organic compounds
E)-4,4′-(but-2-ene-1,4-diyl)bis(2-methoxyphenol)
of (aDepartment of Chemistry, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
*Correspondence e-mail: kyle-knight@utc.edu
The title compound, C18H20O4, was synthesized via the ruthenium-catalyzed alkene methathesis dimerization of eugenol. The whole molecule is generated by inversion symmetry; the center of inversion being located at the mid-point of the trans C=C bond. The phenol ring is inclined to the mean plane of the central C—C=C—C unit (r.m.s. deviation = 0.014 Å) by 68.83 (16)°. In the crystal, molecules are linked via O—H⋯O hydrogen bonds, involving the hydroxy and methoxy groups, forming undulating sheets parallel to (010).
Keywords: crystal structure; metathesis; dimerization of eugenol; hydrogen bonding.
CCDC reference: 1406832
1. Related literature
For a general review of alkene metathesis catalyzed by ruthenium ). For the second generation Grubbs ruthenium carbene catalyst, see: Scholl et al. (1999). For the synthesis of the title compound, see: Taber & Frankowski (2006).
see: Grubbs (20042. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1406832
10.1107/S2056989015011585/su5153sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015011585/su5153Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015011585/su5153Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989015011585/su5153Isup4.cml
The title compound was prepared from eugenol by alkene metathesis dimerization using the second generation Grubbs ruthenium carbene catalyst (Scholl et al., 1999) as described previously (Taber & Frankowski, 2006).
Crystal data, data collection and structure
details are summarized in Table 2. The hydroxyl H atom was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O). The C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.95 - 1.0 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq (C) for other H atoms.Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C18H20O4 | Dx = 1.291 Mg m−3 |
Mr = 300.34 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9944 reflections |
a = 4.8846 (2) Å | θ = 2.8–24.8° |
b = 10.7002 (4) Å | µ = 0.09 mm−1 |
c = 29.5666 (11) Å | T = 198 K |
V = 1545.33 (10) Å3 | Plate, colorless |
Z = 4 | 0.6 × 0.55 × 0.2 mm |
F(000) = 640 |
Bruker APEXII CCD diffractometer | 1199 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→5 |
Tmin = 0.927, Tmax = 1.000 | k = −12→12 |
25610 measured reflections | l = −35→35 |
1352 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0476P)2 + 0.352P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1352 reflections | Δρmax = 0.16 e Å−3 |
105 parameters | Δρmin = −0.13 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.009 (3) |
C18H20O4 | V = 1545.33 (10) Å3 |
Mr = 300.34 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 4.8846 (2) Å | µ = 0.09 mm−1 |
b = 10.7002 (4) Å | T = 198 K |
c = 29.5666 (11) Å | 0.6 × 0.55 × 0.2 mm |
Bruker APEXII CCD diffractometer | 1352 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1199 reflections with I > 2σ(I) |
Tmin = 0.927, Tmax = 1.000 | Rint = 0.036 |
25610 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.16 e Å−3 |
1352 reflections | Δρmin = −0.13 e Å−3 |
105 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3753 (2) | 0.94521 (9) | 0.20535 (3) | 0.0531 (3) | |
C1 | 0.1882 (3) | 1.04703 (13) | 0.20379 (5) | 0.0505 (4) | |
H1A | 0.2599 | 1.1120 | 0.1837 | 0.076* | |
H1B | 0.1646 | 1.0815 | 0.2343 | 0.076* | |
H1C | 0.0111 | 1.0178 | 0.1924 | 0.076* | |
C2 | 0.4437 (3) | 0.88991 (11) | 0.16499 (4) | 0.0395 (3) | |
C3 | 0.3285 (3) | 0.91684 (12) | 0.12337 (4) | 0.0454 (3) | |
H3 | 0.1922 | 0.9798 | 0.1211 | 0.054* | |
C4 | 0.4108 (3) | 0.85237 (13) | 0.08473 (4) | 0.0475 (4) | |
C5 | 0.2924 (3) | 0.88644 (16) | 0.03888 (4) | 0.0605 (4) | |
H5A | 0.3136 | 0.8146 | 0.0181 | 0.073* | |
H5B | 0.0941 | 0.9035 | 0.0422 | 0.073* | |
C6 | 0.4294 (3) | 0.99880 (15) | 0.01871 (4) | 0.0554 (4) | |
H6 | 0.4116 | 1.0754 | 0.0347 | 0.066* | |
C7 | 0.6459 (3) | 0.79875 (11) | 0.16851 (4) | 0.0419 (3) | |
O8 | 0.7636 (2) | 0.77137 (10) | 0.20946 (3) | 0.0556 (3) | |
H8 | 0.699 (3) | 0.8143 (16) | 0.2278 (6) | 0.067* | |
C9 | 0.6067 (3) | 0.76024 (14) | 0.08901 (4) | 0.0552 (4) | |
H9 | 0.6619 | 0.7143 | 0.0631 | 0.066* | |
C10 | 0.7244 (3) | 0.73365 (14) | 0.13057 (5) | 0.0536 (4) | |
H10 | 0.8598 | 0.6702 | 0.1329 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0688 (7) | 0.0527 (6) | 0.0378 (5) | 0.0162 (5) | −0.0078 (4) | −0.0042 (4) |
C1 | 0.0538 (8) | 0.0470 (8) | 0.0505 (8) | 0.0073 (6) | 0.0032 (6) | −0.0004 (6) |
C2 | 0.0455 (7) | 0.0381 (6) | 0.0349 (6) | −0.0030 (5) | −0.0011 (5) | 0.0016 (5) |
C3 | 0.0491 (8) | 0.0459 (7) | 0.0413 (7) | 0.0003 (6) | −0.0055 (5) | 0.0057 (6) |
C4 | 0.0534 (8) | 0.0541 (8) | 0.0349 (7) | −0.0139 (7) | −0.0006 (5) | 0.0057 (5) |
C5 | 0.0676 (10) | 0.0772 (10) | 0.0368 (7) | −0.0170 (8) | −0.0082 (6) | 0.0073 (6) |
C6 | 0.0660 (10) | 0.0653 (9) | 0.0348 (6) | −0.0031 (8) | −0.0081 (6) | 0.0054 (6) |
C7 | 0.0456 (7) | 0.0415 (7) | 0.0386 (6) | −0.0018 (5) | −0.0004 (5) | 0.0071 (5) |
O8 | 0.0644 (7) | 0.0597 (6) | 0.0426 (6) | 0.0163 (5) | −0.0077 (5) | 0.0057 (4) |
C9 | 0.0643 (9) | 0.0621 (9) | 0.0393 (7) | −0.0016 (7) | 0.0112 (6) | −0.0037 (6) |
C10 | 0.0564 (8) | 0.0544 (8) | 0.0500 (8) | 0.0109 (7) | 0.0084 (6) | 0.0038 (6) |
O1—C1 | 1.4228 (16) | C5—H5A | 0.9900 |
O1—C2 | 1.3732 (15) | C5—H5B | 0.9900 |
C1—H1A | 0.9800 | C5—C6 | 1.500 (2) |
C1—H1B | 0.9800 | C6—C6i | 1.304 (3) |
C1—H1C | 0.9800 | C6—H6 | 0.9500 |
C2—C3 | 1.3834 (17) | C7—O8 | 1.3720 (15) |
C2—C7 | 1.3921 (18) | C7—C10 | 1.3751 (19) |
C3—H3 | 0.9500 | O8—H8 | 0.777 (17) |
C3—C4 | 1.3938 (18) | C9—H9 | 0.9500 |
C4—C5 | 1.5183 (17) | C9—C10 | 1.386 (2) |
C4—C9 | 1.380 (2) | C10—H10 | 0.9500 |
C2—O1—C1 | 117.26 (10) | H5A—C5—H5B | 107.9 |
O1—C1—H1A | 109.5 | C6—C5—C4 | 112.18 (12) |
O1—C1—H1B | 109.5 | C6—C5—H5A | 109.2 |
O1—C1—H1C | 109.5 | C6—C5—H5B | 109.2 |
H1A—C1—H1B | 109.5 | C5—C6—H6 | 116.9 |
H1A—C1—H1C | 109.5 | C6i—C6—C5 | 126.11 (19) |
H1B—C1—H1C | 109.5 | C6i—C6—H6 | 116.9 |
O1—C2—C3 | 125.76 (12) | O8—C7—C2 | 120.87 (11) |
O1—C2—C7 | 114.17 (10) | O8—C7—C10 | 119.65 (12) |
C3—C2—C7 | 120.07 (11) | C10—C7—C2 | 119.46 (11) |
C2—C3—H3 | 119.7 | C7—O8—H8 | 108.7 (13) |
C2—C3—C4 | 120.59 (13) | C4—C9—H9 | 119.5 |
C4—C3—H3 | 119.7 | C4—C9—C10 | 121.05 (12) |
C3—C4—C5 | 120.21 (13) | C10—C9—H9 | 119.5 |
C9—C4—C3 | 118.58 (12) | C7—C10—C9 | 120.23 (13) |
C9—C4—C5 | 121.19 (13) | C7—C10—H10 | 119.9 |
C4—C5—H5A | 109.2 | C9—C10—H10 | 119.9 |
C4—C5—H5B | 109.2 | ||
O1—C2—C3—C4 | −178.58 (12) | C3—C2—C7—C10 | −1.74 (19) |
O1—C2—C7—O8 | −1.02 (18) | C3—C4—C5—C6 | 80.50 (17) |
O1—C2—C7—C10 | 177.67 (12) | C3—C4—C9—C10 | −1.4 (2) |
C1—O1—C2—C3 | −6.20 (19) | C4—C5—C6—C6i | 116.9 (2) |
C1—O1—C2—C7 | 174.44 (11) | C4—C9—C10—C7 | 0.4 (2) |
C2—C3—C4—C5 | −177.32 (12) | C5—C4—C9—C10 | 176.73 (13) |
C2—C3—C4—C9 | 0.8 (2) | C7—C2—C3—C4 | 0.75 (19) |
C2—C7—C10—C9 | 1.2 (2) | O8—C7—C10—C9 | 179.89 (13) |
C3—C2—C7—O8 | 179.57 (12) | C9—C4—C5—C6 | −97.55 (17) |
Symmetry code: (i) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···O1ii | 0.78 (2) | 2.57 (2) | 3.1784 (13) | 136 (1) |
Symmetry code: (ii) x+1/2, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8···O1i | 0.778 (17) | 2.571 (17) | 3.1784 (13) | 136.2 (14) |
Symmetry code: (i) x+1/2, y, −z+1/2. |
Acknowledgements
We are grateful to the National Science Foundation MRI Program (CHE-0951711), the Grote Chemistry Fund at the University of Tennessee at Chattanooga, and to Materia Inc. of Pasadena, CA, USA, for their generous support of our work.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grubbs, R. H. (2004). Tetrahedron, 60, 7117–7140. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953–956. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Taber, D. F. & Frankowski, K. J. (2006). J. Chem. Educ. 83, 283–284. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.