)C13—C14—C15—C1655.96 (13)
C18—C19—C20—N1175.83 (11)C13—C12—C11—C1654.57 (13)
C18—C17—C8—C670.41 (12)C13—C12—C11—C10179.40 (10)
C18—C17—C8—C9163.77 (10)C11—C16—C17—C18179.76 (9)
C19—C18—C17—C16135.66 (13)C11—C16—C17—C861.18 (12)
C19—C18—C17—C8104.64 (14)C11—C16—C15—C1452.15 (13)
C16—C17—C8—C6169.12 (9)C11—C12—C13—C1456.40 (13)
C16—C17—C8—C943.30 (12)C23—C22—C21—N1165.79 (11)
C16—C11—C10—C916.46 (16)C15—C14—C13—C1256.89 (13)
C17—C18—C19—C20173.97 (11)C15—C16—C17—C1853.39 (13)
C17—C16—C11—C1277.81 (12)C15—C16—C17—C8172.45 (9)
C17—C16—C11—C1046.76 (13)C15—C16—C11—C1251.11 (13)
C17—C16—C15—C1475.12 (13)C15—C16—C11—C10175.68 (10)
C17—C8—C9—C1014.53 (16)C1—O1—C2—C7178.70 (12)
C2—O1—C1—O22.74 (12)C1—O1—C2—C31.63 (13)
C2—C7—C6—C8178.69 (10)C1—O2—C3—C4179.60 (12)
C2—C7—C6—C50.07 (17)C1—O2—C3—C21.84 (13)
C8—C6—C5—C4177.87 (11)C24—C22—C21—N170.39 (13)
C8—C9—C10—C110.56 (19)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the benzene ring C2–C7.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.896 (16)2.105 (16)2.8938 (13)146.3 (13)
C7—H7···O1ii0.984 (16)2.503 (16)3.4264 (15)156.3 (12)
C1—H1B···Cg2i0.978 (16)2.595 (15)3.4578 (12)147.4 (11)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the benzene ring C2–C7.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.896 (16)2.105 (16)2.8938 (13)146.3 (13)
C7—H7···O1ii0.984 (16)2.503 (16)3.4264 (15)156.3 (12)
C1—H1B···Cg2i0.978 (16)2.595 (15)3.4578 (12)147.4 (11)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

BNL thanks the Alexander von Humboldt Foundation for providing a fellowship to study at Bielefeld University.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBalawsnt, S. J., Nerayanan, V., Dillip, H. G., Veakstachahm, B. & Wolfgang, V. P. (1975). Helv. Chim. Acta, 58, 2295–2305.  Google Scholar
First citationChouna, J. R., Nkeng-Efouet, P. A., Lenta, B. N., Wansi, D. J., Neumann, B., Stammler, H.-G., Fon Kimbu, S. & Sewald, N. (2011). Helv. Chim. Acta, 94, 1071–1076.  CSD CrossRef CAS Google Scholar
First citationChouna, J. R., Nkeng-Efouet, P. A., Lenta, B. N., Devkota, K. P., Neumann, B., Stammler, H. G., Kimbu, S. F. & Sewald, N. (2009). Phytochemistry, 70, 684–688.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChouna, J. R., Nkeng-Efouet, P. A., Lenta, B. N., Wansi, J. D., Kimbu, S. F. & Sewald, N. (2010). Phytochemistry Lett. 3, 13–16.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLenta, B. N., Chouna, J. R., Nkeng-Efouet, P. A., Kimbu, S. F., Tsamo, E. & Sewald, N. (2011). Nat. Prod. Commun. 6, 1591–1592.  Web of Science CAS PubMed Google Scholar
First citationLenta, B. N., Tantangmo, F., Devkota, K. P., Wansi, J. D., Chouna, J. R., Soh, R. C. F., Neumann, B., Stammler, H.-G., Tsamo, E. & Sewald, N. (2009). J. Nat. Prod. 72, 2130–2134.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o457-o458
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds