research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 744-747

Crystal structures of 4-chloro­phenyl N-(3,5-di­nitro­phen­yl)carbamate and phenyl N-(3,5-di­nitro­phen­yl)carbamate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Polymer Science, University of Madras, Guindy campus, Chennai 602 025, India
*Correspondence e-mail: raja.13nap@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 May 2015; accepted 27 May 2015; online 3 June 2015)

The title compounds, C13H8ClN3O6, (I), and C13H9N3O6, (II), differ in the orientation of the two aromatic rings. In (I), they are essentially coplanar, making a dihedral angle of 8.2 (1)°, while in (II), they are inclined to one another by 76.2 (1)°. The two nitro groups are essentially coplanar with the attached benzene rings, as indicated by the dihedral angles of 1.4 (2) and 2.3 (2)° in (I), and 4.96 (18) and 5.4 (2)° in (II). The carbamate group is twisted slightly from the attached benzene ring, with a C—N—C—O torsion angle of −170.17 (15)° for (I) and 168.91 (13)° for (II). In the crystals of of both compounds, mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains propagating along [010]. In (I), C—H⋯O hydrogen bonds also link mol­ecules within the chains. The crystal packing in (I) also features a very weak ππ inter­action [centroid–centroid distance = 3.7519 (9) Å].

1. Chemical context

Carbamates are widely employed as pharmacological and therapeutic agents (Greig et al., 2005[Greig, N. H., Sambamurti, K., Yu, Q.-S., Brossi, A., Bruinsma, G. B. & Lahiri, D. K. (2005). Curr. Alzheimer Res. 2, 281-290.]) to inhibit different enzymes, such as acetyl- and butyrylcholinesterases (Darvesh et al., 2008[Darvesh, S., Darvesh, K. V., McDonald, R. S., Mataija, D., Walsh, R., Mothana, S., Lockridge, O. & Martin, E. (2008). J. Med. Chem. 51, 4200-4212.]), cholesterol esterase (Hosie et al., 1987[Hosie, L., Sutton, L. D. & Quinn, D. M. (1987). J. Biol. Chem. 262, 260-264.]), elastase (Digenis et al., 1986[Digenis, G. A., Agha, B. J., Tsuji, K., Kato, M. & Shinogi, M. (1986). J. Med. Chem. 29, 1468-1476.],) chymotrypsin (Lin et al., 2006[Lin, G., Chiou, S.-Y., Hwu, B.-C. & Hsieh, C.-W. (2006). Protein J. 25, 33-43.]) and fatty acid amide hydro­lase (FAAH) (Kathuria et al., 2003[Kathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., Mor, M., Tarzia, G., La Rana, G., Calignano, A., Giustino, A., Tattoli, M., Palmery, M., Cuomo, V. & Piomelli, D. (2003). Nat. Med. 9, 76-81.]). The therapeutic exploitation of the endocannabinoid system with exogenous agonists is limited by the undesired side effects caused by indiscriminate activation of cannabinoid type-1 (CB1) receptors, particularly in the brain (Mechoulam & Parker, 2013[Mechoulam, R. & Parker, L. A. (2013). Annu. Rev. Psychol. 64, 21-47.]). An alternative strategy to direct CB1 receptor targeting is to increase the signaling activity of the endogenous cannabinoid ligands, arachidonoyl­ethano­lamide (anandamide) (Di Marzo et al., 1994[Di Marzo, V., Fontana, A., Cadas, H., Schinelli, S., Cimino, G., Schwartz, J. C. & Piomelli, D. (1994). Nature, 372, 686-691.]) and 2-arachidonoyl-sn-glycerol (2-AG) (Stella et al., 1997[Stella, N., Schweitzer, P. & Piomelli, D. (1997). Nature, 388, 773-778.]), by blocking their intra­cellular degradation. As part of our studies in this area, we report herein on the syntheses and crystal structures of two 3,5-di­nitro­phenyl­carbamate derivatives, (I)[link] and (II)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are shown in Figs. 1[link] and 2[link], respectively. The molecules have different conformations. In compound (I)[link], the benzene rings (C1–C6 and C8–C13) are almost coplanar, making a dihedral angle of 7.60 (8)°. The mean plane of the carbamate group (N3/C7/O5/O6) is twisted out of the planes of the rings by 14.00 (9) and 20.96 (9)°, respectively. In compound (II)[link], the benzene and phenyl rings (C1–C6 and C8–C13, respectively) are roughly normal to one another, making a dihedral angle of 76.19 (8)°. Here, the mean plane of the carbamate group (N3/C7/O5/O6) is twisted out of the planes of the rings by 37.51 (8) and 80.90 (9)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of (I)[link], N—H⋯O hydrogen bonds, involving a nitro O atom, O3, link adjacent mol­ecules into zigzag chains along the b axis (Table 1[link] and Fig. 3[link]). Within the chain mol­ecules are also linked by C—H⋯O hydrogen bonds. The packing also features a very weak ππ inter­action [Cg1⋯Cg2i = 3.7519 (9) Å; Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively; symmetry code: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.86 2.18 3.0286 (19) 168
C12—H12⋯O1ii 0.93 2.54 3.428 (2) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.
[Figure 3]
Figure 3
The crystal packing of compound (I)[link], viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

In the crystal of (II)[link], mol­ecules are again linked via N—H⋯O hydrogen bonds, this time involving the carbonyl O atom O5, forming chains propagating along the b axis; see Table 2[link] and Fig. 4[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5i 0.86 2.07 2.8836 (15) 157
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound (II)[link]. The hydrogen bonds are shown as dashed lines (see Table 2[link] for details).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for phenyl N-phenyl­carbamate gave 16 hits for similar compounds, including two ortho­rhom­bic poylmorphs of phenyl N-phenyl­carbamate itself (YEHPOQ: Lehr et al., 2001[Lehr, A., Reggelin, M. & Scholmeyer, D. (2001). Private communication (refcode YEHPOQ). CCDC, Cambridge, England. CCDC.]; YEHPOQ01; Shahwar et al., 2009[Shahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009). Acta Cryst. E65, o1363.]). In the first polymorph (YEHPOQ), the phenyl rings are inclined to one another by 25.76°, while in the latter (YEHPOQ01) the equivalent dihedral angle is 42.50°. These values are quite different to those observed for compounds (I)[link] and (II)[link]; cf. 7.60 (8)° in (I)[link], and 76.19 (8)° in (II)[link].

5. Synthesis and crystallization

The title compounds were prepared in a similar manner using a stirred solution of of 3,5 di­nitro­aniline (1.0 g, 5.45 mmol) dissolved in 100 ml of dry THF, and to it was added the calculated amount (with 5% excess) of 4-chloro­phenyl­chloro­formate for compound (I)[link], or phenyl­chloro­formate for compound (II)[link], dissolved in 50 ml of dry THF. The addition rate was such that it took 90 min for complete transfer of 4-chlorophenylchloroformate for compound (I), and phenylchloroformate for compound (II). After the addition was over, stirring was continued overnight. Excess THF was removed under vacuum at room temperature. The crude product was extracted with ethyl acetate (3 × 100 ml). The organic layer was dried over anhydrous sodium sulfate. Removal of solvent under vacuum at room temperature yielded a light-yellow product. It was dried under vacuum to constant weight. It was dissolved in ethyl acetate and just warmed-up using a water bath, and then kept at room temperature. The solvent was slowly evaporated and light-yellow crystals of each of the title compounds were obtained (yields 99%).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N- and C-bound H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N,C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C13H8ClN3O6 C13H9N3O6
Mr 337.67 303.23
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 9.9103 (4), 12.5791 (4), 10.9772 (5) 12.2549 (4), 8.8717 (4), 12.1470 (5)
β (°) 94.183 (2) 91.673 (2)
V3) 1364.80 (9) 1320.08 (9)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.32 0.12
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.938, 0.944 0.969, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 8697, 2584, 2134 11395, 2925, 2355
Rint 0.015 0.020
(sin θ/λ)max−1) 0.610 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.04 0.044, 0.122, 1.03
No. of reflections 2584 2925
No. of parameters 208 199
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.20 0.23, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Carbamates are widely employed as pharmacological tools and therapeutic agents (Greig et al., 2005) to inhibit different enzymes, such as acetyl- and butyrylcholinesterases (Darvesh et al., 2008), cholesterol esterase (Hosie et al., 1987), elastase (Digenis et al., 1986,) chymotrypsin (Lin et al., 2006) and fatty-acid amide hydro­lase (FAAH) (Kathuria et al., 2003). The therapeutic exploitation of the endocannabinoid system with exogenous agonists is limited by the undesired side effects caused by indiscriminate activation of cannabinoid type-1 (CB1) receptors, particularly in the brain (Mechoulam & Parker, 2013). An alternative strategy to direct CB1 receptor targeting is to up regulate the signaling activity of the endogenous cannabinoid ligands, arachidonoyl­ethano­lamide (anandamide) (Di Marzo et al., 1994) and 2-arachidonoyl-sn-glycerol (2-AG) (Stella et al., 1997), by blocking their intra­cellular degradation. We report herein on the syntheses and crystal structures of two 3,5-di­nitro­phenyl­carbamate derivatives, (I) and (II).

Structural commentary top

The molecular structures of the title compounds, (I) and (II), are shown in Figs. 1 and 2, respectively. The conformation of the two molecules is different. In compound (I), the benzene rings (C1–C6 and C8–C13) are almost coplanar, making a dihedral angle of 7.60 (8)°. The mean plane of the carbamate group (N3/C7/O5/O6) is twisted out of the planes of the rings by 14.00 (9) and 20.96 (9)°, respectively. In compound (II), the benzene and phenyl rings (C1–C6 and C8–C13, respectively) are almost normal to one another, making a dihedral angle of 76.19 (8)°. Here the mean plane of the carbamate group (N3/C7/O5/O6) is twisted out of the planes of the rings by 37.51 (8) and 80.90 (9)°, respectively.

Supra­molecular features top

In the crystal of (I), N—H···O hydrogen bonds, involving a nitro O atom, O3, link adjacent molecules into zigzag chains along the b axis (Table 1 and Fig. 3). Within the chain molecules are also linked by C—H···O hydrogen bonds, forming ribbons lying parallel to plane (201). The crystal packing is further stabilized by a weak ππ inter­action [Cg1···Cg2i = 3.7519 (9) Å; Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively; symmetry code: (i) -x + 3/2, y + 1/2, -z + 3/2].

In the crystal of (II), molecules are again linked via N—H···O hydrogen bonds, this time involving the carbonyl O atom O5, forming chains propagating along the b axis; see Table 2 and Fig. 4.

Database survey top

A search of the Cambridge Structural Database (Version 5.36, February 2015; Groom & Allen, 2014) for phenyl N-phenyl­carbamate gave 16 hits for similar compounds, including two orthorhombic poylmorphs of phenyl N-phenyl­carbamate itself (YEHPOQ: Lehr et al., 2001; YEHPOQ01; Shahwar et al., 2009). In the first polymorph (YEHPOQ), the two phenyl rings are inclined to one another by 25.76°, while in the latter (YEHPOQ01) the same dihedral angle is 42.50°. These values are quite different to those observed for compounds (I) and (II); cf. 7.60 (8)° in (I), and 76.19 (8)° in (II).

Synthesis and crystallization top

The title compounds were prepared in a similar manner using a stirred solution of of 3,5 di­nitro­aniline (1.0 g, 5.45 mmol) dissolved in 100 ml of dry THF, and to it was added the calculated amount (with 5% excess) of 4-chloro­phenyl­chloro­formate for compound (I), or phenyl­chloro­formate for compound (II), dissolved in 50 ml of dry THF. The addition rate was such that it took 90 min for complete transfer. After the addition was over, stirring was continued overnight. Excess THF was removed under vacuum at room temperature. The crude product was extracted with ethyl acetate (3 × 100 ml). The organic layer was dried over anhydrous sodium sulfate. Removal of solvent under vacuum at room temperature yielded a light-yellow product. It was dried under vacuum to constant weight. It was dissolved in ethyl acetate and just warmed-up using a water bath, and then kept at room temperature. The solvent was slowly evaporated and light-yellow crystals of each compound were obtained (yields 99%).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 3. The N- and C-bound H atoms were positioned geometrically (N—H = 0.86 Å, C—-H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N,C).

Related literature top

For related literature, see: Darvesh et al. (2008); Di Marzo, Fontana, Cadas, Schinelli, Cimino, Schwartz & Piomelli (1994); Digenis et al. (1986); Greig et al. (2005); Groom & Allen (2014); Hosie et al. (1987); Kathuria et al. (2003); Lehr et al. (2001); Lin et al. (2006); Mechoulam & Parker (2013); Shahwar et al. (2009); Stella et al. (1997).

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The crystal packing of compound (I), viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 4] Fig. 4. A view along the a axis of the crystal packing of compound (II). The hydrogen bonds are shown as dashed lines (see Table 2 for details).
(I) 4-Chlorophenyl N-(3,5-dinitrophenyl)carbamate top
Crystal data top
C13H8ClN3O6F(000) = 688
Mr = 337.67Dx = 1.643 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.9103 (4) ÅCell parameters from 2013 reflections
b = 12.5791 (4) Åθ = 2.5–25.0°
c = 10.9772 (5) ŵ = 0.32 mm1
β = 94.183 (2)°T = 293 K
V = 1364.80 (9) Å3Block, yellow
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2584 independent reflections
Radiation source: fine-focus sealed tube2134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω and ϕ scansθmax = 25.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.938, Tmax = 0.944k = 159
8697 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.4574P]
where P = (Fo2 + 2Fc2)/3
2584 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H8ClN3O6V = 1364.80 (9) Å3
Mr = 337.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9103 (4) ŵ = 0.32 mm1
b = 12.5791 (4) ÅT = 293 K
c = 10.9772 (5) Å0.35 × 0.30 × 0.25 mm
β = 94.183 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2584 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2134 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.944Rint = 0.015
8697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2584 reflectionsΔρmin = 0.20 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.06146 (5)0.35304 (4)1.04085 (5)0.06328 (18)
O10.9159 (2)0.44697 (12)0.70274 (14)0.0966 (7)
O20.86323 (17)0.55251 (10)0.55446 (13)0.0687 (4)
O30.69275 (17)0.41624 (12)0.16853 (12)0.0701 (4)
O40.66305 (14)0.24728 (12)0.14188 (12)0.0629 (4)
O50.88633 (15)0.10055 (9)0.73898 (11)0.0570 (4)
O60.89504 (13)0.05893 (9)0.64269 (10)0.0471 (3)
N10.87388 (17)0.46386 (12)0.59848 (14)0.0514 (4)
N20.69860 (15)0.32352 (13)0.20431 (13)0.0472 (4)
N30.83153 (15)0.07996 (10)0.53417 (12)0.0421 (3)
H3A0.81330.03120.48060.051*
C10.76419 (15)0.20217 (13)0.37383 (14)0.0367 (4)
H10.73860.14520.32340.044*
C20.75199 (15)0.30533 (13)0.33135 (14)0.0369 (4)
C30.78764 (16)0.39277 (13)0.40121 (15)0.0403 (4)
H30.78000.46150.37040.048*
C40.83533 (16)0.37228 (12)0.51973 (14)0.0376 (4)
C50.85006 (16)0.27193 (12)0.56865 (14)0.0367 (4)
H50.88220.26230.64960.044*
C60.81578 (15)0.18518 (12)0.49431 (14)0.0344 (3)
C70.87274 (16)0.04673 (12)0.64903 (14)0.0362 (4)
C80.93362 (16)0.12190 (12)0.74459 (14)0.0347 (4)
C91.00067 (18)0.08512 (13)0.85107 (16)0.0441 (4)
H91.01940.01310.86130.053*
C101.03967 (18)0.15731 (14)0.94259 (16)0.0454 (4)
H101.08400.13391.01530.054*
C111.01246 (16)0.26366 (13)0.92519 (15)0.0400 (4)
C120.94754 (17)0.30018 (13)0.81784 (16)0.0420 (4)
H120.93090.37240.80670.050*
C130.90742 (16)0.22847 (12)0.72698 (15)0.0396 (4)
H130.86300.25200.65440.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0702 (3)0.0569 (3)0.0615 (3)0.0118 (2)0.0038 (2)0.0230 (2)
O10.192 (2)0.0443 (8)0.0469 (9)0.0131 (10)0.0372 (11)0.0008 (7)
O20.1083 (12)0.0319 (7)0.0639 (9)0.0004 (7)0.0065 (8)0.0048 (6)
O30.1021 (12)0.0657 (9)0.0412 (8)0.0195 (8)0.0030 (7)0.0199 (7)
O40.0672 (9)0.0793 (10)0.0400 (7)0.0021 (7)0.0117 (6)0.0028 (7)
O50.0993 (11)0.0377 (7)0.0322 (7)0.0145 (7)0.0061 (6)0.0037 (5)
O60.0763 (9)0.0307 (6)0.0328 (6)0.0004 (5)0.0069 (6)0.0011 (5)
N10.0727 (11)0.0354 (8)0.0450 (9)0.0033 (7)0.0017 (8)0.0009 (7)
N20.0461 (8)0.0636 (10)0.0318 (8)0.0092 (7)0.0012 (6)0.0052 (7)
N30.0630 (9)0.0325 (7)0.0297 (7)0.0024 (6)0.0047 (6)0.0033 (6)
C10.0384 (8)0.0430 (9)0.0288 (8)0.0005 (7)0.0023 (6)0.0025 (7)
C20.0338 (8)0.0497 (9)0.0274 (8)0.0056 (7)0.0030 (6)0.0057 (7)
C30.0440 (9)0.0392 (9)0.0378 (9)0.0038 (7)0.0042 (7)0.0075 (7)
C40.0428 (9)0.0352 (8)0.0347 (9)0.0007 (7)0.0025 (7)0.0001 (7)
C50.0420 (9)0.0371 (8)0.0305 (8)0.0006 (7)0.0012 (6)0.0025 (7)
C60.0375 (8)0.0348 (8)0.0311 (8)0.0004 (6)0.0030 (6)0.0019 (6)
C70.0464 (9)0.0310 (8)0.0310 (9)0.0007 (7)0.0011 (7)0.0006 (7)
C80.0411 (9)0.0305 (8)0.0325 (8)0.0012 (6)0.0027 (7)0.0006 (6)
C90.0571 (11)0.0307 (8)0.0430 (10)0.0022 (7)0.0068 (8)0.0027 (7)
C100.0516 (10)0.0453 (10)0.0375 (9)0.0033 (8)0.0085 (8)0.0023 (8)
C110.0390 (9)0.0389 (9)0.0422 (9)0.0054 (7)0.0041 (7)0.0070 (7)
C120.0467 (9)0.0295 (8)0.0498 (10)0.0020 (7)0.0041 (8)0.0005 (7)
C130.0448 (9)0.0341 (8)0.0394 (9)0.0028 (7)0.0010 (7)0.0055 (7)
Geometric parameters (Å, º) top
Cl1—C111.7384 (16)C2—C31.372 (2)
O1—N11.208 (2)C3—C41.376 (2)
O2—N11.2169 (19)C3—H30.9300
O3—N21.231 (2)C4—C51.375 (2)
O4—N21.216 (2)C5—C61.390 (2)
O5—C71.1967 (19)C5—H50.9300
O6—C71.3500 (19)C8—C131.376 (2)
O6—C81.4009 (19)C8—C91.381 (2)
N1—C41.474 (2)C9—C101.388 (2)
N2—C21.473 (2)C9—H90.9300
N3—C71.362 (2)C10—C111.375 (2)
N3—C61.399 (2)C10—H100.9300
N3—H3A0.8600C11—C121.380 (2)
C1—C21.381 (2)C12—C131.382 (2)
C1—C61.399 (2)C12—H120.9300
C1—H10.9300C13—H130.9300
C7—O6—C8123.48 (12)C5—C6—N3122.83 (14)
O1—N1—O2123.46 (16)C5—C6—C1119.46 (15)
O1—N1—C4118.36 (14)N3—C6—C1117.71 (14)
O2—N1—C4118.17 (15)O5—C7—O6126.20 (15)
O4—N2—O3124.24 (15)O5—C7—N3126.73 (15)
O4—N2—C2118.71 (15)O6—C7—N3107.07 (13)
O3—N2—C2117.05 (16)C13—C8—C9121.28 (15)
C7—N3—C6126.78 (13)C13—C8—O6113.63 (14)
C7—N3—H3A116.6C9—C8—O6124.94 (14)
C6—N3—H3A116.6C8—C9—C10118.99 (15)
C2—C1—C6118.66 (15)C8—C9—H9120.5
C2—C1—H1120.7C10—C9—H9120.5
C6—C1—H1120.7C11—C10—C9119.63 (16)
C3—C2—C1123.49 (15)C11—C10—H10120.2
C3—C2—N2117.68 (15)C9—C10—H10120.2
C1—C2—N2118.83 (15)C10—C11—C12121.14 (15)
C2—C3—C4115.78 (15)C10—C11—Cl1119.09 (13)
C2—C3—H3122.1C12—C11—Cl1119.77 (13)
C4—C3—H3122.1C11—C12—C13119.40 (15)
C5—C4—C3124.09 (15)C11—C12—H12120.3
C5—C4—N1118.22 (14)C13—C12—H12120.3
C3—C4—N1117.69 (14)C8—C13—C12119.55 (15)
C4—C5—C6118.48 (14)C8—C13—H13120.2
C4—C5—H5120.8C12—C13—H13120.2
C6—C5—H5120.8
C6—C1—C2—C30.1 (2)C7—N3—C6—C1176.15 (15)
C6—C1—C2—N2179.58 (14)C2—C1—C6—C51.6 (2)
O4—N2—C2—C3178.06 (15)C2—C1—C6—N3177.90 (14)
O3—N2—C2—C31.7 (2)C8—O6—C7—O52.4 (3)
O4—N2—C2—C12.2 (2)C8—O6—C7—N3177.36 (14)
O3—N2—C2—C1177.98 (15)C6—N3—C7—O510.1 (3)
C1—C2—C3—C41.1 (2)C6—N3—C7—O6170.17 (15)
N2—C2—C3—C4179.18 (14)C7—O6—C8—C13159.36 (15)
C2—C3—C4—C51.0 (2)C7—O6—C8—C925.2 (2)
C2—C3—C4—N1179.54 (14)C13—C8—C9—C101.3 (3)
O1—N1—C4—C50.5 (3)O6—C8—C9—C10176.42 (15)
O2—N1—C4—C5178.63 (16)C8—C9—C10—C110.8 (3)
O1—N1—C4—C3179.99 (19)C9—C10—C11—C120.4 (3)
O2—N1—C4—C30.9 (2)C9—C10—C11—Cl1179.80 (14)
C3—C4—C5—C60.4 (2)C10—C11—C12—C131.0 (3)
N1—C4—C5—C6179.06 (14)Cl1—C11—C12—C13179.19 (13)
C4—C5—C6—N3177.72 (15)C9—C8—C13—C120.7 (2)
C4—C5—C6—C11.7 (2)O6—C8—C13—C12176.33 (15)
C7—N3—C6—C54.4 (3)C11—C12—C13—C80.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.862.183.0286 (19)168
C12—H12···O1ii0.932.543.428 (2)159
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z.
(II) Phenyl N-(3,5-dinitrophenyl)carbamate top
Crystal data top
C13H9N3O6F(000) = 624
Mr = 303.23Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.2549 (4) ÅCell parameters from 1992 reflections
b = 8.8717 (4) Åθ = 1.7–25.0°
c = 12.1470 (5) ŵ = 0.12 mm1
β = 91.673 (2)°T = 293 K
V = 1320.08 (9) Å3Block, yellow
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2925 independent reflections
Radiation source: fine-focus sealed tube2355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 27.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1315
Tmin = 0.969, Tmax = 0.976k = 711
11395 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.328P]
where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H9N3O6V = 1320.08 (9) Å3
Mr = 303.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2549 (4) ŵ = 0.12 mm1
b = 8.8717 (4) ÅT = 293 K
c = 12.1470 (5) Å0.35 × 0.30 × 0.25 mm
β = 91.673 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2355 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.976Rint = 0.020
11395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
2925 reflectionsΔρmin = 0.27 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61513 (10)0.32392 (15)0.60653 (10)0.0637 (4)
O20.79022 (12)0.31538 (18)0.63113 (11)0.0785 (4)
O31.00811 (10)0.0409 (2)0.37541 (12)0.0824 (5)
O40.93014 (11)0.11517 (17)0.26319 (12)0.0722 (4)
O50.42568 (8)0.16533 (11)0.29697 (8)0.0433 (3)
O60.38141 (10)0.04444 (13)0.20033 (12)0.0667 (4)
N10.70568 (11)0.27772 (15)0.58344 (10)0.0488 (3)
N20.92743 (10)0.01973 (18)0.33498 (11)0.0522 (4)
N30.53349 (9)0.04417 (13)0.30003 (10)0.0416 (3)
H3A0.53270.13900.28520.050*
C10.72796 (11)0.03251 (16)0.32278 (11)0.0382 (3)
H50.73400.10280.26650.046*
C20.81974 (11)0.02594 (17)0.37459 (11)0.0397 (3)
C30.81594 (12)0.12779 (17)0.46001 (11)0.0423 (3)
H30.87890.16570.49440.051*
C40.71342 (12)0.17011 (15)0.49145 (11)0.0382 (3)
C50.61827 (11)0.11716 (15)0.44186 (11)0.0370 (3)
H10.55060.14910.46550.044*
C60.62602 (11)0.01493 (14)0.35580 (11)0.0352 (3)
C70.44606 (11)0.03875 (15)0.26836 (12)0.0383 (3)
C80.29939 (12)0.03219 (17)0.13844 (14)0.0475 (4)
C90.19265 (13)0.0095 (2)0.16418 (15)0.0569 (4)
H130.17470.04810.22500.068*
C100.11244 (14)0.0740 (2)0.09776 (16)0.0644 (5)
H120.03940.05930.11370.077*
C110.13885 (15)0.1595 (2)0.00871 (15)0.0610 (5)
H110.08390.20240.03540.073*
C120.24650 (15)0.1821 (2)0.01578 (14)0.0590 (4)
H100.26430.24070.07610.071*
C130.32810 (14)0.1174 (2)0.04939 (15)0.0548 (4)
H90.40110.13140.03330.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0677 (8)0.0644 (8)0.0598 (7)0.0019 (6)0.0147 (6)0.0192 (6)
O20.0757 (9)0.0913 (11)0.0673 (8)0.0013 (8)0.0177 (7)0.0362 (8)
O30.0406 (6)0.1277 (14)0.0791 (9)0.0059 (7)0.0041 (6)0.0198 (9)
O40.0600 (8)0.0823 (10)0.0753 (8)0.0092 (7)0.0192 (6)0.0170 (8)
O50.0452 (6)0.0320 (5)0.0525 (6)0.0027 (4)0.0015 (4)0.0037 (4)
O60.0591 (7)0.0358 (6)0.1029 (10)0.0050 (5)0.0356 (7)0.0157 (6)
N10.0620 (8)0.0448 (7)0.0395 (6)0.0031 (6)0.0005 (6)0.0039 (6)
N20.0439 (7)0.0672 (9)0.0459 (7)0.0044 (7)0.0064 (6)0.0044 (7)
N30.0427 (6)0.0257 (6)0.0559 (7)0.0010 (5)0.0061 (5)0.0023 (5)
C10.0466 (7)0.0346 (7)0.0334 (6)0.0033 (6)0.0020 (6)0.0020 (5)
C20.0394 (7)0.0435 (8)0.0363 (7)0.0038 (6)0.0033 (5)0.0081 (6)
C30.0428 (7)0.0469 (8)0.0369 (7)0.0040 (6)0.0053 (6)0.0043 (6)
C40.0484 (7)0.0344 (7)0.0319 (6)0.0004 (6)0.0000 (5)0.0018 (5)
C50.0418 (7)0.0318 (7)0.0376 (7)0.0009 (6)0.0027 (5)0.0044 (5)
C60.0411 (7)0.0272 (6)0.0371 (7)0.0011 (5)0.0019 (5)0.0055 (5)
C70.0381 (7)0.0293 (7)0.0475 (7)0.0052 (5)0.0012 (6)0.0007 (6)
C80.0434 (8)0.0373 (8)0.0610 (9)0.0015 (6)0.0114 (7)0.0130 (7)
C90.0516 (9)0.0643 (11)0.0546 (9)0.0033 (8)0.0007 (7)0.0016 (8)
C100.0403 (8)0.0860 (14)0.0667 (11)0.0024 (8)0.0011 (8)0.0057 (10)
C110.0602 (10)0.0674 (12)0.0545 (10)0.0101 (9)0.0143 (8)0.0082 (9)
C120.0751 (12)0.0563 (10)0.0457 (9)0.0051 (9)0.0018 (8)0.0071 (8)
C130.0453 (8)0.0522 (9)0.0670 (10)0.0069 (7)0.0061 (7)0.0168 (8)
Geometric parameters (Å, º) top
O1—N11.2232 (17)C3—C41.376 (2)
O2—N11.2188 (17)C3—H30.9300
O3—N21.2165 (19)C4—C51.3791 (19)
O4—N21.2167 (19)C5—C61.3894 (19)
O5—C71.2039 (16)C5—H10.9300
O6—C71.3480 (17)C8—C91.369 (2)
O6—C81.4119 (18)C8—C131.374 (3)
N1—C41.4748 (18)C9—C101.378 (2)
N2—C21.4745 (18)C9—H130.9300
N3—C71.3465 (18)C10—C111.368 (3)
N3—C61.4054 (17)C10—H120.9300
N3—H3A0.8600C11—C121.376 (3)
C1—C21.374 (2)C11—H110.9300
C1—C61.3885 (19)C12—C131.382 (2)
C1—H50.9300C12—H100.9300
C2—C31.378 (2)C13—H90.9300
C7—O6—C8117.34 (11)C1—C6—C5119.81 (12)
O2—N1—O1124.29 (14)C1—C6—N3117.89 (12)
O2—N1—C4117.71 (13)C5—C6—N3122.30 (12)
O1—N1—C4118.00 (13)O5—C7—N3126.67 (13)
O3—N2—O4123.94 (14)O5—C7—O6124.37 (13)
O3—N2—C2118.12 (14)N3—C7—O6108.94 (12)
O4—N2—C2117.94 (14)C9—C8—C13121.95 (15)
C7—N3—C6123.92 (11)C9—C8—O6118.54 (16)
C7—N3—H3A118.0C13—C8—O6119.31 (15)
C6—N3—H3A118.0C8—C9—C10118.38 (17)
C2—C1—C6118.98 (13)C8—C9—H13120.8
C2—C1—H5120.5C10—C9—H13120.8
C6—C1—H5120.5C11—C10—C9120.82 (16)
C1—C2—C3123.17 (13)C11—C10—H12119.6
C1—C2—N2118.37 (13)C9—C10—H12119.6
C3—C2—N2118.44 (13)C10—C11—C12120.16 (17)
C4—C3—C2116.06 (13)C10—C11—H11119.9
C4—C3—H3122.0C12—C11—H11119.9
C2—C3—H3122.0C11—C12—C13119.89 (17)
C3—C4—C5123.57 (13)C11—C12—H10120.1
C3—C4—N1117.80 (13)C13—C12—H10120.1
C5—C4—N1118.63 (12)C8—C13—C12118.81 (16)
C4—C5—C6118.39 (13)C8—C13—H9120.6
C4—C5—H1120.8C12—C13—H9120.6
C6—C5—H1120.8
C6—C1—C2—C31.4 (2)C4—C5—C6—C10.73 (19)
C6—C1—C2—N2177.01 (12)C4—C5—C6—N3179.58 (12)
O3—N2—C2—C1174.49 (15)C7—N3—C6—C1137.09 (14)
O4—N2—C2—C15.0 (2)C7—N3—C6—C543.2 (2)
O3—N2—C2—C34.0 (2)C6—N3—C7—O512.7 (2)
O4—N2—C2—C3176.50 (14)C6—N3—C7—O6168.91 (13)
C1—C2—C3—C40.4 (2)C8—O6—C7—O515.9 (2)
N2—C2—C3—C4178.04 (12)C8—O6—C7—N3165.73 (14)
C2—C3—C4—C50.5 (2)C7—O6—C8—C9110.20 (18)
C2—C3—C4—N1179.34 (12)C7—O6—C8—C1374.81 (19)
O2—N1—C4—C34.8 (2)C13—C8—C9—C100.4 (3)
O1—N1—C4—C3174.88 (14)O6—C8—C9—C10174.48 (15)
O2—N1—C4—C5175.11 (14)C8—C9—C10—C110.4 (3)
O1—N1—C4—C55.3 (2)C9—C10—C11—C120.0 (3)
C3—C4—C5—C60.3 (2)C10—C11—C12—C130.4 (3)
N1—C4—C5—C6179.52 (12)C9—C8—C13—C120.1 (2)
C2—C1—C6—C51.57 (19)O6—C8—C13—C12174.88 (14)
C2—C1—C6—N3178.72 (12)C11—C12—C13—C80.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5i0.862.072.8836 (15)157
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.862.183.0286 (19)168
C12—H12···O1ii0.932.543.428 (2)159
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5i0.862.072.8836 (15)157
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H8ClN3O6C13H9N3O6
Mr337.67303.23
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)9.9103 (4), 12.5791 (4), 10.9772 (5)12.2549 (4), 8.8717 (4), 12.1470 (5)
β (°) 94.183 (2) 91.673 (2)
V3)1364.80 (9)1320.08 (9)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.320.12
Crystal size (mm)0.35 × 0.30 × 0.250.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Bruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.938, 0.9440.969, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
8697, 2584, 2134 11395, 2925, 2355
Rint0.0150.020
(sin θ/λ)max1)0.6100.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.04 0.044, 0.122, 1.03
No. of reflections25842925
No. of parameters208199
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.200.23, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

Acknowledgements

RR thanks the Department of Chemistry, IIT, Chennai, 600 025, India, for the X-ray intensity data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarvesh, S., Darvesh, K. V., McDonald, R. S., Mataija, D., Walsh, R., Mothana, S., Lockridge, O. & Martin, E. (2008). J. Med. Chem. 51, 4200–4212.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDigenis, G. A., Agha, B. J., Tsuji, K., Kato, M. & Shinogi, M. (1986). J. Med. Chem. 29, 1468–1476.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDi Marzo, V., Fontana, A., Cadas, H., Schinelli, S., Cimino, G., Schwartz, J. C. & Piomelli, D. (1994). Nature, 372, 686–691.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGreig, N. H., Sambamurti, K., Yu, Q.-S., Brossi, A., Bruinsma, G. B. & Lahiri, D. K. (2005). Curr. Alzheimer Res. 2, 281–290.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHosie, L., Sutton, L. D. & Quinn, D. M. (1987). J. Biol. Chem. 262, 260–264.  CAS PubMed Web of Science Google Scholar
First citationKathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., Mor, M., Tarzia, G., La Rana, G., Calignano, A., Giustino, A., Tattoli, M., Palmery, M., Cuomo, V. & Piomelli, D. (2003). Nat. Med. 9, 76–81.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLehr, A., Reggelin, M. & Scholmeyer, D. (2001). Private communication (refcode YEHPOQ). CCDC, Cambridge, England. CCDC.  Google Scholar
First citationLin, G., Chiou, S.-Y., Hwu, B.-C. & Hsieh, C.-W. (2006). Protein J. 25, 33–43.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMechoulam, R. & Parker, L. A. (2013). Annu. Rev. Psychol. 64, 21–47.  Web of Science CrossRef PubMed Google Scholar
First citationStella, N., Schweitzer, P. & Piomelli, D. (1997). Nature, 388, 773–778.  CAS PubMed Web of Science Google Scholar
First citationShahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009). Acta Cryst. E65, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 744-747
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds