organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o496-o497

Crystal structure of (E)-1-{[(3,5-di­methyl­phen­yl)imino]­meth­yl}naphthalen-2-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and bDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
*Correspondence e-mail: sgg@uniovi.es

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 May 2015; accepted 15 June 2015; online 20 June 2015)

The title compound, C19H17NO, has an E conformation about the N=C bond. The mol­ecule is relatively planar, with the benzene ring and naphthalene ring plane being inclined to one another by 4.28 (10)°. There is an intra­molecular O—H⋯N hydrogen bond generating an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains propagating along [100]. Within the chains there are ππ inter­actions involving the benzene ring and the naphthalene ring system of an adjacent mol­ecule [inter-centroid distance = 3.6405 (14) Å].

1. Related literature

For the diverse applications and biological activities of Schiff bases, see: Schiff (1864[Schiff, H. (1864). Chem. Pharm. Suppl. 3, 343.]); Dutta & Das (1988[Dutta, R. L. & Das, B. R. (1988). J. Sci. Ind. Res. 7, 547-555.]); Chandra & Sangeetika (2004[Chandra, S. & Sangeetika, J. (2004). J. Indian Chem. Soc. 81, 203-206.]); Cozzi (2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]). For the biological activity and optical properties of Schiff bases derived from 2-hy­droxy­napthaldehyde, see: Abdel-Rahman et al. (2013a[Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E. & Abu-Dief, A. M. (2013a). J. Mol. Struct. 1040, 9-18.],b[Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu-Dief, A. M. & Lashin, F. E. (2013b). Spectrochim. Acta, 111, 266-276.], 2014[Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu-Dief, A. M., Ismael, M. & Seleem, A. A. (2014). Spectrochim. Acta, 117, 366-378.]); Abu-Dief et al. (2013[Abu-Dief, A. M., Díaz-Torres, R., Sañudo, E. C., Abdel-Rahman, L. H. & Aliaga-Alcalde, N. (2013). Polyhedron, 64, 203-208.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H17NO

  • Mr = 275.33

  • Orthorhombic, P 21 21 21

  • a = 6.2463 (2) Å

  • b = 10.2438 (3) Å

  • c = 23.0533 (8) Å

  • V = 1475.08 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.73 × 0.12 × 0.09 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.915, Tmax = 0.94

  • 8103 measured reflections

  • 2834 independent reflections

  • 1422 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.09

  • 1649 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.78 2.523 (3) 149
C13—H13⋯O1i 0.93 2.62 3.492 (3) 156
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SIR2011 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

Schiff bases, known as anils, imines or azomethines, have recently received considerable attention due to their good performance in coordination chemistry, unique anti-bacterial, anti-cancer, and herbicidal applications (Schiff, 1864; Abdel-Rahman et al., 2013a,b,2014; Dutta & Das,1988). Studies showed that the presence of a lone pair of electrons in an sp2 hybridized orbital of the nitro­gen atom of the azomethine group is of considerable chemical and biological importance (Chandra & Sangeetika, 2004; Cozzi, 2004). In continuation of our inter­est in the chemical, herbicidal and biological properties of Schiff bases we synthesized the title compound as a potential anti-bacterial agent.

The title compound, has an E conformation about the N1C11 bond, as illustrated in Fig. 1. The molecule is relatively planar with the benzene ring (C12—C17) and the naphthalene plane (C1—C10) being inclined to one another by 4.31 (10) °. There is an intra­molecular O—H···N hydrogen bond generating an S(6) ring motif (Table 1 and Fig. 1).

In the crystal, molecules are linked via C—H···O hydrogen bonds (Table 1) forming chains propagating along [100], as shown in Fig. 2. Within the chains there are π-π inter­actions involving the naphthalene ring system and the benzene ring of an adjacent molecule [Cg1···Cg3i = 3.6405 (14) Å; Cg1 and Cg3 are the centroids of rings C1—C4/C9/C10 and C12—C17; symmetry code: (i) x - 1, y, z].

Synthesis and crystallization top

The title compound was prepared by treating 3,5-di­methyl­aniline (0.38 ml, 3 mmol) in 30 ml of dry ethanol with 2-hy­droxy­napthaldehyde (0.52 g, 3 mmol) with vigorous stirring at 343 K for 2 h. The reaction mixture was then left to stand at room temperature for 30 min. The yellow crystals were collected and washed several times in ethanol.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å, C—H = 0.93 - 9.96 Å with Uiso(H) = 1.5Ueq(O,C) for hydroxyl and methyl H atoms and 1.2Ueq(C) for other H atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 1185 Friedel pairs were merged and Δf ' set to zero.

Related literature top

For the diverse applications and biological activities of Schiff bases, see: Schiff (1864); Dutta & Das (1988); Chandra & Sangeetika (2004); Cozzi (2004). For the biological activity and optical properties of Schiff bases derived from 2-hydroxynapthaldehyde, see: Abdel-Rahman et al. (2013a,b, 2014); Abu-Dief et al. (2013).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2011 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular O—H···N hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details). H atoms not involved in these interactions have been omitted for clarity.
(E)-1-{[(3,5-Dimethylphenyl)imino]methyl}naphthalen-2-ol top
Crystal data top
C19H17NODx = 1.240 Mg m3
Mr = 275.33Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2417 reflections
a = 6.2463 (2) Åθ = 3.8–69.9°
b = 10.2438 (3) ŵ = 0.60 mm1
c = 23.0533 (8) ÅT = 293 K
V = 1475.08 (8) Å3Prism, colourless
Z = 40.73 × 0.12 × 0.09 mm
F(000) = 584
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini)
diffractometer
2834 independent reflections
Radiation source: Enhance (Cu) X-ray Source1422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.2673 pixels mm-1θmax = 70.4°, θmin = 3.8°
ω scansh = 76
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.915, Tmax = 0.94l = 2728
8103 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.0057P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1649 reflectionsΔρmax = 0.17 e Å3
193 parametersΔρmin = 0.14 e Å3
Crystal data top
C19H17NOV = 1475.08 (8) Å3
Mr = 275.33Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.2463 (2) ŵ = 0.60 mm1
b = 10.2438 (3) ÅT = 293 K
c = 23.0533 (8) Å0.73 × 0.12 × 0.09 mm
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini)
diffractometer
2834 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
1422 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.94Rint = 0.032
8103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
1649 reflectionsΔρmin = 0.14 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6500 (4)0.7247 (2)0.05918 (10)0.0874 (7)
H10.74730.67100.05840.131*
N10.8802 (3)0.53539 (18)0.09101 (9)0.0551 (5)
C10.5709 (3)0.6003 (2)0.14386 (10)0.0511 (5)
C20.5267 (4)0.7006 (2)0.10264 (13)0.0641 (7)
C30.3348 (5)0.7757 (2)0.10869 (14)0.0740 (8)
H30.30380.84040.08170.089*
C40.1983 (4)0.7542 (3)0.15291 (13)0.0703 (7)
H40.07400.80400.15540.084*
C50.0928 (5)0.6360 (3)0.24126 (13)0.0712 (7)
H50.02930.68770.24370.085*
C60.1263 (5)0.5409 (3)0.28162 (13)0.0794 (8)
H60.02710.52750.31110.095*
C70.3088 (5)0.4643 (3)0.27857 (12)0.0728 (7)
H70.33220.39970.30620.087*
C80.4552 (4)0.4833 (3)0.23502 (11)0.0614 (6)
H80.57720.43140.23380.074*
C90.4256 (4)0.5796 (2)0.19192 (10)0.0524 (5)
C100.2386 (4)0.6573 (2)0.19625 (11)0.0577 (6)
C110.7513 (4)0.5198 (2)0.13492 (10)0.0508 (5)
H110.77910.45330.16130.061*
C121.0636 (4)0.4608 (2)0.07758 (10)0.0516 (5)
C131.1710 (4)0.4957 (2)0.02723 (11)0.0590 (6)
H131.11940.56400.00460.071*
C141.3542 (4)0.4297 (2)0.01026 (12)0.0639 (6)
C151.4288 (4)0.3287 (2)0.04512 (12)0.0644 (7)
H151.55110.28340.03400.077*
C161.3257 (4)0.2940 (2)0.09578 (12)0.0599 (6)
C171.1405 (4)0.3596 (2)0.11176 (11)0.0562 (6)
H171.06800.33590.14540.067*
C181.4130 (5)0.1868 (3)0.13355 (14)0.0790 (8)
H18A1.50030.12950.11060.119*
H18B1.29650.13830.15010.119*
H18C1.49790.22410.16400.119*
C191.4706 (6)0.4694 (3)0.04430 (15)0.0950 (11)
H19A1.43510.55810.05380.142*
H19B1.42860.41320.07560.142*
H19C1.62220.46220.03820.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0695 (12)0.0857 (13)0.1071 (15)0.0178 (11)0.0232 (13)0.0409 (12)
N10.0420 (9)0.0567 (9)0.0667 (11)0.0027 (9)0.0022 (10)0.0052 (8)
C10.0410 (10)0.0505 (10)0.0618 (13)0.0015 (9)0.0034 (11)0.0022 (9)
C20.0518 (13)0.0585 (12)0.0819 (17)0.0050 (12)0.0038 (14)0.0120 (12)
C30.0656 (15)0.0588 (13)0.098 (2)0.0161 (14)0.0032 (18)0.0149 (13)
C40.0542 (13)0.0616 (13)0.095 (2)0.0151 (12)0.0018 (15)0.0004 (13)
C50.0516 (13)0.0851 (17)0.0770 (17)0.0037 (13)0.0034 (14)0.0138 (14)
C60.0640 (16)0.106 (2)0.0685 (17)0.0055 (18)0.0119 (15)0.0069 (16)
C70.0659 (16)0.0889 (18)0.0638 (15)0.0074 (16)0.0016 (14)0.0051 (13)
C80.0529 (13)0.0698 (13)0.0616 (14)0.0036 (12)0.0019 (12)0.0015 (11)
C90.0438 (11)0.0546 (11)0.0587 (13)0.0040 (10)0.0046 (11)0.0066 (10)
C100.0457 (11)0.0606 (12)0.0668 (15)0.0009 (11)0.0022 (12)0.0110 (11)
C110.0428 (10)0.0513 (10)0.0583 (13)0.0011 (9)0.0034 (10)0.0025 (10)
C120.0405 (10)0.0494 (10)0.0648 (14)0.0027 (10)0.0009 (10)0.0009 (9)
C130.0590 (14)0.0536 (10)0.0645 (13)0.0000 (11)0.0065 (13)0.0035 (10)
C140.0592 (14)0.0570 (12)0.0757 (16)0.0041 (12)0.0136 (14)0.0058 (11)
C150.0512 (13)0.0542 (11)0.0877 (18)0.0019 (11)0.0070 (14)0.0090 (12)
C160.0475 (12)0.0523 (11)0.0801 (16)0.0003 (11)0.0040 (14)0.0031 (11)
C170.0474 (11)0.0554 (11)0.0658 (14)0.0006 (11)0.0007 (12)0.0042 (10)
C180.0670 (16)0.0714 (15)0.099 (2)0.0149 (14)0.0076 (17)0.0115 (14)
C190.096 (2)0.0869 (18)0.102 (2)0.0041 (19)0.046 (2)0.0044 (17)
Geometric parameters (Å, º) top
O1—C21.287 (3)C8—H80.9300
O1—H10.8200C9—C101.417 (3)
N1—C111.304 (3)C11—H110.9300
N1—C121.411 (3)C12—C131.387 (3)
C1—C111.411 (3)C12—C171.388 (3)
C1—C21.427 (3)C13—C141.385 (3)
C1—C91.448 (3)C13—H130.9300
C2—C31.431 (4)C14—C151.391 (4)
C3—C41.347 (4)C14—C191.509 (4)
C3—H30.9300C15—C161.380 (4)
C4—C101.431 (4)C15—H150.9300
C4—H40.9300C16—C171.388 (3)
C5—C61.363 (4)C16—C181.504 (3)
C5—C101.398 (4)C17—H170.9300
C5—H50.9300C18—H18A0.9600
C6—C71.386 (4)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C7—C81.372 (4)C19—H19A0.9600
C7—H70.9300C19—H19B0.9600
C8—C91.412 (3)C19—H19C0.9600
C2—O1—H1109.5N1—C11—H11118.8
C11—N1—C12127.3 (2)C1—C11—H11118.8
C11—C1—C2118.6 (2)C13—C12—C17120.0 (2)
C11—C1—C9121.8 (2)C13—C12—N1115.9 (2)
C2—C1—C9119.6 (2)C17—C12—N1124.1 (2)
O1—C2—C1122.7 (2)C14—C13—C12120.7 (2)
O1—C2—C3118.3 (2)C14—C13—H13119.7
C1—C2—C3119.0 (2)C12—C13—H13119.7
C4—C3—C2121.1 (2)C13—C14—C15118.5 (2)
C4—C3—H3119.5C13—C14—C19120.1 (3)
C2—C3—H3119.5C15—C14—C19121.4 (2)
C3—C4—C10122.0 (2)C16—C15—C14121.6 (2)
C3—C4—H4119.0C16—C15—H15119.2
C10—C4—H4119.0C14—C15—H15119.2
C6—C5—C10121.2 (3)C15—C16—C17119.2 (2)
C6—C5—H5119.4C15—C16—C18120.6 (2)
C10—C5—H5119.4C17—C16—C18120.2 (3)
C5—C6—C7119.8 (3)C16—C17—C12120.0 (2)
C5—C6—H6120.1C16—C17—H17120.0
C7—C6—H6120.1C12—C17—H17120.0
C8—C7—C6120.3 (3)C16—C18—H18A109.5
C8—C7—H7119.8C16—C18—H18B109.5
C6—C7—H7119.8H18A—C18—H18B109.5
C7—C8—C9121.8 (2)C16—C18—H18C109.5
C7—C8—H8119.1H18A—C18—H18C109.5
C9—C8—H8119.1H18B—C18—H18C109.5
C8—C9—C10116.8 (2)C14—C19—H19A109.5
C8—C9—C1124.0 (2)C14—C19—H19B109.5
C10—C9—C1119.2 (2)H19A—C19—H19B109.5
C5—C10—C9120.1 (2)C14—C19—H19C109.5
C5—C10—C4120.8 (2)H19A—C19—H19C109.5
C9—C10—C4119.1 (2)H19B—C19—H19C109.5
N1—C11—C1122.4 (2)
C11—C1—C2—O13.3 (4)C1—C9—C10—C40.0 (3)
C9—C1—C2—O1179.5 (2)C3—C4—C10—C5179.2 (3)
C11—C1—C2—C3174.9 (2)C3—C4—C10—C91.3 (4)
C9—C1—C2—C32.2 (4)C12—N1—C11—C1179.6 (2)
O1—C2—C3—C4179.3 (3)C2—C1—C11—N11.2 (3)
C1—C2—C3—C41.0 (4)C9—C1—C11—N1178.2 (2)
C2—C3—C4—C100.8 (4)C11—N1—C12—C13178.5 (2)
C10—C5—C6—C70.6 (4)C11—N1—C12—C172.8 (4)
C5—C6—C7—C80.3 (4)C17—C12—C13—C140.6 (4)
C6—C7—C8—C90.5 (4)N1—C12—C13—C14179.4 (2)
C7—C8—C9—C100.9 (4)C12—C13—C14—C150.6 (4)
C7—C8—C9—C1177.6 (2)C12—C13—C14—C19179.4 (3)
C11—C1—C9—C83.1 (3)C13—C14—C15—C160.4 (4)
C2—C1—C9—C8179.8 (2)C19—C14—C15—C16178.4 (3)
C11—C1—C9—C10175.3 (2)C14—C15—C16—C171.4 (4)
C2—C1—C9—C101.7 (3)C14—C15—C16—C18178.3 (3)
C6—C5—C10—C90.1 (4)C15—C16—C17—C121.4 (3)
C6—C5—C10—C4177.8 (3)C18—C16—C17—C12178.3 (2)
C8—C9—C10—C50.6 (3)C13—C12—C17—C160.4 (3)
C1—C9—C10—C5177.9 (2)N1—C12—C17—C16178.3 (2)
C8—C9—C10—C4178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.782.523 (3)149
C13—H13···O1i0.932.623.492 (3)156
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.782.523 (3)149
C13—H13···O1i0.932.623.492 (3)156
Symmetry code: (i) x+1/2, y+3/2, z.
 

Footnotes

Present Address: Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006,. Spain.

Acknowledgements

We thank the Spanish Ministerio de Economía y Competitividad (MAT2013-40950-R and FPI grants: BES-2011-046948 to author MSMA) and the ERDF for financial support.

References

First citationAbdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E. & Abu-Dief, A. M. (2013a). J. Mol. Struct. 1040, 9–18.  CAS Google Scholar
First citationAbdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu-Dief, A. M., Ismael, M. & Seleem, A. A. (2014). Spectrochim. Acta, 117, 366–378.  CAS Google Scholar
First citationAbdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu-Dief, A. M. & Lashin, F. E. (2013b). Spectrochim. Acta, 111, 266–276.  CAS Google Scholar
First citationAbu-Dief, A. M., Díaz-Torres, R., Sañudo, E. C., Abdel-Rahman, L. H. & Aliaga-Alcalde, N. (2013). Polyhedron, 64, 203–208.  CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChandra, S. & Sangeetika, J. (2004). J. Indian Chem. Soc. 81, 203–206.  CAS Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDutta, R. L. & Das, B. R. (1988). J. Sci. Ind. Res. 7, 547–555.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSchiff, H. (1864). Chem. Pharm. Suppl. 3, 343.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o496-o497
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds