organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o501-o502

Crystal structure of (2-hy­dr­oxy-5-methyl­phen­yl)(3-methyl-1-phenyl-1H-pyrazolo­[3,4-b]pyridin-5-yl)methanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 June 2015; accepted 15 June 2015; online 24 June 2015)

In the title compound, C21H17N3O2, the 2-hy­droxy-5-methyl­phenyl ring and the phenyl ring are inclined to the mean plane of the pyrazolo­pyridine moiety (r.m.s. deviation = 0.013 Å) by 52.89 (9) and 19.63 (8)°, respectively, and to each other by 42.83 (11)°. In the mol­ecule, there are intra­molecular O—H⋯O and C—H⋯N hydrogen bonds, both enclosing an S(6) ring motif. In the crystal, mol­ecules stack along the c-axis direction, forming columns within which there are a number of ππ inter­actions [the inter-centroid distances vary from 3.5278 (10) to 3.8625 (10) Å]. The columns are linked by C—H⋯π inter­actions, forming slabs parallel to (100).

1. Related literature

For some details of the biological activity of pyrazole derivatives, see: Burger & Iorio (1979[Burger, J. C. & Iorio, L. C. (1979). Annu. Rep. Med. Chem. 14, 27-64.], 1980[Burger, J. C. & Iorio, L. C. (1980). Annu. Rep. Med. Chem. 15, 26-50.]); Kalluraya & Ramesh (2001[Kalluraya, B. & Ramesh, M. C. (2001). Indian J. Heterocycl. Chem. 11, 171-175.]); Windholz (2003[Windholz, M. (2003). In The Merck Index, 9th ed. Rahaway, New Jersey: Merck & Co.]). For the anti­bacterial activity of propenones, see: Holla et al. (1994[Holla, B. S., Kalluraya, B., Sridhar, K., Drake, E., Thomas, L., Bhandary, K. K. & Levine, M. (1994). Eur. J. Med. Chem. 29, 301-308.]). For details of the pyrazole moiety found in blockbuster drugs, see: Penning et al. (1997[Penning, T. D., Talley, J. J., Bertenshaw, S. R., Carter, J. S., Collins, P. W., Docter, S., Graneto, M. J., Lee, L. F., Malecha, J. W., Miyashiro, J. M., Rogers, R. S., Rogier, D. J., Yu, S. S., Anderson, G. D., Burton, E. G., Cogburn, J. N., Gregory, S. A., Koboldt, C. M., Perkins, W. E., Seibert, K., Veenhuizen, A. W., Zhang, Y. Y. & Isakson, P. C. (1997). J. Med. Chem. 40, 1347-1365.]) for celecobix; Terrett et al. (1996[Terrett, N. K., Bell, A. S., Brown, D. & Ellis, P. (1996). Bioorg. Med. Chem. Lett. 6, 1819-1824.]) for sildenafil; Seltzman et al. (1995[Seltzman, H. H., Carroll, F. I., Burgess, J. P., Wyrick, C. D. & Burch, D. F. (1995). J. Chem. Soc. Chem. Commun. pp. 1549-1550.]) for rimonabant.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H17N3O2

  • Mr = 343.38

  • Monoclinic, P 21 /c

  • a = 14.7164 (7) Å

  • b = 16.7306 (9) Å

  • c = 7.0733 (3) Å

  • β = 94.857 (2)°

  • V = 1735.29 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 10536 measured reflections

  • 3055 independent reflections

  • 2001 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.04

  • 3055 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of rings C1–C4/C6/C7 and C16–C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.91 2.613 (2) 143
C21—H21⋯N1 0.93 2.41 3.019 (3) 123
C5—H5ACg3i 0.96 2.97 3.703 (3) 134
C20—H20⋯Cg4i 0.93 2.80 3.608 (2) 146
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comments top

Pyrazole derivatives are reported to possess varied biological activities such as anti-inflammatory (Windholz, 2003), analgesic (Windholz, 2003), hypoglysemic, seditive (Burger et al., 1979), hypnotic (Burger et al., 1980), anti­fungal and anti­bacterial (Kalluraya & Ramesh, 2001) activities. Propenones are also found to show good anti­bacterial activity (Holla et al., 1994). The pyrazole moiety is found in blockbuster drugs such as celecobix (Penning et al., 1997), sildenafil (Terrett et al., 1996) and rimonabant (Seltzmann et al., 1995).

The molecular structure of the title molecule is shown in Fig. 1. The 2-hy­droxy-5-methyl­phenyl ring (C1—C4/C6/C7) and the phenyl ring (C16—C21) are inclined to the mean plane of the pyrazolo­pyridine moiety (N1—N3/C9—C14; r.m.s. deviation = 0.013 Å) by 52.89 (9) and 19.63 (8) °, respectively, and to each other by 42.83 (11) °. The molecular conformation is partly determined by the intra­molecular O—H···O hydrogen bond with an S(6) ring motif, and a C—H···N short contact enclosing a second S(6) ring motif (Table 1 and Fig. 1).

In the crystal, the molecules stack along the c axis direction forming columns, within which there are a number of ππ inter­actions [Cg1···Cg1i = 3.7660 (10) Å, inter­planar distance = 3.4748 (7) Å, slippage = 1.452 Å; Cg1··· Cg1ii = 3.5278 (10) Å, inter­planar distance = 3.4477 (7) Å, slippage = 0.747 Å; Cg1···Cg2i = 3.6162 (10) Å; Cg1···Cg2ii = 3.8625 (10) Å; Cg1 and Cg2 are the centroids of rings N2/N3/C11—C14 and N1/C9—C13, respectively; symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1, -y, -z + 1]. The columns are linked by C—H···π inter­actions (Table 1 and Fig. 2) forming slabs parallel to (100).

Synthesis and crystallization top

To a mixture of 3-formyl­chromone and 5-amino-3-methyl-1-phenyl pyrazole in ethanol, was added a catalytic amount of In(OTf)3 and the resulting mixture was refluxed for ca. 20 min. The precipitate formed was filtered and dried under vacuum to afford the pure title product (yield: 87%). It was recrystallized from ethanol and DMSO-D6 by slow evaporation over 48 h, giving colourless block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The O- and C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: O—H = 0.82 Å, C–H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(O,C) for the hydroxyl and methyl H atoms and 1.2Ueq(C) for other H atoms.

Related literature top

For some details of the biological activity of pyrazole derivatives, see: Burger & Iorio (1979, 1980); Kalluraya & Ramesh (2001); Windholz (2003). For the antibacterial activity of propenones, see: Holla et al. (1994). For details of the pyrazole moiety found in blockbuster drugs, see: Penning et al. (1997) for celecobix; Terrett et al. (1996) for sildenafil; Seltzman et al. (1995) for rimonabant.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines (see Table 1 for details)
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. The O—H···O and C—H···π interactions are shown as dashed lines (see Table 1 for details).
(2-Hydroxy-5-methylphenyl)(3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-5-yl)methanone top
Crystal data top
C21H17N3O2F(000) = 720
Mr = 343.38Dx = 1.314 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2001 reflections
a = 14.7164 (7) Åθ = 1.4–25.0°
b = 16.7306 (9) ŵ = 0.09 mm1
c = 7.0733 (3) ÅT = 293 K
β = 94.857 (2)°Block, colourless
V = 1735.29 (14) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3055 independent reflections
Radiation source: fine-focus sealed tube2001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.979, Tmax = 0.983k = 1919
10536 measured reflectionsl = 58
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.1547P]
where P = (Fo2 + 2Fc2)/3
3055 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H17N3O2V = 1735.29 (14) Å3
Mr = 343.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7164 (7) ŵ = 0.09 mm1
b = 16.7306 (9) ÅT = 293 K
c = 7.0733 (3) Å0.25 × 0.20 × 0.20 mm
β = 94.857 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3055 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2001 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.036
10536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
3055 reflectionsΔρmin = 0.18 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05588 (15)0.09390 (16)0.0431 (4)0.0621 (7)
C20.00532 (16)0.13878 (17)0.0938 (4)0.0746 (8)
H20.05520.15090.07810.090*
C30.04416 (17)0.16526 (16)0.2520 (4)0.0724 (8)
H30.00900.19500.34200.087*
C40.13449 (15)0.14903 (14)0.2816 (3)0.0559 (6)
C50.17618 (19)0.17799 (17)0.4560 (4)0.0787 (8)
H5A0.18720.23440.44580.118*
H5B0.13520.16740.56600.118*
H5C0.23280.15060.46750.118*
C60.18475 (14)0.10574 (13)0.1436 (3)0.0491 (6)
H60.24540.09450.16020.059*
C70.14798 (13)0.07811 (13)0.0206 (3)0.0482 (6)
C80.20198 (14)0.03024 (15)0.1632 (3)0.0517 (6)
C90.30348 (13)0.03373 (13)0.1803 (3)0.0420 (5)
C100.35019 (13)0.10607 (14)0.1603 (3)0.0451 (5)
H100.31500.15110.12890.054*
C110.48557 (12)0.04804 (12)0.2241 (2)0.0358 (5)
C120.44789 (12)0.02748 (12)0.2511 (2)0.0364 (5)
C130.35323 (13)0.03413 (13)0.2305 (3)0.0426 (5)
H130.32450.08260.25000.051*
C140.52392 (13)0.07907 (13)0.2957 (3)0.0409 (5)
C150.52419 (16)0.16642 (14)0.3369 (3)0.0585 (6)
H15A0.58580.18580.34710.088*
H15B0.48950.19400.23600.088*
H15C0.49750.17570.45420.088*
C160.64979 (12)0.09625 (12)0.2357 (2)0.0376 (5)
C170.73654 (13)0.07915 (14)0.3181 (3)0.0484 (6)
H170.74750.03260.38810.058*
C180.80646 (14)0.13251 (17)0.2945 (3)0.0618 (7)
H180.86500.12110.34780.074*
C190.79085 (16)0.20215 (17)0.1933 (3)0.0639 (7)
H190.83840.23750.17830.077*
C200.70447 (15)0.21893 (15)0.1146 (3)0.0548 (6)
H200.69350.26620.04730.066*
C210.63382 (14)0.16638 (13)0.1345 (3)0.0448 (5)
H210.57560.17800.08000.054*
N10.44001 (10)0.11614 (10)0.1820 (2)0.0426 (4)
N20.57850 (10)0.03981 (10)0.2511 (2)0.0378 (4)
N30.60079 (11)0.03890 (10)0.2955 (2)0.0421 (4)
O10.01363 (10)0.06702 (12)0.1927 (3)0.0870 (6)
H10.04970.04110.26290.130*
O20.16431 (10)0.01281 (12)0.2757 (2)0.0770 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0363 (13)0.0691 (19)0.0801 (16)0.0013 (12)0.0012 (12)0.0142 (14)
C20.0360 (13)0.078 (2)0.108 (2)0.0116 (13)0.0070 (14)0.0114 (17)
C30.0540 (16)0.0674 (19)0.0910 (19)0.0122 (14)0.0217 (14)0.0046 (16)
C40.0514 (14)0.0499 (16)0.0636 (14)0.0071 (12)0.0111 (11)0.0101 (12)
C50.0879 (19)0.076 (2)0.0695 (16)0.0080 (16)0.0083 (14)0.0057 (14)
C60.0362 (11)0.0506 (15)0.0591 (13)0.0039 (10)0.0035 (10)0.0120 (11)
C70.0296 (11)0.0521 (15)0.0622 (13)0.0028 (10)0.0007 (10)0.0120 (11)
C80.0384 (12)0.0626 (17)0.0542 (13)0.0040 (11)0.0044 (10)0.0059 (12)
C90.0336 (11)0.0484 (14)0.0438 (11)0.0006 (10)0.0012 (8)0.0025 (10)
C100.0368 (12)0.0459 (14)0.0516 (12)0.0073 (10)0.0020 (9)0.0009 (10)
C110.0317 (10)0.0394 (13)0.0361 (10)0.0031 (9)0.0016 (8)0.0025 (9)
C120.0366 (11)0.0377 (13)0.0348 (9)0.0001 (9)0.0025 (8)0.0048 (9)
C130.0425 (12)0.0451 (14)0.0407 (10)0.0082 (10)0.0062 (9)0.0048 (9)
C140.0447 (12)0.0382 (13)0.0396 (10)0.0015 (10)0.0030 (9)0.0029 (9)
C150.0648 (15)0.0400 (15)0.0693 (14)0.0025 (12)0.0020 (12)0.0037 (11)
C160.0337 (11)0.0435 (14)0.0363 (10)0.0009 (9)0.0071 (8)0.0068 (9)
C170.0373 (12)0.0518 (15)0.0558 (12)0.0066 (11)0.0023 (9)0.0054 (11)
C180.0319 (12)0.076 (2)0.0775 (16)0.0011 (12)0.0064 (11)0.0127 (15)
C190.0485 (15)0.072 (2)0.0747 (16)0.0190 (13)0.0219 (12)0.0100 (14)
C200.0579 (15)0.0539 (16)0.0541 (12)0.0116 (12)0.0134 (11)0.0017 (11)
C210.0432 (12)0.0477 (15)0.0432 (11)0.0032 (10)0.0026 (9)0.0001 (10)
N10.0340 (9)0.0412 (11)0.0520 (10)0.0031 (8)0.0003 (7)0.0012 (8)
N20.0324 (9)0.0364 (11)0.0443 (9)0.0032 (8)0.0013 (7)0.0005 (8)
N30.0403 (10)0.0367 (11)0.0490 (9)0.0066 (8)0.0020 (7)0.0006 (8)
O10.0393 (10)0.1199 (18)0.1043 (14)0.0003 (10)0.0207 (9)0.0018 (12)
O20.0431 (9)0.1069 (16)0.0816 (11)0.0112 (10)0.0087 (8)0.0238 (11)
Geometric parameters (Å, º) top
C1—O11.349 (3)C11—C121.399 (3)
C1—C21.391 (3)C12—C131.393 (3)
C1—C71.403 (3)C12—C141.427 (3)
C2—C31.372 (4)C13—H130.9300
C2—H20.9300C14—N31.316 (2)
C3—C41.390 (3)C14—C151.490 (3)
C3—H30.9300C15—H15A0.9600
C4—C61.379 (3)C15—H15B0.9600
C4—C51.504 (3)C15—H15C0.9600
C5—H5A0.9600C16—C211.384 (3)
C5—H5B0.9600C16—C171.388 (3)
C5—H5C0.9600C16—N21.423 (2)
C6—C71.401 (3)C17—C181.383 (3)
C6—H60.9300C17—H170.9300
C7—C81.468 (3)C18—C191.376 (3)
C8—O21.239 (3)C18—H180.9300
C8—C91.489 (3)C19—C201.373 (3)
C9—C131.381 (3)C19—H190.9300
C9—C101.405 (3)C20—C211.378 (3)
C10—N11.328 (2)C20—H200.9300
C10—H100.9300C21—H210.9300
C11—N11.343 (2)N2—N31.387 (2)
C11—N21.372 (2)O1—H10.8200
O1—C1—C2118.1 (2)C11—C12—C14105.31 (17)
O1—C1—C7122.7 (2)C9—C13—C12117.71 (19)
C2—C1—C7119.2 (2)C9—C13—H13121.1
C3—C2—C1120.5 (2)C12—C13—H13121.1
C3—C2—H2119.8N3—C14—C12110.41 (18)
C1—C2—H2119.8N3—C14—C15120.87 (19)
C2—C3—C4122.0 (2)C12—C14—C15128.72 (19)
C2—C3—H3119.0C14—C15—H15A109.5
C4—C3—H3119.0C14—C15—H15B109.5
C6—C4—C3117.3 (2)H15A—C15—H15B109.5
C6—C4—C5121.2 (2)C14—C15—H15C109.5
C3—C4—C5121.5 (2)H15A—C15—H15C109.5
C4—C5—H5A109.5H15B—C15—H15C109.5
C4—C5—H5B109.5C21—C16—C17120.13 (19)
H5A—C5—H5B109.5C21—C16—N2120.56 (16)
C4—C5—H5C109.5C17—C16—N2119.28 (18)
H5A—C5—H5C109.5C18—C17—C16118.9 (2)
H5B—C5—H5C109.5C18—C17—H17120.5
C4—C6—C7122.6 (2)C16—C17—H17120.5
C4—C6—H6118.7C19—C18—C17121.1 (2)
C7—C6—H6118.7C19—C18—H18119.5
C6—C7—C1118.5 (2)C17—C18—H18119.5
C6—C7—C8121.67 (18)C20—C19—C18119.5 (2)
C1—C7—C8119.8 (2)C20—C19—H19120.3
O2—C8—C7120.86 (19)C18—C19—H19120.3
O2—C8—C9118.09 (19)C19—C20—C21120.6 (2)
C7—C8—C9121.03 (19)C19—C20—H20119.7
C13—C9—C10118.74 (18)C21—C20—H20119.7
C13—C9—C8119.7 (2)C20—C21—C16119.81 (19)
C10—C9—C8121.43 (19)C20—C21—H21120.1
N1—C10—C9126.03 (19)C16—C21—H21120.1
N1—C10—H10117.0C10—N1—C11113.03 (18)
C9—C10—H10117.0C11—N2—N3109.93 (16)
N1—C11—N2126.11 (18)C11—N2—C16130.97 (17)
N1—C11—C12126.89 (17)N3—N2—C16119.08 (15)
N2—C11—C12107.00 (17)C14—N3—N2107.36 (15)
C13—C12—C11117.53 (18)C1—O1—H1109.5
C13—C12—C14137.2 (2)
O1—C1—C2—C3177.8 (2)C11—C12—C13—C91.6 (2)
C7—C1—C2—C32.0 (4)C14—C12—C13—C9178.63 (19)
C1—C2—C3—C40.3 (4)C13—C12—C14—N3179.9 (2)
C2—C3—C4—C60.9 (4)C11—C12—C14—N30.1 (2)
C2—C3—C4—C5179.7 (2)C13—C12—C14—C150.7 (4)
C3—C4—C6—C70.3 (3)C11—C12—C14—C15179.57 (19)
C5—C4—C6—C7179.8 (2)C21—C16—C17—C181.1 (3)
C4—C6—C7—C11.3 (3)N2—C16—C17—C18176.83 (17)
C4—C6—C7—C8178.3 (2)C16—C17—C18—C190.9 (3)
O1—C1—C7—C6177.3 (2)C17—C18—C19—C200.0 (4)
C2—C1—C7—C62.4 (3)C18—C19—C20—C210.7 (3)
O1—C1—C7—C80.3 (4)C19—C20—C21—C160.4 (3)
C2—C1—C7—C8179.5 (2)C17—C16—C21—C200.5 (3)
C6—C7—C8—O2158.7 (2)N2—C16—C21—C20177.45 (17)
C1—C7—C8—O218.2 (3)C9—C10—N1—C111.0 (3)
C6—C7—C8—C923.0 (3)N2—C11—N1—C10178.78 (16)
C1—C7—C8—C9160.0 (2)C12—C11—N1—C102.1 (3)
O2—C8—C9—C1336.0 (3)N1—C11—N2—N3178.98 (17)
C7—C8—C9—C13145.7 (2)C12—C11—N2—N30.31 (19)
O2—C8—C9—C10139.2 (2)N1—C11—N2—C162.9 (3)
C7—C8—C9—C1039.1 (3)C12—C11—N2—C16177.79 (16)
C13—C9—C10—N11.3 (3)C21—C16—N2—C1119.2 (3)
C8—C9—C10—N1176.53 (18)C17—C16—N2—C11162.90 (18)
N1—C11—C12—C130.8 (3)C21—C16—N2—N3158.80 (17)
N2—C11—C12—C13179.92 (15)C17—C16—N2—N319.1 (2)
N1—C11—C12—C14179.01 (17)C12—C14—N3—N20.0 (2)
N2—C11—C12—C140.27 (19)C15—C14—N3—N2179.44 (17)
C10—C9—C13—C122.6 (3)C11—N2—N3—C140.23 (19)
C8—C9—C13—C12177.90 (16)C16—N2—N3—C14178.13 (14)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of rings C1–C4/C6/C7 and C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.912.613 (2)143
C21—H21···N10.932.413.019 (3)123
C5—H5A···Cg3i0.962.973.703 (3)134
C20—H20···Cg4i0.932.803.608 (2)146
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of rings C1–C4/C6/C7 and C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.912.613 (2)143
C21—H21···N10.932.413.019 (3)123
C5—H5A···Cg3i0.962.973.703 (3)134
C20—H20···Cg4i0.932.803.608 (2)146
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurger, J. C. & Iorio, L. C. (1979). Annu. Rep. Med. Chem. 14, 27–64.  Google Scholar
First citationBurger, J. C. & Iorio, L. C. (1980). Annu. Rep. Med. Chem. 15, 26–50.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolla, B. S., Kalluraya, B., Sridhar, K., Drake, E., Thomas, L., Bhandary, K. K. & Levine, M. (1994). Eur. J. Med. Chem. 29, 301–308.  CrossRef CAS Google Scholar
First citationKalluraya, B. & Ramesh, M. C. (2001). Indian J. Heterocycl. Chem. 11, 171–175.  CAS Google Scholar
First citationPenning, T. D., Talley, J. J., Bertenshaw, S. R., Carter, J. S., Collins, P. W., Docter, S., Graneto, M. J., Lee, L. F., Malecha, J. W., Miyashiro, J. M., Rogers, R. S., Rogier, D. J., Yu, S. S., Anderson, G. D., Burton, E. G., Cogburn, J. N., Gregory, S. A., Koboldt, C. M., Perkins, W. E., Seibert, K., Veenhuizen, A. W., Zhang, Y. Y. & Isakson, P. C. (1997). J. Med. Chem. 40, 1347–1365.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSeltzman, H. H., Carroll, F. I., Burgess, J. P., Wyrick, C. D. & Burch, D. F. (1995). J. Chem. Soc. Chem. Commun. pp. 1549–1550.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerrett, N. K., Bell, A. S., Brown, D. & Ellis, P. (1996). Bioorg. Med. Chem. Lett. 6, 1819–1824.  CrossRef Web of Science Google Scholar
First citationWindholz, M. (2003). In The Merck Index, 9th ed. Rahaway, New Jersey: Merck & Co.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o501-o502
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds