research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 836-839

Crystal structure of bis­­(N-methyl-N-phenyl­amino)­tris­­ulfane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA, and bDepartment of Chemistry, Saint Michael's College, Colchester, VT 05439, USA
*Correspondence e-mail: barany@umn.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 May 2015; accepted 10 June 2015; online 24 June 2015)

The title compound, C14H16N2S3, crystallized with two independent mol­ecules [(1a) and (1b)] in the asymmetric unit. Both mol­ecules display a pseudo-trans conformation. The two consecutive S—S bond lengths of the tris­ulfane unit of mol­ecule (1a) are 2.06 (3) and 2.08 (3) Å, and 2.08 (3) and 2.07 (2) Å for mol­ecule (1b). Torsion angles about each of the two S—S bonds are 86.6 (2) and 87.0 (2)° for (1a), and −84.6 (2) and −85.9 (2)° for (1b). The core atoms, viz. the N—S—S—S—N moiety, of the two mol­ecules superimpose well if one is inverted on the other, but the phenyl groups do not. Thus, the two units are essentially conformational enanti­omers. In mol­ecule (1a), the two phenyl rings are inclined to one another by 86.7 (3)°, and in mol­ecule (1b), by 81.1 (3)°. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, forming sheets lying parallel to (010).

1. Chemical context

The reactions of substrates with one or two sulfanyl chloride, acid chloride, and/or (alk­oxy­dichloro­meth­yl)sulfanyl moieties have been of inter­est to our laboratory for some time (Barany et al., 1983[Barany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750-4761.]; Barany & Mott, 1984[Barany, G. & Mott, A. W. (1984). J. Org. Chem. 49, 1043-1051.]; Schroll & Barany, 1986[Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.]; Schroll et al., 1990[Schroll, A. L., Eastep, S. J. & Barany, G. (1990). J. Org. Chem. 55, 1475-1479.]; Schroll et al., 2012[Schroll, A. L., Pink, M. & Barany, G. (2012). Acta Cryst. E68, o1550.]). In some of these experiments, bis­[meth­yl(phen­yl)amino]­tris­ulfane was a component of more complicated mixtures of polysulfanes with varying numbers of S atoms. One such mixture was separated by preparative HPLC at 298 K, eluting with methanol–water (17:3). The fraction containing the title compound (dissolved in the eluting solvent) was cooled to 277 K, after which the tris­ulfane was obtained directly in crystalline form.

[Scheme 1]

2. Structural commentary

The title compound, (1), was obtained in crystalline form after preparative HPLC, as described by Schroll & Barany (1986[Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.]). The proposed mol­ecular structure of (1) was confirmed by single-crystal X-ray analysis at 173 K. The mol­ecules do not take advantage of the twofold axis provided as an available symmetry option by the Fdd2 space group. Instead, there are two mol­ecules, (1a) and (1b), in the asymmetric unit (Fig. 1[link]), and both of them display a pseudo-trans conformation (see later). All bond distances and angles in both mol­ecules are within expected ranges. Selected geometric parameters for compound (1) are given in Table 1[link]. The two consecutive S—S bond lengths (comprising the tris­ulfane) of mol­ecule (1a) are 2.064 (3) and 2.078 (3) Å, and for mol­ecule (1b) are 2.076 (3) and 2.067 (2) Å. These values are similar to the value of 2.07 Å reported for the S—S bond length in elemental sulfur (S8). Torsion angles about each of the two S—S bonds (comprising the tris­ulfane) are, respectively, 86.6 (2) and 87.0 (2)° for (1a), and −84.6 (2) and −85.9 (2)° for (1b). The core atoms, viz. the N—S—S—S—N moiety, of the two units superimpose well if one is inverted on the other, but the phenyl groups do not. Thus, the two units are essentially conformational enanti­omers. Moreover, with respect to the four measured torsion angles, which range in absolute value from 84.6 (2) to 87.0 (2)°, these are slightly smaller than the theoretical optimum of 90.0° (Pauling, 1949[Pauling, L. (1949). Proc. Natl Acad. Sci. USA, 35, 495-499.]; Torrico-Vallejos et al., 2010[Torrico-Vallejos, S., Erben, M. F., Boese, R. & Vedova, C. O. D. (2010). New J. Chem. 34, 1365-1372.]). Finally, given the presence of three consecutive linearly connected sulfur atoms, representing two dihedral angles close to 90°, it is noteworthy that both of the mol­ecules in the asymmetric unit display a pseudo-trans conformation (torsion angles +,+ or -,- across the two S—S bonds). The theoretically possible pseudo-cis (torsion angles +,- or -,+) conformation (Meyer, 1976[Meyer, B. (1976). Chem. Rev. 76, 367-388.]) was not observed for these structures.

Table 1
Selected geometric parameters (Å, °) of the title compound (1), and the comparison compounds (2) and (3)

  (1a) (1b) (2) (3)
S1—N1 1.664 (5) 1.653 (5) 1.693 (2) 1.668 (2)
S1—S2 2.064 (3) 2.076 (3) 2.040 (1) 2.102 (1)
S2—S3 2.078 (3) 2.067 (2) 2.045 (1) 2.082 (1)
S3—N2 1.663 (6) 1.649 (5) 1.687 (2) 1.680 (2)
         
N1—S1—S2 106.9 (2) 107.3 (2) 105.0 (1) 110.0 (1)
S1—S2—S3 106.05 (11) 105.41 (11) 105.2 (2) 104.7 (1)
N2—S3—S2 107.6 (2) 107.2 (2) 103.8 (1) 110.3 (1)
         
N1—S1—S2—S3 86.6 (2) −84.6 (2) 93.2 (7) 109.7 (2)
S1—S2—S3—N2 87.0 (2) −85.9 (2) −89.5 (2) 95.9 (1)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of (1), mol­ecules are linked via C—H⋯π inter­actions, forming sheets lying parallel to (010) (see Table 2[link] and Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, and Cg4 are the centroids of rings C3A–C8A, C9A–C14A, C3B–C8B, and C9B–C14B, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1AACg2i 0.98 2.91 3.810 (7) 153
C2A—H2AACg3ii 0.98 2.76 3.658 (8) 153
C1B—H1BACg4iii 0.98 2.73 3.575 (7) 145
C2B—H2BACg1ii 0.98 2.98 3.870 (7) 151
Symmetry codes: (i) x − [{\script{1\over 4}}], −y + [{\script{3\over 4}}], z + [{\script{1\over 4}}]; (ii) −x + [{\script{1\over 2}}], −y + 1, z + [{\script{1\over 2}}]; (iii) x + [{\script{1\over 4}}], −y + [{\script{5\over 4}}], z + [{\script{1\over 4}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The dashed lines indicate the C—H⋯π inter­actions (see Table 2[link] for details). Only the H atoms involved in these inter­actions have been included for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed the presence of two compounds (see Fig. 3[link]) that also have an N—S—S—S—N moiety, viz. bis­(oxamido)­tris­ulfane, (2) (CSD refcode GEHPUE; Brunn et al., 1988[Brunn, K., Endres, H. & Weiss, J. (1988). Z. Naturforsch. Teil B, 43, 113-116.]), and bis­[tert-but­yl(di-tert-butyl­fluoro­sil­yl)amino]­tris­ulfane, (3) (SOTLAO; Klingebiel et al., 1991[Klingebiel, U., Pauer, F., Sheldrick, G. M. & Stalke, D. (1991). Chem. Ber. 124, 2651-2653.]). Unlike the title compound, (1), compounds (2) and (3) each have a unique conformation in the unit cell (Z′ = 1). Selected geometric parameters of (1) and the comparison compounds, (2) and (3), are given in Table 1[link]. While the average S—S bond length of the title compound is ca 2.07 Å, the corresponding value is longer (2.09 Å) in (3) and shorter (2.04 Å) in (2). The absolute value of the average torsion angle of the title compound (1) is ca 86.0°, while the corresponding value is larger (93.2 and −89.5°) and closer to the theoretical optimum in (2), and significantly larger (109.7 and 95.9°) in (3).

[Figure 3]
Figure 3
Compounds that also have an N—S—S—S—N moiety, viz. bis­(oxamido)­tris­ulfane, (2) (CSD refcode, GEHPUE; Brunn et al., 1988[Brunn, K., Endres, H. & Weiss, J. (1988). Z. Naturforsch. Teil B, 43, 113-116.]), and bis­[tert-but­yl(di-tert-butyl­fluoro­sil­yl)amino]­tris­ulfane, (3) (SOTLAO; Klingebiel et al., 1991[Klingebiel, U., Pauer, F., Sheldrick, G. M. & Stalke, D. (1991). Chem. Ber. 124, 2651-2653.]).

Note regarding nomenclature: In the discussion above, a consistent nomenclature scheme has been used that differs from the names used in the original publications, viz. bis(oxamido)­tris­ulfan, (2) (Brunn et al., 1988[Brunn, K., Endres, H. & Weiss, J. (1988). Z. Naturforsch. Teil B, 43, 113-116.]) and 1,3-bis­[tert-but­yl(di-tert-butyl­fluorsil­yl)amino]­tris­ulfan, (3) (Klingebiel et al., 1991[Klingebiel, U., Pauer, F., Sheldrick, G. M. & Stalke, D. (1991). Chem. Ber. 124, 2651-2653.]).

5. Synthesis and crystallization

The title compound, (1), was synthesized and obtained in crystalline form after preparative HPLC, as described by Schroll & Barany (1986[Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.]): compound (37) in that publication.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C14H16N2S3
Mr 308.47
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 173
a, b, c (Å) 19.284 (3), 56.440 (8), 11.1695 (15)
V3) 12157 (3)
Z 32
Radiation type Mo Kα
μ (mm−1) 0.48
Crystal size (mm) 0.25 × 0.22 × 0.04
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.890, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 15884, 4978, 3097
Rint 0.075
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.129, 1.06
No. of reflections 4978
No. of parameters 347
No. of restraints 1
H-atom treatment H-atom parameters constrained
  w = 1/[σ2(Fo2) + (0.0357P)2 + 36.8709P] where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å−3) 0.43, −0.31
Absolute structure 2194 Friedel pairs (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.08 (12)
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

The reactions of substrates with one or two sulfanyl chloride, acid chloride, and/or (alk­oxy­dichloro­methyl)­sulfanyl moieties have been of inter­est to our laboratory for some time (Barany et al., 1983; Barany & Mott, 1984; Schroll & Barany, 1986; Schroll et al., 1990, 2012). In some of these experiments, bis­[methyl­(phenyl)­amino]­tris­ulfane was a component of more complicated mixtures of polysulfanes with varying numbers of S atoms. One such mixture was separated by preparative HPLC at 298 K, eluting with methanol–water (17:3). The fraction containing the title compound (dissolved in the eluting solvent) was cooled to 277 K, after which the tris­ulfane was obtained directly in crystalline form.

Structural commentary top

The title compound, (1), was obtained in crystalline form after preparative HPLC, as described by Schroll & Barany (1986). The proposed molecular structure of (1) was confirmed by single-crystal X-ray analysis at 173 K. The molecules do not take advantage of the twofold axis provided as an available symmetry option by the Fdd2 space group. Instead, there are two molecules, (1a) and (1b), in the asymmetric unit, and both of them display a pseudo-trans conformation. All bond distances and angles in both molecules are within expected ranges. Selected geometric parameters for compound (1) are given in Table 1. The two consecutive S—S bond lengths (comprising the tris­ulfane) of molecule (1a) are 2.064 (3) and 2.078 (3) Å, and for molecule (1b) are 2.076 (3) and 2.067 (2) Å. These values are similar to the value of 2.07 Å reported for the S—S bond length in elemental sulfur (S8). Torsion angles about each of the two S—S bonds (comprising the tris­ulfane) are, respectively, 86.6 (2) and 87.0 (2)° for (1a), and -84.6 (2) and -85.9 (2)° for (1b). The core atoms, viz. the N—S—S—S—N moiety, of the two units superimpose well if one is inverted on the other, but the phenyl groups do not. Thus, the two units are essentially conformational enanti­omers. Moreover, with respect to the four measured torsion angles, which range in absolute value from 84.6 (2) to 87.0 (2)°, these are slightly smaller than the theoretical optimum of 90.0° (Pauling, 1949; Torrico-Vallejos et al., 2010). Finally, given the presence of three consecutive linearly connected sulfur atoms, representing two dihedral angles close to 90°, it is noteworthy that both of the molecules in the asymmetric unit display a pseudo-trans conformation (torsion angles +,+ or -,- across the two S—S bonds). The theoretically possible pseudo-cis (torsion angles +,- or -,+) conformation (Meyer, 1976) was not observed for these structures.

Supra­molecular features top

In the crystal of (1), molecules are linked via C—H···π inter­actions, forming sheets lying parallel to (010) (see Table 2 and Fig. 2).

Database survey top

A search of the Cambridge Structural Database (CSD, Version 5.36, May 2015; Groom & Allen, 2014) revealed the presence of two compounds (see Fig. 3) that also have an N—S—S—S—N moiety, viz. bis­(oxamido)­tris­ulfane, (2) (CSD refcode GEHPUE; Brunn et al., 1988), and bis­[tert-butyl­(di-tert-butyl­fluoro­silyl)amino]­tris­ulfane, (3) (SOTLAO; Klingebiel et al., 1991). Unlike the title compound, (1), compounds (2) and (3) each have a unique conformation in the unit cell (Z' = 1). Selected geometric parameters of (1) and the comparison compounds, (2) and (3), are given in Table 1. While the average S—S bond length of the title compound is ca 2.07 Å, the corresponding value is longer (2.09 Å) in (3) and shorter (2.04 Å) in (2). The absolute value of the average torsion angle of the title compound (1) is ca 86.0°, while the corresponding value is larger (93.2 and -89.5°) and closer to the theoretical optimum in (2), and significantly larger (109.7 and 95.9°) in (3).

Note regarding nomenclature: In the discussion above, a consistent nomenclature scheme has been used that differs from the names used in the original publications, viz. bis­(oxamido)­tris­ulfan, (2) (Brunn et al., 1988) and 1,3-bis­[tert-butyl­(di-tert-butyl­fluorsilyl)amino]­tris­ulfan, (3) (Klingebiel et al., 1991).

Synthesis and crystallization top

The title compound, (1), was synthesized and obtained in crystalline form after preparative HPLC, as described by Schroll & Barany (1986): compound (37) in that publication.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The dashed lines indicate the C—H···π interactions (see Table 2 for details). Only the H atoms involved in these interactions have been included for clarity.
[Figure 3] Fig. 3. Compounds that also have an N—S—S—S—N moiety, viz. bis(oxamido)trisulfane, (2) (CSD refcode, GEHPUE; Brunn et al., 1988), and bis[tert-butyl(di-tert-butylfluorosilyl)amino]trisulfane, (3) (SOTLAO; Klingebiel et al., 1991).
Bis(N-methyl-N-phenylamino)trisulfane top
Crystal data top
C14H16N2S3Dx = 1.348 Mg m3
Mr = 308.47Melting point: 353 K
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1945 reflections
a = 19.284 (3) Åθ = 2.4–24.9°
b = 56.440 (8) ŵ = 0.48 mm1
c = 11.1695 (15) ÅT = 173 K
V = 12157 (3) Å3Plate, colorless
Z = 320.25 × 0.22 × 0.04 mm
F(000) = 5184
Data collection top
Bruker SMART CCD area-detector
diffractometer
4978 independent reflections
Radiation source: sealed tube3097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ and ω scansθmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 022
Tmin = 0.890, Tmax = 0.981k = 067
15884 measured reflectionsl = 1311
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0357P)2 + 36.8709P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4978 reflectionsΔρmax = 0.43 e Å3
347 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: 2194 Friedel pairs (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (12)
Crystal data top
C14H16N2S3V = 12157 (3) Å3
Mr = 308.47Z = 32
Orthorhombic, Fdd2Mo Kα radiation
a = 19.284 (3) ŵ = 0.48 mm1
b = 56.440 (8) ÅT = 173 K
c = 11.1695 (15) Å0.25 × 0.22 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4978 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3097 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.981Rint = 0.075
15884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0357P)2 + 36.8709P]
where P = (Fo2 + 2Fc2)/3
S = 1.06Δρmax = 0.43 e Å3
4978 reflectionsΔρmin = 0.31 e Å3
347 parametersAbsolute structure: 2194 Friedel pairs (Flack, 1983)
1 restraintAbsolute structure parameter: 0.08 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.16203 (9)0.35562 (3)0.42989 (17)0.0509 (5)
S2A0.13888 (9)0.37674 (3)0.28446 (18)0.0512 (5)
S3A0.05789 (9)0.39854 (3)0.33839 (17)0.0529 (5)
N1A0.1096 (2)0.33225 (10)0.4230 (5)0.0430 (14)
N2A0.0925 (3)0.42227 (10)0.4033 (5)0.0460 (14)
C1A0.0371 (3)0.33682 (13)0.4515 (6)0.0555 (19)
H1AA0.01550.32220.48090.083*
H1AB0.01290.34220.37940.083*
H1AC0.03430.34910.51330.083*
C2A0.1179 (4)0.41859 (13)0.5256 (6)0.063 (2)
H2AA0.11430.43340.57060.095*
H2AB0.16650.41350.52300.095*
H2AC0.08990.40640.56490.095*
C3A0.1249 (3)0.31310 (11)0.3459 (6)0.0428 (18)
C4A0.1941 (3)0.30690 (11)0.3200 (6)0.0501 (19)
H4AA0.23070.31640.35020.060*
C5A0.2096 (4)0.28734 (13)0.2520 (7)0.059 (2)
H5AA0.25670.28320.23830.071*
C6A0.1577 (4)0.27368 (13)0.2037 (7)0.056 (2)
H6AA0.16840.26050.15440.067*
C7A0.0894 (5)0.27962 (12)0.2284 (7)0.063 (2)
H7AA0.05310.26990.19800.076*
C8A0.0733 (3)0.29903 (12)0.2953 (7)0.0514 (19)
H8AA0.02600.30300.30760.062*
C9A0.1215 (3)0.44089 (11)0.3334 (7)0.0408 (17)
C10A0.1734 (3)0.45591 (12)0.3798 (6)0.0458 (19)
H10A0.19060.45330.45840.055*
C11A0.1992 (3)0.47418 (11)0.3132 (7)0.052 (2)
H11A0.23400.48410.34620.062*
C12A0.1756 (4)0.47837 (12)0.2001 (8)0.055 (2)
H12A0.19350.49120.15420.066*
C13A0.1253 (4)0.46368 (12)0.1536 (7)0.055 (2)
H13A0.10860.46650.07490.066*
C14A0.0987 (4)0.44514 (12)0.2171 (7)0.0514 (19)
H14A0.06460.43520.18210.062*
S1B0.34517 (9)0.60013 (3)0.43382 (17)0.0503 (5)
S2B0.35517 (9)0.62207 (3)0.28572 (18)0.0504 (5)
S3B0.44058 (9)0.64310 (3)0.32075 (16)0.0473 (5)
N1B0.3972 (2)0.57722 (9)0.4127 (5)0.0406 (13)
N2B0.4133 (3)0.66599 (9)0.3995 (5)0.0410 (14)
C1B0.4706 (3)0.58075 (12)0.4394 (7)0.056 (2)
H1BA0.48930.56650.47750.084*
H1BB0.47580.59430.49360.084*
H1BC0.49580.58390.36490.084*
C2B0.3957 (4)0.66091 (11)0.5245 (6)0.0502 (18)
H2BA0.40100.67540.57240.075*
H2BB0.42690.64860.55540.075*
H2BC0.34770.65540.52930.075*
C3B0.3785 (3)0.55805 (10)0.3387 (6)0.0360 (15)
C4B0.4264 (3)0.54146 (11)0.2998 (6)0.0470 (18)
H4BA0.47390.54350.32010.056*
C5B0.4072 (4)0.52205 (12)0.2322 (6)0.0528 (19)
H5BA0.44130.51080.20980.063*
C6B0.3392 (4)0.51874 (12)0.1965 (7)0.052 (2)
H6BA0.32590.50560.14860.062*
C7B0.2916 (3)0.53537 (11)0.2336 (6)0.0467 (18)
H7BA0.24440.53350.21100.056*
C8B0.3098 (3)0.55452 (10)0.3020 (6)0.0418 (16)
H8BA0.27530.56560.32490.050*
C9B0.3837 (3)0.68621 (10)0.3444 (7)0.0369 (16)
C10B0.3412 (3)0.70186 (10)0.4077 (6)0.0446 (18)
H10B0.32880.69840.48810.054*
C11B0.3175 (4)0.72197 (13)0.3558 (8)0.060 (2)
H11B0.28980.73260.40150.072*
C12B0.3328 (4)0.72757 (12)0.2363 (8)0.054 (2)
H12B0.31580.74170.20030.065*
C13B0.3730 (3)0.71203 (11)0.1735 (7)0.0481 (17)
H13B0.38400.71530.09220.058*
C14B0.3981 (3)0.69158 (11)0.2259 (7)0.0436 (17)
H14B0.42570.68100.18000.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0414 (11)0.0603 (11)0.0510 (14)0.0036 (8)0.0136 (9)0.0069 (10)
S2A0.0612 (11)0.0511 (10)0.0414 (12)0.0137 (8)0.0091 (10)0.0026 (10)
S3A0.0373 (10)0.0635 (11)0.0577 (14)0.0058 (8)0.0102 (9)0.0142 (10)
N1A0.032 (3)0.054 (3)0.043 (4)0.006 (2)0.002 (3)0.008 (3)
N2A0.049 (3)0.054 (4)0.035 (4)0.005 (3)0.000 (3)0.001 (3)
C1A0.029 (4)0.085 (5)0.053 (5)0.000 (3)0.002 (3)0.019 (4)
C2A0.070 (5)0.090 (5)0.029 (5)0.029 (4)0.007 (4)0.003 (4)
C3A0.033 (4)0.050 (4)0.046 (5)0.006 (3)0.005 (3)0.017 (4)
C4A0.038 (4)0.055 (4)0.057 (6)0.003 (3)0.008 (4)0.005 (4)
C5A0.058 (5)0.057 (5)0.062 (6)0.004 (4)0.001 (4)0.000 (4)
C6A0.072 (6)0.055 (5)0.041 (5)0.008 (4)0.002 (4)0.006 (3)
C7A0.084 (6)0.049 (5)0.056 (6)0.024 (4)0.029 (4)0.018 (4)
C8A0.042 (4)0.053 (4)0.060 (6)0.010 (3)0.015 (4)0.014 (4)
C9A0.030 (4)0.049 (4)0.043 (5)0.014 (3)0.001 (3)0.005 (3)
C10A0.042 (4)0.059 (4)0.037 (5)0.011 (3)0.013 (3)0.018 (3)
C11A0.047 (4)0.035 (4)0.074 (7)0.001 (3)0.012 (4)0.018 (4)
C12A0.061 (5)0.035 (4)0.069 (6)0.005 (3)0.007 (4)0.002 (4)
C13A0.067 (5)0.050 (4)0.050 (6)0.002 (4)0.012 (4)0.000 (4)
C14A0.052 (4)0.050 (4)0.052 (6)0.005 (3)0.019 (4)0.004 (4)
S1B0.0489 (11)0.0517 (10)0.0502 (14)0.0096 (8)0.0123 (10)0.0097 (9)
S2B0.0595 (11)0.0440 (10)0.0476 (12)0.0073 (8)0.0123 (10)0.0093 (9)
S3B0.0400 (10)0.0478 (10)0.0540 (14)0.0062 (7)0.0123 (9)0.0058 (8)
N1B0.039 (3)0.041 (3)0.041 (4)0.011 (2)0.004 (3)0.005 (3)
N2B0.039 (3)0.045 (3)0.039 (4)0.004 (2)0.002 (3)0.002 (3)
C1B0.045 (4)0.061 (4)0.062 (6)0.011 (3)0.016 (4)0.009 (4)
C2B0.057 (4)0.061 (4)0.033 (5)0.014 (3)0.003 (4)0.002 (4)
C3B0.039 (4)0.040 (4)0.028 (4)0.007 (3)0.004 (3)0.007 (3)
C4B0.037 (4)0.057 (4)0.047 (5)0.013 (3)0.000 (4)0.009 (4)
C5B0.050 (5)0.056 (4)0.052 (5)0.016 (3)0.002 (4)0.008 (4)
C6B0.060 (5)0.047 (4)0.049 (6)0.001 (3)0.006 (4)0.001 (3)
C7B0.041 (4)0.050 (4)0.049 (5)0.012 (3)0.001 (3)0.005 (3)
C8B0.034 (4)0.045 (4)0.047 (5)0.004 (3)0.001 (3)0.002 (3)
C9B0.029 (3)0.037 (4)0.045 (5)0.007 (3)0.002 (3)0.014 (3)
C10B0.051 (4)0.045 (4)0.037 (5)0.004 (3)0.001 (3)0.005 (3)
C11B0.061 (5)0.048 (5)0.071 (7)0.003 (4)0.000 (5)0.015 (4)
C12B0.051 (4)0.041 (4)0.071 (6)0.004 (3)0.013 (4)0.007 (4)
C13B0.042 (4)0.057 (4)0.045 (5)0.002 (3)0.005 (4)0.005 (4)
C14B0.044 (4)0.042 (4)0.044 (5)0.004 (3)0.017 (3)0.006 (3)
Geometric parameters (Å, º) top
S1A—N1A1.664 (5)S1B—N1B1.653 (5)
S1A—S2A2.064 (3)S1B—S2B2.076 (3)
S2A—S3A2.078 (3)S2B—S3B2.067 (2)
S3A—N2A1.663 (6)S3B—N2B1.649 (5)
N1A—C3A1.413 (8)N1B—C3B1.408 (8)
N1A—C1A1.457 (7)N1B—C1B1.460 (7)
N2A—C9A1.424 (8)N2B—C9B1.416 (8)
N2A—C2A1.465 (8)N2B—C2B1.465 (8)
C1A—H1AA0.9800C1B—H1BA0.9800
C1A—H1AB0.9800C1B—H1BB0.9800
C1A—H1AC0.9800C1B—H1BC0.9800
C2A—H2AA0.9800C2B—H2BA0.9800
C2A—H2AB0.9800C2B—H2BB0.9800
C2A—H2AC0.9800C2B—H2BC0.9800
C3A—C8A1.393 (8)C3B—C4B1.386 (8)
C3A—C4A1.410 (9)C3B—C8B1.401 (8)
C4A—C5A1.373 (9)C4B—C5B1.381 (9)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.373 (9)C5B—C6B1.383 (9)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.388 (10)C6B—C7B1.377 (9)
C6A—H6AA0.9500C6B—H6BA0.9500
C7A—C8A1.362 (10)C7B—C8B1.369 (8)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—H8AA0.9500C8B—H8BA0.9500
C9A—C14A1.392 (9)C9B—C14B1.386 (9)
C9A—C10A1.410 (9)C9B—C10B1.396 (8)
C10A—C11A1.365 (9)C10B—C11B1.354 (9)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.363 (10)C11B—C12B1.403 (10)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.378 (9)C12B—C13B1.365 (9)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.365 (9)C13B—C14B1.382 (9)
C13A—H13A0.9500C13B—H13B0.9500
C14A—H14A0.9500C14B—H14B0.9500
N1A—S1A—S2A106.9 (2)N1B—S1B—S2B107.3 (2)
S1A—S2A—S3A106.05 (11)S3B—S2B—S1B105.41 (11)
N2A—S3A—S2A107.6 (2)N2B—S3B—S2B107.2 (2)
C3A—N1A—C1A118.0 (5)C3B—N1B—C1B118.2 (5)
C3A—N1A—S1A120.5 (4)C3B—N1B—S1B122.0 (4)
C1A—N1A—S1A115.6 (4)C1B—N1B—S1B116.9 (4)
C9A—N2A—C2A119.0 (6)C9B—N2B—C2B118.6 (5)
C9A—N2A—S3A120.9 (5)C9B—N2B—S3B121.9 (5)
C2A—N2A—S3A115.3 (5)C2B—N2B—S3B115.4 (4)
N1A—C1A—H1AA109.5N1B—C1B—H1BA109.5
N1A—C1A—H1AB109.5N1B—C1B—H1BB109.5
H1AA—C1A—H1AB109.5H1BA—C1B—H1BB109.5
N1A—C1A—H1AC109.5N1B—C1B—H1BC109.5
H1AA—C1A—H1AC109.5H1BA—C1B—H1BC109.5
H1AB—C1A—H1AC109.5H1BB—C1B—H1BC109.5
N2A—C2A—H2AA109.5N2B—C2B—H2BA109.5
N2A—C2A—H2AB109.5N2B—C2B—H2BB109.5
H2AA—C2A—H2AB109.5H2BA—C2B—H2BB109.5
N2A—C2A—H2AC109.5N2B—C2B—H2BC109.5
H2AA—C2A—H2AC109.5H2BA—C2B—H2BC109.5
H2AB—C2A—H2AC109.5H2BB—C2B—H2BC109.5
C8A—C3A—C4A116.9 (7)C4B—C3B—C8B116.3 (6)
C8A—C3A—N1A122.3 (6)C4B—C3B—N1B122.2 (6)
C4A—C3A—N1A120.8 (6)C8B—C3B—N1B121.5 (6)
C5A—C4A—C3A121.2 (6)C5B—C4B—C3B121.8 (6)
C5A—C4A—H4AA119.4C5B—C4B—H4BA119.1
C3A—C4A—H4AA119.4C3B—C4B—H4BA119.1
C4A—C5A—C6A120.7 (7)C4B—C5B—C6B121.3 (6)
C4A—C5A—H5AA119.6C4B—C5B—H5BA119.3
C6A—C5A—H5AA119.6C6B—C5B—H5BA119.3
C5A—C6A—C7A118.6 (8)C7B—C6B—C5B116.9 (7)
C5A—C6A—H6AA120.7C7B—C6B—H6BA121.5
C7A—C6A—H6AA120.7C5B—C6B—H6BA121.5
C8A—C7A—C6A121.3 (7)C8B—C7B—C6B122.3 (6)
C8A—C7A—H7AA119.3C8B—C7B—H7BA118.8
C6A—C7A—H7AA119.3C6B—C7B—H7BA118.8
C7A—C8A—C3A121.2 (7)C7B—C8B—C3B121.2 (6)
C7A—C8A—H8AA119.4C7B—C8B—H8BA119.4
C3A—C8A—H8AA119.4C3B—C8B—H8BA119.4
C14A—C9A—C10A117.7 (6)C14B—C9B—C10B117.5 (6)
C14A—C9A—N2A121.0 (6)C14B—C9B—N2B120.7 (6)
C10A—C9A—N2A121.4 (6)C10B—C9B—N2B121.8 (7)
C11A—C10A—C9A120.8 (7)C11B—C10B—C9B120.8 (7)
C11A—C10A—H10A119.6C11B—C10B—H10B119.6
C9A—C10A—H10A119.6C9B—C10B—H10B119.6
C12A—C11A—C10A121.0 (7)C10B—C11B—C12B121.6 (7)
C12A—C11A—H11A119.5C10B—C11B—H11B119.2
C10A—C11A—H11A119.5C12B—C11B—H11B119.2
C11A—C12A—C13A118.6 (7)C13B—C12B—C11B117.6 (7)
C11A—C12A—H12A120.7C13B—C12B—H12B121.2
C13A—C12A—H12A120.7C11B—C12B—H12B121.2
C14A—C13A—C12A122.1 (7)C12B—C13B—C14B121.2 (7)
C14A—C13A—H13A119.0C12B—C13B—H13B119.4
C12A—C13A—H13A119.0C14B—C13B—H13B119.4
C13A—C14A—C9A119.8 (7)C13B—C14B—C9B121.2 (6)
C13A—C14A—H14A120.1C13B—C14B—H14B119.4
C9A—C14A—H14A120.1C9B—C14B—H14B119.4
N1A—S1A—S2A—S3A86.6 (2)N1B—S1B—S2B—S3B84.6 (2)
S1A—S2A—S3A—N2A87.0 (2)S1B—S2B—S3B—N2B85.9 (2)
S2A—S1A—N1A—C3A80.2 (5)S2B—S1B—N1B—C3B79.9 (5)
S2A—S1A—N1A—C1A72.2 (5)S2B—S1B—N1B—C1B80.3 (5)
S2A—S3A—N2A—C9A77.9 (5)S2B—S3B—N2B—C9B83.1 (5)
S2A—S3A—N2A—C2A77.0 (5)S2B—S3B—N2B—C2B73.7 (5)
C1A—N1A—C3A—C8A1.3 (9)C1B—N1B—C3B—C4B5.8 (9)
S1A—N1A—C3A—C8A150.5 (5)S1B—N1B—C3B—C4B165.7 (5)
C1A—N1A—C3A—C4A176.4 (6)C1B—N1B—C3B—C8B175.2 (6)
S1A—N1A—C3A—C4A31.7 (8)S1B—N1B—C3B—C8B15.3 (8)
C8A—C3A—C4A—C5A2.5 (10)C8B—C3B—C4B—C5B2.3 (10)
N1A—C3A—C4A—C5A175.4 (6)N1B—C3B—C4B—C5B176.7 (6)
C3A—C4A—C5A—C6A2.3 (12)C3B—C4B—C5B—C6B2.4 (11)
C4A—C5A—C6A—C7A2.2 (11)C4B—C5B—C6B—C7B1.4 (11)
C5A—C6A—C7A—C8A2.5 (11)C5B—C6B—C7B—C8B0.5 (11)
C6A—C7A—C8A—C3A2.8 (11)C6B—C7B—C8B—C3B0.6 (11)
C4A—C3A—C8A—C7A2.8 (10)C4B—C3B—C8B—C7B1.4 (10)
N1A—C3A—C8A—C7A175.1 (6)N1B—C3B—C8B—C7B177.6 (6)
C2A—N2A—C9A—C14A179.5 (6)C2B—N2B—C9B—C14B179.3 (5)
S3A—N2A—C9A—C14A26.5 (8)S3B—N2B—C9B—C14B23.2 (8)
C2A—N2A—C9A—C10A0.7 (8)C2B—N2B—C9B—C10B3.1 (9)
S3A—N2A—C9A—C10A154.7 (5)S3B—N2B—C9B—C10B159.1 (5)
C14A—C9A—C10A—C11A1.1 (9)C14B—C9B—C10B—C11B2.5 (10)
N2A—C9A—C10A—C11A177.8 (6)N2B—C9B—C10B—C11B175.2 (6)
C9A—C10A—C11A—C12A0.1 (10)C9B—C10B—C11B—C12B1.8 (11)
C10A—C11A—C12A—C13A0.3 (10)C10B—C11B—C12B—C13B0.3 (10)
C11A—C12A—C13A—C14A0.2 (11)C11B—C12B—C13B—C14B0.4 (10)
C12A—C13A—C14A—C9A1.1 (11)C12B—C13B—C14B—C9B0.4 (10)
C10A—C9A—C14A—C13A1.5 (10)C10B—C9B—C14B—C13B1.8 (9)
N2A—C9A—C14A—C13A177.4 (6)N2B—C9B—C14B—C13B175.9 (6)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, and Cg4 are the centroids of rings C3A–C8A, C9A–C14A, C3B–C8B, and C9B–C14B, respectively.
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···Cg2i0.982.913.810 (7)153
C2A—H2AA···Cg3ii0.982.763.658 (8)153
C1B—H1BA···Cg4iii0.982.733.575 (7)145
C2B—H2BA···Cg1ii0.982.983.870 (7)151
Symmetry codes: (i) x1/4, y+3/4, z+1/4; (ii) x+1/2, y+1, z+1/2; (iii) x+1/4, y+5/4, z+1/4.
Selected geometric parameters (Å, °) of the title compound (1), and the comparison compounds (2) and (3) top
(1a)(1b)(2)(3)
S1—N11.664 (5)1.653 (5)1.693 (2)1.668 (2)
S1—S22.064 (3)2.076 (3)2.040 (1)2.102 (1)
S2—S32.078 (3)2.067 (2)2.045 (1)2.082 (1)
S3—N21.663 (6)1.649 (5)1.687 (2)1.680 (2)
N1—S1—S2106.9 (2)107.3 (2)105.0 (1)110.0 (1)
S1—S2—S3106.05 (11)105.41 (11)105.2 (2)104.7 (1)
N2—S3—S2107.6 (2)107.2 (2)103.8 (1)110.3 (1)
N1—S1—S2—S386.6 (2)-84.6 (2)93.2 (7)109.7 (2)
S1—S2—S3—N287.0 (2)-85.9 (2)-89.5 (2)95.9 (1)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, and Cg4 are the centroids of rings C3A–C8A, C9A–C14A, C3B–C8B, and C9B–C14B, respectively.
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···Cg2i0.982.913.810 (7)153
C2A—H2AA···Cg3ii0.982.763.658 (8)153
C1B—H1BA···Cg4iii0.982.733.575 (7)145
C2B—H2BA···Cg1ii0.982.983.870 (7)151
Symmetry codes: (i) x1/4, y+3/4, z+1/4; (ii) x+1/2, y+1, z+1/2; (iii) x+1/4, y+5/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC14H16N2S3
Mr308.47
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)173
a, b, c (Å)19.284 (3), 56.440 (8), 11.1695 (15)
V3)12157 (3)
Z32
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.25 × 0.22 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.890, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
15884, 4978, 3097
Rint0.075
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.129, 1.06
No. of reflections4978
No. of parameters347
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0357P)2 + 36.8709P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.43, 0.31
Absolute structure2194 Friedel pairs (Flack, 1983)
Absolute structure parameter0.08 (12)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

 

References

First citationBarany, G. & Mott, A. W. (1984). J. Org. Chem. 49, 1043–1051.  CrossRef CAS Google Scholar
First citationBarany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750–4761.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunn, K., Endres, H. & Weiss, J. (1988). Z. Naturforsch. Teil B, 43, 113–116.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKlingebiel, U., Pauer, F., Sheldrick, G. M. & Stalke, D. (1991). Chem. Ber. 124, 2651–2653.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeyer, B. (1976). Chem. Rev. 76, 367–388.  CrossRef CAS Web of Science Google Scholar
First citationPauling, L. (1949). Proc. Natl Acad. Sci. USA, 35, 495–499.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSchroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866–1881.  CrossRef CAS Web of Science Google Scholar
First citationSchroll, A. L., Eastep, S. J. & Barany, G. (1990). J. Org. Chem. 55, 1475–1479.  CrossRef CAS Google Scholar
First citationSchroll, A. L., Pink, M. & Barany, G. (2012). Acta Cryst. E68, o1550.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorrico-Vallejos, S., Erben, M. F., Boese, R. & Vedova, C. O. D. (2010). New J. Chem. 34, 1365–1372.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 836-839
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds