research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 734-736

Crystal structure of (E)-N′-(5-bromo-2-hy­dr­oxy­benzyl­­idene)nicotinohydrazide monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, India, bDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and cDepartment of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 May 2015; accepted 19 May 2015; online 3 June 2015)

In the title compound, C13H10BrN3O2·H2O, the conformation about the azomethine double bond is E. The mol­ecule exists in the amido form with a C=O bond length of 1.229 (2) Å. There is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif. The whole mol­ecule is almost planar, with an r.m.s. deviation of 0.021 Å for all non-H atoms, and the dihedral angle between the planes of the pyridine and benzene rings is 0.74 (12)°. In the crystal, the water mol­ecule of crystallization links the organic mol­ecules via Ow—H⋯O, Ow—H⋯N and N—H⋯Ow hydrogen bonds and short C—H⋯Ow contacts, forming sheets lying parallel to (100). Within the sheets there is a weak ππ inter­action involving the pyridine and benzene rings [centroid-to-centroid distance = 3.8473 (15) Å]. The sheets are linked via C—H⋯Br inter­actions, forming a three-dimensional network.

1. Chemical context

Aroylhydrazones can coordinate to transition metals either in the amido form (Bessy Raj & Kurup, 2007[Bessy Raj, B. N. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903.]) or in the imino­lato form (Ghosh et al., 2005[Ghosh, T., Bhattacharya, S., Das, A., Mukherjee, G. & Drew, M. G. B. (2005). Inorg. Chim. Acta, 358, 989-996.]; Galić et al., 2011[Galić, N., Rubčić, M., Magdić, K., Cindrić, M. & Tomišić (2011). Inorg. Chim. Acta, 366, 98-104.]), leading to the formation of two types of complexes. Hydrazones derived from isonicotinoyl hydrazides are potential drugs for the treatment of the iron-overload associated diseases (Macková et al., 2012[Macková, E., Hrušková, K., Bendová, P., Vávrová, A., Jansová, H., Hašková, P., Kovaříková, P., Vávrová, K. & Šimůnek, T. (2012). Chem-Biol. Interact. 197, 69-79.]). They are associated with a broad spectrum of biological activities, and studies have shown that nicotinic acid hydrazones could be considered as anti-inflammatory and analgesic agents (Navidpour et al., 2014[Navidpour, L., Shafaroodi, H., Saeedi-Motahar, G. & Shafiee, A. (2014). Med. Chem. Res. 23, 2793-2802.]; Kheradmand et al., 2013[Kheradmand, A., Navidpour, L., Shafaroodi, H., Saeedi-Motahar, G. & Shafiee, A. (2013). Med. Chem. Res. 22, 2411-2420.]) and as a novel pharmacophore in the design of anti­convulsant drugs (Sinha et al., 2011[Sinha, R., Singh Sara, U. V., Khosa, R. L., Shenoi, V., Stables, J. & Jain, J. (2011). Med. Chem. Res. 20, 1499-1504.]). Hydrazones have been used in chemical processes, in non-linear optics and as sensors as well as in catalytic processes (Hosseini-Monfared et al., 2013[Hosseini-Monfared, H., Farrokhi, A., Alavi, S. & Mayer, P. (2013). Transition Met. Chem. 38, 267-273.]; Du & Hong, 2014[Du, C. & Hong, Z. (2014). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 45, 507-511.]). Their potential as analytical reagents (Galić et al., 2011[Galić, N., Rubčić, M., Magdić, K., Cindrić, M. & Tomišić (2011). Inorg. Chim. Acta, 366, 98-104.]) and their uses as mol­ecular switches, metallo-assemblies and sensors have also been reported (Su & Aprahamian, 2014[Su, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963-1981.]). Salicyl­aldehyde isonicotinoylhydrazone has also been used for the spectrophotometric determination of gallium(III) and indium(III) (Reddy et al., 2011[Reddy, G. C., Devanna, N. & Chandrasekhar, K. B. (2011). Orbital Elec. J. Chem. 3, 24-31.]).

[Scheme 1]

2. Structural commentary

The title compound, Fig. 1[link], exists in the amido form with a C8=O2 bond length of 1.229 (2) Å. The mol­ecule has an E conformation with respect to the azomethine bond, which is confirmed by the torsion angle C6—C7=N1—N2 of 179.09 (19)°. The two aromatic rings (C1–C6 and N3/C9–C13), are inclined to the almost planar hydrazone moiety [O2/C8/N2/N1/C7; planar to within 0.006 (2) Å] by 2.12 (9) and 1.40 (8)°, respectively, and to each other by 0.74 (12)°. There is an intra­molecular O—H⋯N hydrogen bond present in the mol­ecule that involves the phenolic oxygen, O1 and the azomethine nitro­gen atom, N1, forming an S(6) ring motif (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (1) 1.91 (2) 2.641 (2) 143 (3)
O1W—H1A⋯O2 0.85 (1) 1.91 (1) 2.756 (2) 172 (3)
O1W—H1B⋯N3i 0.85 (1) 2.03 (1) 2.845 (3) 162 (2)
N2—H2′⋯O1Wii 0.87 (1) 1.95 (1) 2.806 (3) 169 (3)
C7—H7⋯O1Wii 0.93 2.49 3.263 (3) 140
C10—H10⋯O1Wii 0.93 2.45 3.362 (3) 165
C11—H11⋯Br1iii 0.93 2.93 3.825 (3) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z-1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the water mol­ecule forms three hydrogen bonds with three different nicotinic hydrazone mol­ecules (Table 1[link] and Fig. 2[link]). This compound is an example of a system where a single atom acts both as donor and acceptor. There are also C—H⋯O(water) contacts present enclosing R21(6) and R21(7) ring motifs (Fig. 2[link]). Finally sheets are formed lying parallel to (100). There are weak ππ inter­actions within the sheets involving the bromine-bearing aromatic ring of one mol­ecule and the pyridine ring of another, with a centroid–centroid distance of 3.8473 (15) Å (Fig. 2[link]). The sheets are linked via C—H⋯Br inter­actions, forming a three-dimensional network (Table 1[link] and Fig. 3[link]).

[Figure 2]
Figure 2
Hydrogen bonds (dashed lines) and a weak ππ inter­action (in blue) in the crystal of the title compound [symmetry codes: (i) x, −y + [{1\over 2}], z + [{1\over 2}]; (ii) −x, y + [{1\over 2}], −z + [{1\over 2}]].
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details) and H atoms not involved in hydrogen bonding have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, update Feb. 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) yielded 22 hits for the substructure N′-(2-hy­droxy­benzyl­idene)nico­tino­hydra­zide. The crystal structure of N′-(2-hy­droxy­benzyl­idene)nicotinohydrazide itself is reported as a monohydrate (IDASUB; Galić et al., 2001[Galić, N., Perić, B., Kojić-Prodić, B. & Cimerman, Z. (2001). J. Mol. Struct. 559, 187-194.]), and the crystal structure of the chloro derivative of the title compound, which crystallized with two independent mol­ecules in the asymmetric unit, has also been reported (MOZPIB; Ren, 2009[Ren, C.-G. (2009). Acta Cryst. E65, o1505-o1506.]). In these two compounds, an intra­molecular O—H⋯N hydrogen bond is also present. The mol­ecules are also relatively planar, with the benzene and pyridine rings being inclined to one another by ca 4.2° in IDASUB, and by ca 12.8 and 1.9° in the two independent mol­ecules of MOZPIB. This last dihedral angle is similar to that in the title compound [cf. 0.74 (12)°]. In the crystal structure of N′-(2-hy­droxy­benzyl­idene)nico­tino­hydrazide monohydrate (IDASUB), the water mol­ecule forms three hydrogen bonds and is another example of a system where a single atom acts both as donor and acceptor.

5. Synthesis and crystallization

The title compound was prepared by adapting a reported procedure (Mathew & Kurup, 2011[Mathew, N. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 78, 1424-1428.]). A methano­lic solution of 5-bromo­salicyl­aldehyde (0.10051 g, 0.5 mmol) and nicotinic hydrazide (0.06857 g, 0.5 mmol) was refluxed for 3 h with two drops of glacial acetic acid. Light-yellow block-shaped crystals of the title compound were obtained by slow evaporation of the solvent. The crystals were filtered, washed with minimum qu­antity of methanol and dried over P4O10 in vacuo (yield: 0.22 g, 68.5%; m.p.: 480 K). Elemental analysis calculated for C13H10N3O2Br·H2O: C, 46.17, H, 3.58, N, 12.43%; found: C, 46.14, H, 3.57, N, 12.44%. IR FT–IR (KBr, cm−1) 3059 (NH), 3269(OH), 1680 (C=O), 1584 (C=N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The water, hydroxyl and NH H atoms were located in difference Fourier maps and refined with distances restraints: O—H = 0.86 (1) Å and N—H = 0.88 (1) Å. All C-bound H atoms were placed in calculated positions and refined as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). Three reflections were omitted owing to bad agreement, viz. 100, 110 and 200.

Table 2
Experimental details

Crystal data
Chemical formula C13H10BrN3O2·H2O
Mr 338.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.1623 (7), 12.5953 (9), 13.2510 (8)
β (°) 90.226 (3)
V3) 1362.28 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.03
Crystal size (mm) 0.42 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.349, 0.356
No. of measured, independent and observed [I > 2σ(I)] reflections 7570, 3331, 2233
Rint 0.028
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 0.99
No. of reflections 3331
No. of parameters 198
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.35
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Aroylhydrazones can coordinate to transition metals either in the amido form (Bessy Raj & Kurup, 2007) or in the imino­lato form (Ghosh et al., 2005: Galić et al., 2011), leading to the formation of two types of complexes. Hydrazones derived from isonicotinoyl hydrazides are potential drugs for the treatment of the iron-overload associated diseases (Macková et al., 2012). They are associated with a broad spectrum of biological activities, and studies have shown that nicotinic acid hydrazones could be considered as anti-inflammatory and analgesic agents (Navidpour et al., 2014; Kheradmand et al., 2013) and as a novel pharmacophore in the design of anti­convulsant drugs (Sinha et al., 2011). Hydrazones have been used in chemical processes like non-linear optics and as sensors as well as in catalytic processes (Hosseini-Monfared et al., 2013; Du & Hong, 2014). Their potential as analytical reagents (Galić et al., 2011) and their uses as molecular switches, metallo-assemblies and sensors have also been reported (Su & Aprahamian, 2014). Salicyl­aldehyde isonicotinoylhydrazone has also been used for the spectrophotometric determination of gallium(III) and indium(III) (Reddy et al., 2011).

Structural commentary top

The title compound, Fig. 1, exists in the amido form with a C8O2 bond length of 1.229 (2) Å. The molecule has an E conformation with respect to the azomethine bond, which is confirmed by the torsion angle C6—C7 N1—N2 of 179.09 (19)°. The two aromatic rings (C1–C6 and N3/C9–C13), are inclined to the planar hydrazone moiety [O2/C8/N2/N1/C7; planar to within 0.006 (2) Å] by 2.12 (9) and 1.40 (8)°, respectively, and to each other by 0.74 (12)°. There is an intra­molecular O—H···N hydrogen bond present in the molecule that involves the phenolic oxygen, O1, and the azomethine nitro­gen atom, N1, forming an S(6) ring motif (Table 1 and Fig. 1). As the molecule is planar there are also two short intra­molecular C—H···O contacts present, involving the water molecule and the CH groups C7—H7 and C10—H10 (Table 1 and Fig. 2).

Supra­molecular features top

In the crystal, the water molecule forms three hydrogen bonds with three different nicotinic hydrazone molecules (Table 1 and Fig. 2). This compound is an example of a system where a single atom acts both as donor and acceptor. There are also C—H···Owater contacts present enclosing R21(6) and R21(7) ring motifs (Fig. 2). Finally sheets are formed lying parallel to (100). There are weak ππ inter­actions within the sheets involving the bromine-bearing aromatic ring of one molecule and the pyridine ring of another, with a centroid–centroid distance of 3.8473 (15) Å (Fig. 2). The sheets are linked via C—H···Br inter­actions, forming a three-dimensional framework (Table 1 and Fig. 3).

Database survey top

A search of the Cambridge Structural Database (Version 5.36, update Feb. 2015; Groom & Allen, 2014) yielded 22 hits for the substructure N'-(2-hy­droxy­benzyl­idene)nicotinohydrazide. The crystal structure of N'-(2-hy­droxy­benzyl­idene)nicotinohydrazide itself is reported as a monohydrate (IDASUB; Galić et al., 2001), and the crystal structure of the chloro derivative of the title compound, which crystallized with two independent molecules in the asymmetric unit, has also been reported (MOZPIB; Ren, 2009). In these two compounds, an intra­molecular O—H···N hydrogen bond is also present. The molecules are also relatively planar with the benzene and pyridine rings being inclined to one another by ca 4.16° in IDASUB, and by ca 12.79 and 1.86° in the two independent molecules of MOZPIB. This last dihedral angle is similar to that in the title compound [cf. 0.74 (12)°]. In the crystal structure of N'-(2-hy­droxy­benzyl­idene)nicotinohydrazide monohydrate (IDASUB), the water molecule forms three hydrogen bonds and is another example of a system where a single atom acts both as donor and acceptor.

Synthesis and crystallization top

The title compound was prepared by adapting a reported procedure (Mathew & Kurup, 2011). A methano­lic solution of 5-bromo­salicyl­aldehyde (0.10051 g, 0.5 mmol) and nicotinic hydrazide (0.06857 g, 0.5 mmol) was refluxed for 3 h with two drops of glacial acetic acid. Light-yellow block-shaped crystals of the title compound were obtained by slow evaporation of the solvent. The crystals were filtered, washed with minimum qu­antity of methanol and dried over P4O10 in vacuo (yield: 0.22 g, 68.5%; m.p.: 480 K). Elemental analysis calculated for C13H10N3O2Br·H2O: C, 46.17, H, 3.58, N, 12.43 %; found: C, 46.14, H, 3.57, N, 12.44 %. IR FT–IR (KBr, cm-1) 3059 (NH), 3269(OH), 1680 (C=O), 1584 (C=N).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The water, hydroxyl and NH H atoms were located in difference Fourier maps and refined with distances restraints: O—H = 0.86 (1) Å and N—H = 0.88 (1) Å. All C-bound H atoms were placed in calculated positions and refined as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). Three reflections were omitted owing to bad agreement, viz. 100, 110 and 200.

Related literature top

For related literature, see: Bessy & Kurup (2007); Du & Hong (2015); Galić et al. (2001, 2011); Ghosh et al. (2005); Groom & Allen (2014); Kheradmand et al. (2013); Macková et al. (2012); Mathew & Kurup (2011); Hosseini-Monfared et al. (2013); Navidpour et al. (2014); Reddy et al. (2011); Ren (2009); Sinha et al. (2011); Su & Aprahamian (2014).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2010) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonds (dashed lines) and a weak ππ interaction (in blue) in the crystal of the title compound [symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) -x, y + 1/2, -z + 1/2].
[Figure 3] Fig. 3. A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details) and H atoms not involved in hydrogen bonding have been omitted for clarity.
(E)-N'-(5-Bromo-2-hydroxybenzylidene)nicotinohydrazide monohydrate top
Crystal data top
C13H10BrN3O2·H2OF(000) = 680
Mr = 338.17Dx = 1.649 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1623 (7) ÅCell parameters from 2267 reflections
b = 12.5953 (9) Åθ = 2.9–25.5°
c = 13.2510 (8) ŵ = 3.03 mm1
β = 90.226 (3)°T = 296 K
V = 1362.28 (17) Å3Needle, yellow
Z = 40.42 × 0.12 × 0.11 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2233 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
ω and ϕ scanθmax = 28.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 104
Tmin = 0.349, Tmax = 0.356k = 1616
7570 measured reflectionsl = 1617
3331 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0557P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.46 e Å3
3331 reflectionsΔρmin = 0.35 e Å3
198 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.0129 (13)
Crystal data top
C13H10BrN3O2·H2OV = 1362.28 (17) Å3
Mr = 338.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1623 (7) ŵ = 3.03 mm1
b = 12.5953 (9) ÅT = 296 K
c = 13.2510 (8) Å0.42 × 0.12 × 0.11 mm
β = 90.226 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3331 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2233 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 0.356Rint = 0.028
7570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0365 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.46 e Å3
3331 reflectionsΔρmin = 0.35 e Å3
198 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3276 (3)0.35310 (19)0.45911 (17)0.0442 (6)
C20.4115 (4)0.3763 (2)0.54807 (18)0.0527 (7)
H20.42720.44670.56670.063*
C30.4712 (3)0.2969 (2)0.60856 (16)0.0499 (6)
H30.52760.31340.66760.060*
C40.4471 (3)0.19134 (19)0.58114 (15)0.0443 (6)
C50.3653 (3)0.16695 (19)0.49313 (15)0.0441 (6)
H50.34990.09620.47530.053*
C60.3057 (3)0.24637 (18)0.43065 (15)0.0401 (5)
C70.2191 (3)0.21655 (19)0.33854 (15)0.0431 (6)
H70.20840.14520.32190.052*
C80.0128 (3)0.32662 (17)0.13365 (15)0.0385 (5)
C90.0754 (3)0.28892 (17)0.04153 (15)0.0358 (5)
C100.0990 (3)0.18419 (18)0.01526 (15)0.0450 (6)
H100.05910.13210.05860.054*
C110.2332 (4)0.2286 (2)0.12925 (19)0.0560 (7)
H110.28800.20830.18780.067*
C120.2160 (3)0.3349 (2)0.10981 (18)0.0580 (7)
H120.25810.38520.15420.070*
C130.1355 (3)0.36555 (19)0.02368 (18)0.0487 (6)
H130.12140.43720.00920.058*
N10.1580 (2)0.28694 (15)0.28050 (12)0.0426 (5)
N20.0760 (3)0.25244 (15)0.19557 (13)0.0403 (4)
N30.1758 (3)0.15309 (16)0.06888 (13)0.0524 (6)
O10.2713 (3)0.43501 (14)0.40347 (14)0.0634 (6)
O20.0235 (3)0.42215 (12)0.15145 (12)0.0586 (6)
O1W0.0975 (3)0.53043 (13)0.31578 (13)0.0641 (6)
Br10.52655 (4)0.08150 (2)0.66553 (2)0.06576 (15)
H10.218 (4)0.412 (2)0.3516 (16)0.079 (11)*
H2'0.075 (3)0.1842 (9)0.1847 (18)0.060 (8)*
H1A0.053 (4)0.4947 (19)0.2684 (15)0.087 (11)*
H1B0.129 (3)0.4858 (16)0.3591 (15)0.065 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (15)0.0460 (13)0.0426 (11)0.0079 (11)0.0002 (10)0.0046 (10)
C20.0600 (18)0.0505 (14)0.0477 (13)0.0140 (13)0.0000 (12)0.0154 (11)
C30.0470 (16)0.0603 (15)0.0423 (12)0.0117 (12)0.0076 (11)0.0122 (11)
C40.0385 (14)0.0545 (14)0.0399 (11)0.0016 (11)0.0018 (10)0.0070 (10)
C50.0429 (15)0.0446 (13)0.0446 (12)0.0009 (11)0.0008 (10)0.0131 (10)
C60.0364 (13)0.0462 (13)0.0378 (11)0.0056 (10)0.0010 (9)0.0113 (9)
C70.0467 (15)0.0435 (13)0.0391 (11)0.0050 (11)0.0024 (10)0.0104 (10)
C80.0475 (15)0.0335 (12)0.0346 (10)0.0053 (10)0.0043 (9)0.0044 (8)
C90.0387 (13)0.0339 (11)0.0349 (10)0.0006 (9)0.0038 (9)0.0037 (8)
C100.0599 (17)0.0366 (12)0.0384 (11)0.0042 (11)0.0085 (11)0.0012 (9)
C110.0588 (18)0.0624 (17)0.0469 (13)0.0008 (13)0.0150 (12)0.0026 (11)
C120.0626 (19)0.0557 (17)0.0556 (14)0.0138 (14)0.0201 (13)0.0040 (11)
C130.0533 (17)0.0363 (13)0.0564 (14)0.0067 (11)0.0034 (12)0.0000 (10)
N10.0479 (13)0.0449 (11)0.0348 (9)0.0106 (9)0.0022 (8)0.0090 (8)
N20.0510 (13)0.0350 (11)0.0348 (9)0.0064 (9)0.0039 (8)0.0069 (7)
N30.0667 (16)0.0464 (12)0.0439 (11)0.0042 (11)0.0110 (10)0.0066 (9)
O10.0871 (16)0.0443 (11)0.0587 (11)0.0099 (9)0.0178 (11)0.0052 (8)
O20.0956 (17)0.0328 (9)0.0472 (9)0.0063 (8)0.0065 (10)0.0094 (6)
O1W0.1112 (19)0.0316 (9)0.0494 (10)0.0065 (10)0.0025 (11)0.0023 (8)
Br10.0773 (3)0.0634 (2)0.0564 (2)0.00894 (15)0.01868 (14)0.00546 (12)
Geometric parameters (Å, º) top
C1—O11.348 (3)C8—C91.492 (3)
C1—C21.392 (3)C9—C101.378 (3)
C1—C61.407 (3)C9—C131.384 (3)
C2—C31.370 (4)C10—N31.336 (3)
C2—H20.9300C10—H100.9300
C3—C41.392 (3)C11—N31.327 (3)
C3—H30.9300C11—C121.370 (4)
C4—C51.376 (3)C11—H110.9300
C4—Br11.892 (2)C12—C131.370 (3)
C5—C61.386 (3)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—C71.457 (3)N1—N21.378 (2)
C7—N11.274 (3)N2—H2'0.872 (10)
C7—H70.9300O1—H10.858 (10)
C8—O21.229 (2)O1W—H1A0.854 (10)
C8—N21.345 (3)O1W—H1B0.845 (9)
O1—C1—C2117.9 (2)N2—C8—C9117.42 (18)
O1—C1—C6122.8 (2)C10—C9—C13117.5 (2)
C2—C1—C6119.3 (2)C10—C9—C8125.3 (2)
C3—C2—C1121.0 (2)C13—C9—C8117.22 (19)
C3—C2—H2119.5N3—C10—C9123.8 (2)
C1—C2—H2119.5N3—C10—H10118.1
C2—C3—C4119.6 (2)C9—C10—H10118.1
C2—C3—H3120.2N3—C11—C12123.4 (2)
C4—C3—H3120.2N3—C11—H11118.3
C5—C4—C3120.1 (2)C12—C11—H11118.3
C5—C4—Br1120.11 (18)C13—C12—C11118.7 (2)
C3—C4—Br1119.75 (17)C13—C12—H12120.6
C4—C5—C6120.9 (2)C11—C12—H12120.6
C4—C5—H5119.6C12—C13—C9119.4 (2)
C6—C5—H5119.6C12—C13—H13120.3
C5—C6—C1119.1 (2)C9—C13—H13120.3
C5—C6—C7118.8 (2)C7—N1—N2117.49 (18)
C1—C6—C7122.1 (2)C8—N2—N1117.59 (18)
N1—C7—C6120.9 (2)C8—N2—H2'125.4 (19)
N1—C7—H7119.5N1—N2—H2'116.9 (19)
C6—C7—H7119.5C11—N3—C10117.2 (2)
O2—C8—N2122.4 (2)C1—O1—H1111 (2)
O2—C8—C9120.1 (2)H1A—O1W—H1B106 (2)
O1—C1—C2—C3179.6 (2)N2—C8—C9—C100.7 (3)
C6—C1—C2—C30.7 (4)O2—C8—C9—C133.2 (3)
C1—C2—C3—C40.4 (4)N2—C8—C9—C13177.9 (2)
C2—C3—C4—C50.8 (4)C13—C9—C10—N30.1 (4)
C2—C3—C4—Br1179.05 (19)C8—C9—C10—N3178.6 (2)
C3—C4—C5—C60.1 (4)N3—C11—C12—C130.0 (5)
Br1—C4—C5—C6179.72 (18)C11—C12—C13—C90.6 (4)
C4—C5—C6—C11.0 (3)C10—C9—C13—C120.6 (4)
C4—C5—C6—C7179.7 (2)C8—C9—C13—C12179.4 (2)
O1—C1—C6—C5179.0 (2)C6—C7—N1—N2179.09 (19)
C2—C1—C6—C51.4 (4)O2—C8—N2—N11.4 (3)
O1—C1—C6—C70.3 (4)C9—C8—N2—N1179.77 (18)
C2—C1—C6—C7180.0 (2)C7—N1—N2—C8179.3 (2)
C5—C6—C7—N1177.9 (2)C12—C11—N3—C100.7 (4)
C1—C6—C7—N10.8 (3)C9—C10—N3—C110.7 (4)
O2—C8—C9—C10178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.91 (2)2.641 (2)143 (3)
O1W—H1A···O20.85 (1)1.91 (1)2.756 (2)172 (3)
O1W—H1B···N3i0.85 (1)2.03 (1)2.845 (3)162 (2)
N2—H2···O1Wii0.87 (1)1.95 (1)2.806 (3)169 (3)
C7—H7···O1Wii0.932.493.263 (3)140
C10—H10···O1Wii0.932.453.362 (3)165
C11—H11···Br1iii0.932.933.825 (3)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (1)1.905 (19)2.641 (2)143 (3)
O1W—H1A···O20.85 (1)1.907 (11)2.756 (2)172 (3)
O1W—H1B···N3i0.85 (1)2.030 (13)2.845 (3)162 (2)
N2—H2'···O1Wii0.87 (1)1.946 (12)2.806 (3)169 (3)
C7—H7···O1Wii0.932.493.263 (3)140
C10—H10···O1Wii0.932.453.362 (3)165
C11—H11···Br1iii0.932.933.825 (3)162
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC13H10BrN3O2·H2O
Mr338.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1623 (7), 12.5953 (9), 13.2510 (8)
β (°) 90.226 (3)
V3)1362.28 (17)
Z4
Radiation typeMo Kα
µ (mm1)3.03
Crystal size (mm)0.42 × 0.12 × 0.11
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.349, 0.356
No. of measured, independent and
observed [I > 2σ(I)] reflections
7570, 3331, 2233
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 0.99
No. of reflections3331
No. of parameters198
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.35

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2010) and Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

NA is grateful to the UGC, New Delhi, India, for the award of a Senior Research Fellowship. MRPK is grateful to the UGC, New Delhi, India, for a UGC–BSR one-time grant to Faculty. We also thank the Sophisticated Analytical Instruments Facility, Cochin University of S&T, Kochi-22, India, for the diffraction measurements.

References

First citationBessy Raj, B. N. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, C. & Hong, Z. (2014). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 45, 507–511.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalić, N., Perić, B., Kojić-Prodić, B. & Cimerman, Z. (2001). J. Mol. Struct. 559, 187–194.  Web of Science CSD CrossRef CAS Google Scholar
First citationGalić, N., Rubčić, M., Magdić, K., Cindrić, M. & Tomišić (2011). Inorg. Chim. Acta, 366, 98–104.  Google Scholar
First citationGhosh, T., Bhattacharya, S., Das, A., Mukherjee, G. & Drew, M. G. B. (2005). Inorg. Chim. Acta, 358, 989–996.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHosseini-Monfared, H., Farrokhi, A., Alavi, S. & Mayer, P. (2013). Transition Met. Chem. 38, 267–273.  CAS Google Scholar
First citationKheradmand, A., Navidpour, L., Shafaroodi, H., Saeedi-Motahar, G. & Shafiee, A. (2013). Med. Chem. Res. 22, 2411–2420.  Web of Science CrossRef CAS Google Scholar
First citationMacková, E., Hrušková, K., Bendová, P., Vávrová, A., Jansová, H., Hašková, P., Kovaříková, P., Vávrová, K. & Šimůnek, T. (2012). Chem-Biol. Interact. 197, 69–79.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMathew, N. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 78, 1424–1428.  Web of Science CrossRef Google Scholar
First citationNavidpour, L., Shafaroodi, H., Saeedi-Motahar, G. & Shafiee, A. (2014). Med. Chem. Res. 23, 2793–2802.  Web of Science CrossRef CAS Google Scholar
First citationReddy, G. C., Devanna, N. & Chandrasekhar, K. B. (2011). Orbital Elec. J. Chem. 3, 24–31.  CAS Google Scholar
First citationRen, C.-G. (2009). Acta Cryst. E65, o1505–o1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinha, R., Singh Sara, U. V., Khosa, R. L., Shenoi, V., Stables, J. & Jain, J. (2011). Med. Chem. Res. 20, 1499–1504.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963–1981.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 734-736
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds