research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 824-826

Crystal structure of 2-(4-tert-butyl­phen­yl)-3-hy­droxy-4H-chromen-4-one

aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 June 2015; accepted 13 June 2015; online 24 June 2015)

Yellow–green fluorescent crystals of the title compound, C19H18O3, were obtained by the reaction of hy­droxy­aceto­phenone and 4-tert-butyl­benzaldehyde with hydrogen peroxide as oxidant. The plane of the benzene ring is slightly twisted to the mean plane of the 4H-chromene-4-one moiety (r.m.s. deviation = 0.0191 Å) by 10.53 (8)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(10) ring motif. The dimers are linked via C—H⋯π inter­actions, forming sheets parallel to (10-1).

1. Chemical context

The flavonol 3-hy­droxy-2-phenyl-4H-chromen-4-one (com­mon name: 3-hy­droxy­flavone) and its derivatives are present in a wide variety of plants as phytochemical compounds (Havsteen, 1983[Havsteen, B. (1983). Biochem. Pharmacol. 32, 1141-1148.]; Aherne & O'Brien, 2002[Aherne, S. A. & O'Brien, N. M. (2002). Nutrition, 18, 75-81.]). They have been investigated for many years owing to their chemical, structural, biological and fluorescent properties (Smith et al., 1968[Smith, M. A., Neumann, R. M. & Webb, R. A. (1968). J. Heterocycl. Chem. 5, 425-426.]; Sengupta & Kasha, 1979[Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382-385.]; Etter et al., 1986[Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.]; Klymchenko & Demchenko, 2002[Klymchenko, A. S. & Demchenko, A. P. (2002). J. Am. Chem. Soc. 124, 12372-12379.]; Pivovarenko et al., 2005[Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2005). Anal. Chim. Acta, 545, 74-78.]; Choulier et al., 2010[Choulier, L., Shvadchak, V. V., Naidoo, A., Klymchenko, A. S., Mély, Y. & Altschuh, D. (2010). Anal. Biochem. 401, 188-195.]). The phenomenon of dual fluorescence due to excited states intra­molecular proton transfer (ESIPT) has attracted much attention (Dick, 1987[Dick, B. (1987). Ber. Bunsenges. Phys. Chem. 91, 1205-1209.]), as compounds exhibiting such properties can be used as fluorescent probes for sensing and imaging. The fluorescence of flavonols has been shown to be related to the angle between the 4H-chromene-4-one moiety and the attached benzene ring (Klymchenko et al. 2003[Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787-792.]). The effect of the intra­molecular hydrogen bond of flavonols, with an OH group in position 3, for the stabilization of the mol­ecular conformation is also important and this has been confirmed by theoretical calculations reported in a computational study on flavonoids (Aparicio, 2010[Aparicio, S. (2010). Int. J. Mol. Sci. 11, 2017-2038.]). As a part of our search for new luminescent materials, we report herein on the synthesis and crystal structure of the title compound, the 4-tert-butyl­phenyl derivative of 3-hy­droxy­flavone.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The bond lengths are similar to those reported for other flavonols (Yoo et al., 2014[Yoo, J. S., Lim, Y. & Koh, D. (2014). Acta Cryst. E70, o999-o1000.]; Serdiuk et al., 2013[Serdiuk, I. E., Wera, M., Roshal, A. D. & Błażejowski, J. (2013). Acta Cryst. E69, o895.]; Hino et al., 2013[Hino, K., Nakajima, K., Kawahara, M., Furukawa, K. & Sekiya, H. (2013). Bull. Chem. Soc. Jpn, 86, 721-723.], 2011[Hino, K., Nakajima, K., Kawahara, M., Kiyota, I. & Sekiya, H. (2011). Bull. Chem. Soc. Jpn, 84, 1234-1236.]; Wera, Pivovarenko et al., 2011[Wera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E67, o264-o265.]; Wera, Serdiuk et al., 2011[Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2011). Acta Cryst. E67, o440.], Wera et al., 2010[Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2010). Acta Cryst. E66, o3122.]). The mean plane of the 4H-chromene-4-one moiety (O3/C1–C9; r.m.s. deviation = 0.0191 Å) is twisted by 10.53 (8)° with respect to the benzene ring (C10–C16). This relative planarity typical of the structural features of flavonols is reinforced by two intra­molecular (C11—H11⋯O3 and C15—H15⋯O2) short contacts (Table 1[link] and Fig. 1[link]). These intra­molecular contacts lead to the mol­ecular planarity and increase the torsional barrier, improving the π-delocalization from the 4H-chromene-4-one moiety toward the benzene ring. The mol­ecule also contains an intra­molecular O—H⋯O hydrogen bond (Table 1[link] and Fig. 1[link]) with an S(5) ring motif.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 2.28 2.7262 (14) 113
C11—H11⋯O3 0.95 2.32 2.6724 (17) 101
C15—H15⋯O2 0.95 2.22 2.8508 (18) 123
O2—H2⋯O1i 0.84 1.96 2.7104 (14) 148
C7—H7⋯Cgii 0.95 2.59 3.407 (10) 144
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds and short contacts are shown as dashed lines.

3. Supra­molecular features

In the crystal of the title compound, mol­ecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](10) ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked by C—H⋯π inter­actions between neighbouring mol­ecules, forming sheets parallel to (10[\overline{1}]); see Table 1[link] and Fig. 3[link].

[Figure 2]
Figure 2
A view of the inversion dimer with an [R_{2}^{2}](10) ring motif. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) −x + 1, −y + 1, −z + 2.]
[Figure 3]
Figure 3
View of the crystal packing of the title compound. Dashed lines indicate the C—H⋯π inter­actions (ring centroids are shown as coloured spheres; see Table 1[link] for details). H atoms that do not participate in these inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 3-hydoxyflavone gave 15 hits. These include 3-hy­droxy­flavone itself (DUMFAS; Etter et al., 1986[Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.]) and a number of para-substituted phenyl derivatives, such as the 4-amino­phenyl derivative (LUBBIV: Sun, 2015[Sun, X. (2015). Private communication (refcode LUBBIV). CCDC, Cambridge, England.]), two polymorphs of the 4-(di­methyl­amino)­phenyl derivative (BANJEH; BANJEH01: Hino et al., 2011[Hino, K., Nakajima, K., Kawahara, M., Kiyota, I. & Sekiya, H. (2011). Bull. Chem. Soc. Jpn, 84, 1234-1236.]) and two polymorphs of the 4-(di­ethyl­amino)­phenyl derivative (CEZDOC; CEZDOC01: Hino et al., 2013[Hino, K., Nakajima, K., Kawahara, M., Furukawa, K. & Sekiya, H. (2013). Bull. Chem. Soc. Jpn, 86, 721-723.]). Two polymorphs of the 4-hydroxphenyl derivative have also been reported (IJUCAS; Wera, Pivovarenko et al., 2011[Wera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E67, o264-o265.]; IKAHIM: Wera, Serdiuk et al., 2011[Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2011). Acta Cryst. E67, o440.]). Apart from 3-hy­droxy­flavone itself (DUMFAS) and the 4-amino­phenyl derivative (LUBBIV), in which the phenyl ring is inclined to the mean plane of the chromen-4-one moiety by 5.5 and 4.5°, respectively, this dihedral angle in the other compounds varies from 12.3 to 31.2°. Hence, in DUMFAS and LUBBIV there are also short intra­molecular C—H⋯O inter­actions, similar to those in the title compound. In the crystals of these two compounds, mol­ecules are also linked via O—H⋯O hydrogen bonds, but form chains. along [001] for DUMFAS and along [100] for LUBBIV, rather than inversion dimers as in the crystal of the title compound.

5. Synthesis and crystallization

The title compound was prepared by a modification of the procedure described by Qin et al. (2008[Qin, C. X., Chen, X., Hughes, R. A., Williams, S. J. & Woodman, O. L. (2008). J. Med. Chem. 51, 1874-1884.]). 2-Hy­droxy­aceto­phenone (1 mmol) was added to a suspension of the 4-tert-butyl­benzaldehyde (1 mmol) in ethanol (2 ml) and aqueous NaOH (6 M, 1 ml). The mixture was stirred at room temperature overnight. Then dilute acetic acid (30%) was added to the reaction mixture with stirring until the mixture was acidic and was cooled with an ice bath. The mixture was stirred for an additional 30 min at 273 K, and the solid precipitate obtained was collected by filtration. Hydrogen peroxide (30%, 2.6 mmol) was then added to an ice-cold suspension of the precipitate in ethanol (5 ml) and aqueous NaOH (2 M, 1 ml). The mixture was allowed to warm to room temperature and stirred for 4 h. The mixture was then acidified with dilute HCl (5%, 7 ml), and the precipitate formed was collected by filtration. Recrystallization from methanol gave yellow–green fluorescing crystals. Plate-like crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in di­chloro­methane. 1H NMR (400MHz, DMSO-d6): δ 1.33 [s, 9H, C(CH3)3], 7.46 (t, 1H), 7.50 (d,2H), 7.79 (dd,2H), 8.13 (dt,3H), 9.50 (s,1H). 13C NMR (100MHz, DMSO-d6) δ 31.4, 35.1, 118.8, 121.8, 125.1, 125.8, 128.0, 129.0, 134.1, 139.3, 146.0, 153.2, 155.0, 173.3. Fluorescent emission maxima (CH3Cl, λex = 365 nm): λem = 525 nm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C,O) for the methyl and hydroxyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C19H18O3
Mr 294.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 15.9735 (19), 6.1467 (7), 16.963 (2)
β (°) 113.730 (1)
V3) 1524.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.19 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker 2014[Bruker (2014). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.849, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 15995, 3231, 2820
Rint 0.026
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.04
No. of reflections 3231
No. of parameters 203
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.23
Computer programs: APEX2, SAINT and XPREP (Bruker 2014[Bruker (2014). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

The flavonol, 3-hy­droxy-2-phenyl-4H-chromen-4-one (common name: 3-hy­droxy­flavone), and its derivatives are present in a wide variety of plants as phytochemical compounds (Havsteen, 1983; Aherne & O'Brien, 2002). They have been investigated for many years owing to their chemical, structural, biological and fluorescent properties (Smith et al., 1968; Sengupta & Kasha, 1979; Etter et al., 1986; Klymchenko & Demchenko, 2002; Pivovarenko et al., 2005; Choulier et al., 2010). The phenomenon of dual fluorescence due to Excited States Intra­molecular Proton Transfer (ESIPT) has attracted much attention (Dick, 1987), as compounds exhibiting such properties can be used as fluorescent probes for sensing and imaging. The fluorescence of flavonols has been shown to be related to the angle between the 4H-chromene-4-one moiety and the attached benzene ring (Klymchenko et al. 2003). The effect of the intra­molecular hydrogen bond of flavonols, with an OH group in position 3, for the stabilization of the molecular conformation is also important and this has been confirmed by theoretical calculations reported in a computational study on flavonoids (Aparicio, 2010). As a part of our search for new luminescent materials, we report herein on the synthesis and crystal structure of the title compound, the 4-tert-butyl­phenyl derivative of 3-hy­droxy­flavone.

Structural commentary top

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths are similar to those reported for other flavonols (Yoo et al., 2014; Serdiuk et al., 2013; Hino et al., 2013, 2011; Wera, Pivovarenko et al., 2011; Wera, Serdiuk et al., 2011, Wera et al., 2010). The mean plane of the 4H-chromene-4-one moiety (O3/C1–C9; r.m.s. deviation = 0.0191 Å) is twisted by 10.53 (8)° with respect to the benzene ring (C10–C16). This relative planarity typical of the structural features of flavonols is reinforced by two intra­molecular (C11—-H11···O3 and C15—-H15···O2) short contacts (Table 1 and Fig. 1). These intra­molecular contacts lead to the molecular planarity and increase the torsional barrier, improving the π-delocalization from the 4H-chromene-4-one moiety toward the benzene ring. The molecule also contains an intra­molecular O—H···O short contact (Table 1 and Fig. 1) with an S(5) ring motif.

Supra­molecular features top

In the crystal of the title compound, molecules are linked via pairs of O—H···O hydrogen bonds, forming inversion dimers with an R22(10) ring motif (Table 1 and Fig. 2). The dimers are linked by C—H···π inter­actions between neighbouring molecules, forming sheets parallel to (101); see Table 1 and Fig. 3.

Database survey top

A search of the Cambridge Structural Database (Version 5.36, February 2015; Groom & Allen, 2014) for 3-hydoxyflavone gave 15 hits. These include 3-hy­droxy­flavone itself (DUMFAS; Etter et al., 1986) and a number of para-substituted phenyl derivatives, such as the 4-amino­phenyl derivative (LUBBIV: Sun, 2015), two polymorphs of the 4-(di­methyl­amino)­phenyl derivative (BANJEH; BANJEH01: Hino et al., 2011) and two polymorphs of the 4-(di­ethyl­amino)­phenyl derivative (CEZDOC; CEZDOC01: Hino et al., 2013). Two polymorphs of the 4-hydroxphenyl derivative have also been reported (IJUCAS; Wera, Pivovarenko et al., 2011; IKAHIM: Wera, Serdiuk et al., 2011). Apart from 3-hy­droxy­flavone itself (DUMFAS) and the 4-amino­phenyl derivative (LUBBIV), in which the phenyl ring is inclined to the mean plane of the chromen-4-one moiety by 5.47 and 4.53°, respectively, this dihedral angle in the other compounds varies from 12.31 to 31.23°. Hence, in DUMFAS and LUBBIV there are also short intra­molecular C—H···O inter­actions, similar to those in the title compound. In the crystals of these two compounds, molecules are also linked via O—H···O hydrogen bonds, but form chains. along [001] for DUMFAS and along [100] for LUBBIV, rather than inversion dimers as in the crystal of the title compound.

Synthesis and crystallization top

The title compound was prepared by a modification of the procedure described by Qin et al. (2008). 2-Hy­droxy­aceto­phenone (1 mmol) was added to a suspension of the 4-tert-butyl­benzaldehyde (1 mmol) in ethanol (2 ml) and aqueous NaOH (6 M, 1 ml). The mixture was stirred at room temperature overnight. Then dilute acetic acid (30%) was added to the reaction mixture with stirring until the mixture was acidic and was cooled with an ice bath. The mixture was stirred for an additional 30 min at 273 K, and the solid precipitate obtained was collected by filtration. Hydrogen peroxide (30%, 2.6 mmol) was then added to an ice-cold suspension of the precipitate in ethanol (5 ml) and aqueous NaOH (2 M, 1 ml). The mixture was allowed to warm to room temperature and stirred for 4 h. The mixture was then acidified with dilute HCl (5%, 7 ml), and the precipitate formed was collected by filtration. Recrystallization from methanol gave yellow–green fluorescing crystals. Plate-like crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in di­chloro­methane. 1H NMR (400MHz, DMSO-d6): δ 1.33 [s, 9H, C(CH3)3], 7.46 (t, 1H), 7.50 (d,2H), 7.79 (dd,2H), 8.13 (dt,3H), 9.50 (s,1H). 13C NMR (100MHz, DMSO-d6) δ 31.4, 35.1, 118.8, 121.8, 125.1, 125.8, 128.0, 129.0, 134.1, 139.3, 146.0, 153.2, 155.0, 173.3. Fluorescent emission maxima (CH3Cl, λex = 365 nm): λem = 525 nm.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C,O) for the methyl and hydroxyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Aherne & O'Brien (2002); Aparicio (2010); Choulier et al. (2010); Dick (1987); Etter et al. (1986); Groom & Allen (2014); Havsteen (1983); Hino et al. (2011, 2013); Klymchenko & Demchenko (2002); Klymchenko et al. (2003); Pivovarenko et al. (2005); Qin et al. (2008); Sengupta & Kasha (1979); Serdiuk et al. (2013); Smith et al. (1968); Sun (2015); Wera et al. (2010); Wera, Pivovarenko & Błażejowski (2011); Wera, Serdiuk, Roshal & Błażejowski (2011); Yoo et al. (2014).

Computing details top

Data collection: APEX2 (Bruker 2014); cell refinement: SAINT (Bruker 2014); data reduction: SAINT and XPREP (Bruker 2014); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of the inversion dimer with an R22(10) ring motif. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) -x + 1, -y + 1, -z + 2.]
[Figure 3] Fig. 3. View of the crystal packing of the title compound. Dashed lines indicate the C—H···π interactions (ring centroids are shown as coloured spheres; see Table 1 for details). H atoms that do not participate in these interactions have been omitted for clarity.
2-(4-tert-Butylphenyl)-3-hydroxy-4H-chromen-4-one top
Crystal data top
C19H18O3F(000) = 624
Mr = 294.33Dx = 1.282 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.9735 (19) ÅCell parameters from 7083 reflections
b = 6.1467 (7) Åθ = 2.6–28.2°
c = 16.963 (2) ŵ = 0.09 mm1
β = 113.730 (1)°T = 200 K
V = 1524.7 (3) Å3Plate, yellow
Z = 40.20 × 0.19 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3231 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode2820 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.026
Detector resolution: 8.333 pixels mm-1θmax = 26.7°, θmin = 1.5°
ϕ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker 2014)
k = 77
Tmin = 0.849, Tmax = 0.928l = 2121
15995 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.6235P]
where P = (Fo2 + 2Fc2)/3
3231 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H18O3V = 1524.7 (3) Å3
Mr = 294.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.9735 (19) ŵ = 0.09 mm1
b = 6.1467 (7) ÅT = 200 K
c = 16.963 (2) Å0.20 × 0.19 × 0.06 mm
β = 113.730 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3231 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2014)
2820 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.928Rint = 0.026
15995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3231 reflectionsΔρmin = 0.23 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

4.7085 (0.0060) x + 3.2010 (0.0016) y + 10.4295 (0.0043) z = 14.3715 (0.0031)

* 0.0005 (0.0010) C1 * -0.0361 (0.0011) C2 * -0.0027 (0.0010) C3 * 0.0247 (0.0012) C4 * 0.0176 (0.0011) C5 * -0.0080 (0.0012) C6 * -0.0234 (0.0011) C7 * -0.0098 (0.0011) C8 * 0.0146 (0.0012) C9 * 0.0226 (0.0009) O3

Rms deviation of fitted atoms = 0.0191

6.5320 (0.0088) x + 2.3353 (0.0039) y + 10.0931 (0.0080) z = 15.2731 (0.0036)

Angle to previous plane (with approximate esd) = 10.53 ( 0.08 )

* -0.0146 (0.0010) C10 * 0.0082 (0.0011) C11 * 0.0057 (0.0011) C12 * -0.0134 (0.0011) C13 * 0.0071 (0.0011) C14 * 0.0068 (0.0011) C15

Rms deviation of fitted atoms = 0.0099

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71865 (9)0.1616 (2)1.00398 (8)0.0265 (3)
C20.64236 (9)0.2637 (2)1.00356 (8)0.0276 (3)
C30.59399 (9)0.1820 (2)1.05367 (8)0.0281 (3)
C40.62989 (9)0.0175 (2)1.10134 (8)0.0278 (3)
C50.58831 (10)0.1190 (3)1.15059 (9)0.0346 (3)
H50.53650.05391.15520.041*
C60.62214 (11)0.3121 (3)1.19211 (10)0.0381 (3)
H60.59370.38021.22520.046*
C70.69847 (10)0.4080 (2)1.18560 (9)0.0351 (3)
H70.72140.54161.21430.042*
C80.74088 (10)0.3116 (2)1.13819 (9)0.0324 (3)
H80.79290.37701.13410.039*
C90.70584 (9)0.1159 (2)1.09627 (8)0.0271 (3)
C100.77563 (9)0.2243 (2)0.95792 (8)0.0274 (3)
C110.83993 (10)0.0782 (2)0.95235 (9)0.0340 (3)
H110.84810.05870.98050.041*
C120.89195 (10)0.1298 (3)0.90651 (10)0.0362 (3)
H120.93490.02660.90370.043*
C130.88329 (9)0.3279 (2)0.86439 (9)0.0307 (3)
C140.82088 (11)0.4750 (3)0.87277 (11)0.0398 (4)
H140.81430.61380.84630.048*
C150.76821 (10)0.4262 (2)0.91811 (10)0.0372 (3)
H150.72650.53130.92220.045*
C160.94007 (10)0.3875 (3)0.81313 (9)0.0347 (3)
C170.98436 (16)0.1886 (3)0.79140 (15)0.0626 (6)
H17A1.01630.23330.75540.094*
H17B0.93700.08190.76020.094*
H17C1.02820.12310.84470.094*
C181.01612 (14)0.5414 (3)0.86712 (15)0.0606 (5)
H18A0.98940.67190.88080.091*
H18B1.05240.58280.83470.091*
H18C1.05550.46860.92060.091*
C190.87973 (14)0.4987 (5)0.72920 (14)0.0809 (8)
H19A0.85530.63420.74200.121*
H19B0.82900.40210.69580.121*
H19C0.91600.53160.69580.121*
O10.52607 (7)0.27779 (17)1.05437 (7)0.0367 (3)
O20.60997 (7)0.44503 (17)0.95608 (7)0.0359 (3)
H20.56490.49230.96440.054*
O30.74981 (6)0.02683 (15)1.04986 (6)0.0306 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0279 (6)0.0263 (6)0.0258 (6)0.0013 (5)0.0114 (5)0.0006 (5)
C20.0276 (6)0.0279 (7)0.0272 (6)0.0021 (5)0.0108 (5)0.0009 (5)
C30.0250 (6)0.0311 (7)0.0282 (6)0.0002 (5)0.0107 (5)0.0031 (5)
C40.0279 (6)0.0288 (7)0.0268 (6)0.0025 (5)0.0112 (5)0.0027 (5)
C50.0328 (7)0.0386 (8)0.0373 (7)0.0024 (6)0.0193 (6)0.0004 (6)
C60.0441 (8)0.0371 (8)0.0385 (8)0.0071 (6)0.0222 (7)0.0025 (6)
C70.0447 (8)0.0273 (7)0.0319 (7)0.0016 (6)0.0141 (6)0.0016 (6)
C80.0372 (7)0.0287 (7)0.0326 (7)0.0032 (6)0.0154 (6)0.0001 (5)
C90.0297 (6)0.0283 (7)0.0251 (6)0.0017 (5)0.0128 (5)0.0017 (5)
C100.0270 (6)0.0298 (7)0.0265 (6)0.0004 (5)0.0120 (5)0.0009 (5)
C110.0368 (7)0.0314 (7)0.0384 (7)0.0077 (6)0.0199 (6)0.0082 (6)
C120.0359 (7)0.0367 (8)0.0432 (8)0.0100 (6)0.0235 (7)0.0067 (6)
C130.0281 (6)0.0354 (7)0.0307 (7)0.0009 (5)0.0140 (5)0.0006 (5)
C140.0456 (9)0.0312 (8)0.0525 (9)0.0067 (6)0.0300 (8)0.0113 (7)
C150.0411 (8)0.0300 (7)0.0508 (9)0.0080 (6)0.0291 (7)0.0060 (6)
C160.0321 (7)0.0395 (8)0.0376 (7)0.0019 (6)0.0195 (6)0.0062 (6)
C170.0852 (14)0.0522 (11)0.0822 (14)0.0007 (10)0.0668 (13)0.0014 (10)
C180.0534 (11)0.0642 (12)0.0782 (13)0.0170 (9)0.0411 (10)0.0115 (10)
C190.0521 (11)0.144 (2)0.0597 (12)0.0286 (13)0.0358 (10)0.0514 (14)
O10.0309 (5)0.0397 (6)0.0455 (6)0.0085 (4)0.0214 (5)0.0056 (5)
O20.0327 (5)0.0376 (6)0.0433 (6)0.0125 (4)0.0215 (5)0.0132 (5)
O30.0333 (5)0.0289 (5)0.0352 (5)0.0068 (4)0.0198 (4)0.0062 (4)
Geometric parameters (Å, º) top
C1—C21.3682 (18)C11—H110.9500
C1—O31.3723 (16)C12—C131.390 (2)
C1—C101.4695 (18)C12—H120.9500
C2—O21.3502 (16)C13—C141.395 (2)
C2—C31.4493 (18)C13—C161.5323 (18)
C3—O11.2386 (16)C14—C151.382 (2)
C3—C41.4537 (19)C14—H140.9500
C4—C91.3888 (19)C15—H150.9500
C4—C51.4056 (19)C16—C181.521 (2)
C5—C61.375 (2)C16—C191.523 (2)
C5—H50.9500C16—C171.530 (2)
C6—C71.398 (2)C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C7—C81.376 (2)C17—H17C0.9800
C7—H70.9500C18—H18A0.9800
C8—C91.3952 (19)C18—H18B0.9800
C8—H80.9500C18—H18C0.9800
C9—O31.3629 (16)C19—H19A0.9800
C10—C151.395 (2)C19—H19B0.9800
C10—C111.3956 (19)C19—H19C0.9800
C11—C121.3840 (19)O2—H20.8400
C2—C1—O3120.60 (12)C12—C13—C14116.28 (13)
C2—C1—C10128.16 (12)C12—C13—C16122.81 (13)
O3—C1—C10111.22 (11)C14—C13—C16120.89 (13)
O2—C2—C1120.56 (12)C15—C14—C13122.42 (14)
O2—C2—C3117.97 (11)C15—C14—H14118.8
C1—C2—C3121.47 (12)C13—C14—H14118.8
O1—C3—C2121.12 (13)C14—C15—C10120.67 (13)
O1—C3—C4123.13 (12)C14—C15—H15119.7
C2—C3—C4115.74 (11)C10—C15—H15119.7
C9—C4—C5118.49 (13)C18—C16—C19109.58 (17)
C9—C4—C3119.46 (12)C18—C16—C17107.91 (15)
C5—C4—C3122.02 (12)C19—C16—C17108.29 (17)
C6—C5—C4120.36 (13)C18—C16—C13108.58 (13)
C6—C5—H5119.8C19—C16—C13109.96 (12)
C4—C5—H5119.8C17—C16—C13112.48 (13)
C5—C6—C7119.94 (13)C16—C17—H17A109.5
C5—C6—H6120.0C16—C17—H17B109.5
C7—C6—H6120.0H17A—C17—H17B109.5
C8—C7—C6120.97 (14)C16—C17—H17C109.5
C8—C7—H7119.5H17A—C17—H17C109.5
C6—C7—H7119.5H17B—C17—H17C109.5
C7—C8—C9118.55 (13)C16—C18—H18A109.5
C7—C8—H8120.7C16—C18—H18B109.5
C9—C8—H8120.7H18A—C18—H18B109.5
O3—C9—C4121.80 (12)C16—C18—H18C109.5
O3—C9—C8116.51 (12)H18A—C18—H18C109.5
C4—C9—C8121.69 (12)H18B—C18—H18C109.5
C15—C10—C11117.45 (12)C16—C19—H19A109.5
C15—C10—C1122.70 (12)C16—C19—H19B109.5
C11—C10—C1119.84 (12)H19A—C19—H19B109.5
C12—C11—C10121.02 (13)C16—C19—H19C109.5
C12—C11—H11119.5H19A—C19—H19C109.5
C10—C11—H11119.5H19B—C19—H19C109.5
C11—C12—C13122.10 (13)C2—O2—H2109.5
C11—C12—H12119.0C9—O3—C1120.86 (10)
C13—C12—H12119.0
O3—C1—C2—O2177.75 (11)O3—C1—C10—C15169.26 (13)
C10—C1—C2—O20.6 (2)C2—C1—C10—C11167.35 (14)
O3—C1—C2—C32.3 (2)O3—C1—C10—C1111.16 (18)
C10—C1—C2—C3179.29 (12)C15—C10—C11—C122.2 (2)
O2—C2—C3—O11.4 (2)C1—C10—C11—C12177.44 (13)
C1—C2—C3—O1178.52 (13)C10—C11—C12—C130.3 (2)
O2—C2—C3—C4178.03 (11)C11—C12—C13—C141.7 (2)
C1—C2—C3—C42.04 (19)C11—C12—C13—C16179.81 (14)
O1—C3—C4—C9179.28 (13)C12—C13—C14—C151.8 (2)
C2—C3—C4—C90.15 (18)C16—C13—C14—C15179.63 (14)
O1—C3—C4—C51.4 (2)C13—C14—C15—C100.0 (3)
C2—C3—C4—C5178.04 (12)C11—C10—C15—C142.0 (2)
C9—C4—C5—C60.4 (2)C1—C10—C15—C14177.57 (14)
C3—C4—C5—C6177.48 (13)C12—C13—C16—C18102.50 (18)
C4—C5—C6—C70.2 (2)C14—C13—C16—C1875.92 (19)
C5—C6—C7—C80.2 (2)C12—C13—C16—C19137.61 (19)
C6—C7—C8—C90.2 (2)C14—C13—C16—C1944.0 (2)
C5—C4—C9—O3179.91 (12)C12—C13—C16—C1716.8 (2)
C3—C4—C9—O32.13 (19)C14—C13—C16—C17164.73 (16)
C5—C4—C9—C80.4 (2)C4—C9—O3—C11.97 (19)
C3—C4—C9—C8177.60 (12)C8—C9—O3—C1177.77 (11)
C7—C8—C9—O3179.77 (12)C2—C1—O3—C90.30 (19)
C7—C8—C9—C40.0 (2)C10—C1—O3—C9178.94 (11)
C2—C1—C10—C1512.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.842.282.7262 (14)113
C11—H11···O30.952.322.6724 (17)101
C15—H15···O20.952.222.8508 (18)123
O2—H2···O1i0.841.962.7104 (14)148
C7—H7···Cgii0.952.593.407 (10)144
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.842.282.7262 (14)113
C11—H11···O30.952.322.6724 (17)101
C15—H15···O20.952.222.8508 (18)123
O2—H2···O1i0.841.962.7104 (14)148
C7—H7···Cgii0.952.593.407 (10)144
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC19H18O3
Mr294.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)15.9735 (19), 6.1467 (7), 16.963 (2)
β (°) 113.730 (1)
V3)1524.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.19 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2014)
Tmin, Tmax0.849, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
15995, 3231, 2820
Rint0.026
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.04
No. of reflections3231
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: APEX2 (Bruker 2014), SAINT (Bruker 2014), SAINT and XPREP (Bruker 2014), SHELXS2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

 

References

First citationAherne, S. A. & O'Brien, N. M. (2002). Nutrition, 18, 75–81.  CrossRef PubMed CAS Google Scholar
First citationAparicio, S. (2010). Int. J. Mol. Sci. 11, 2017–2038.  CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoulier, L., Shvadchak, V. V., Naidoo, A., Klymchenko, A. S., Mély, Y. & Altschuh, D. (2010). Anal. Biochem. 401, 188–195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDick, B. (1987). Ber. Bunsenges. Phys. Chem. 91, 1205–1209.  CrossRef CAS Google Scholar
First citationEtter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHavsteen, B. (1983). Biochem. Pharmacol. 32, 1141–1148.  CrossRef CAS PubMed Google Scholar
First citationHino, K., Nakajima, K., Kawahara, M., Furukawa, K. & Sekiya, H. (2013). Bull. Chem. Soc. Jpn, 86, 721–723.  CSD CrossRef CAS Google Scholar
First citationHino, K., Nakajima, K., Kawahara, M., Kiyota, I. & Sekiya, H. (2011). Bull. Chem. Soc. Jpn, 84, 1234–1236.  CSD CrossRef CAS Google Scholar
First citationKlymchenko, A. S. & Demchenko, A. P. (2002). J. Am. Chem. Soc. 124, 12372–12379.  CrossRef PubMed CAS Google Scholar
First citationKlymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787–792.  Web of Science CrossRef Google Scholar
First citationPivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2005). Anal. Chim. Acta, 545, 74–78.  Web of Science CrossRef CAS Google Scholar
First citationQin, C. X., Chen, X., Hughes, R. A., Williams, S. J. & Woodman, O. L. (2008). J. Med. Chem. 51, 1874–1884.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.  CrossRef CAS Web of Science Google Scholar
First citationSerdiuk, I. E., Wera, M., Roshal, A. D. & Błażejowski, J. (2013). Acta Cryst. E69, o895.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, M. A., Neumann, R. M. & Webb, R. A. (1968). J. Heterocycl. Chem. 5, 425–426.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X. (2015). Private communication (refcode LUBBIV). CCDC, Cambridge, England.  Google Scholar
First citationWera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E67, o264–o265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2010). Acta Cryst. E66, o3122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2011). Acta Cryst. E67, o440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoo, J. S., Lim, Y. & Koh, D. (2014). Acta Cryst. E70, o999–o1000.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 824-826
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds