organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o498-o499

Crystal structure of N-[(morpholin-4-yl)(thio­phen-2-yl)meth­yl]benzamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, National College, Tiruchirappalli 620 001, Tamil Nadu, India, bPG and Research Dept of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu 620 001, India, cSri Arumugam Group of Institutions, Tholudhur, Tamil Nadu, India, and dDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 June 2015; accepted 16 June 2015; online 20 June 2015)

In the title compound, C16H18N2O2S, the morpholine ring adopts a chair conformation. The thio­phene ring makes a dihedral angle of 63.54 (14)° with the mean plane of the four C atoms [maximum deviation = 0.010 (3) Å] of the morpholine ring. The benzamide ring is disordered, with four C atoms occupying two sets of sites, with a refined occupancy ratio of 0.502 (4):0.498 (4). These two rings are inclined to one another by 85.2 (4)° and to the thio­phene ring by 72.7 (3) and 13.0 (3)° for the major and minor components, respectively. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains along [001].

1. Related literature

For the biological activity of benzamide derivatives, see: Carbonnelle et al. (2005[Carbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546-556.]); Hatzelmann & Schudt (2001[Hatzelmann, A. & Schudt, C. (2001). J. Pharmacol. Exp. Ther. 297, 267-279.]); Simonini et al. (2006[Simonini, M. V., Camargo, L. M., Dong, E., Maloku, E., Veldic, M., Costa, E. & Guidotti, A. (2006). Proc. Natl Acad. Sci. USA, 103, 1587-1592.]); Suzuki et al. (2005[Suzuki, K., Nagasawa, H., Uto, Y., Sugimoto, Y., Noguchi, K., Wakida, M., Wierzba, K., Terada, T., Asao, T., Yamada, Y., Kitazato, K. & Hori, H. (2005). Bioorg. Med. Chem. 13, 4014-4021.]); Zhou et al. (1999[Zhou, Y., Xu, L., Wu, Y. & Liu, B. (1999). Chemom. Intell. Lab. Syst. 45, 95-100.]); For related structures see: Muruganandam et al. (2009[Muruganandam, L., Rajeswari, S., Tamilvendan, D., Ramkumar, V. & Prabhu, G. V. (2009). Acta Cryst. E65, o578.]); Khan et al. (2012[Khan, M. R., Khan, A., Tahir, M. N., Adeel, M. & Ahmad, S. (2012). Acta Cryst. E68, o653.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H18N2O2S

  • Mr = 302.38

  • Monoclinic, P 21 /c

  • a = 16.5283 (11) Å

  • b = 9.9049 (7) Å

  • c = 9.6831 (5) Å

  • β = 99.056 (2)°

  • V = 1565.47 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.920, Tmax = 0.959

  • 11905 measured reflections

  • 3836 independent reflections

  • 2744 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.182

  • S = 1.04

  • 3836 reflections

  • 227 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.02 2.878 (2) 173
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Synthesis and crystallization top

To an alkaline solution of benzamide (0.025 mol, 3.03 g), morpholine (0.025 mol, 2.2 ml) was added drop wise in ice cold conditions and the contents were stirred for 5 min. Thio­phene-2-aldehyde (0.025 mol, 2.3 ml) was then added drop wise and stirring was continued for 1 h. The Mannich base product formed was filtered, washed with water and recrystallized with ethanol (yield: 75%; m.p.: 433 K) giving colourless block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Four C atoms in the benzamide ring (C2/C2A, C3/C3A, C5/C5A, and C6/C6A) are disordered over two positions with a refined occupany ratio of 0.502 (5):0.48 (5). All of the H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.2Ueq(N,C).

Comment top

Benzamide and its derivatives, have recently received great attention because of their wide range of pharmacological activities, such as anti-inflammatory, immunomodulatory (Hatzelmann & Schudt, 2001; Carbonnelle et al., 2005), anti-tumoral (Suzuki et al., 2005), anti­psychotic (Simonini et al., 2006), and anti­allergic (Zhou et al., 1999).

The geometric parameters of the title compound (Fig. 1) agree well with those reported for similar structures (Muruganandam et al., 2009; Khan et al., 2012). The morpholine ring adopts a chair conformation. The thio­phene ring makes a dihedral angle of 63.54 (14) ° with the mean plane of the four C atoms (maximum deviation 0.010 (3) Å) of the morpholine ring. The benzamide ring is disordered with four C atoms occupying two positions, with a refined occupancy ratio of 0.502 (5):0.498 (5). These two rings are inclined to one another by 85.2 (4) ° and to the thio­phene ring by 72.7 (3) and 13.0 (3) °, for the major and minor component, respectively.

In the crystal, molecules are linked via N—H···O hydrogen bonds forming chains along [001]; see Table 1 and Fig. 2

Related literature top

For the biological activity of benzamide derivatives, see: Carbonnelle et al. (2005); Hatzelmann & Schudt (2001); Simonini et al. (2006); Suzuki et al. (2005); Zhou et al. (1999); For related structures see: Muruganandam et al. (2009); Khan et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The minor component of the disordered benzamide ring is shown with dashed lines.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details). The C-bound H atoms and the minor component of the disordered benzamide ring have been omitted for clarity.
N-[(Morpholin-4-yl)(thiophen-2-yl)methyl]benzamide top
Crystal data top
C16H18N2O2SF(000) = 640
Mr = 302.38Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3836 reflections
a = 16.5283 (11) Åθ = 2.4–28.3°
b = 9.9049 (7) ŵ = 0.21 mm1
c = 9.6831 (5) ÅT = 295 K
β = 99.056 (2)°Block, colourless
V = 1565.47 (17) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3836 independent reflections
Radiation source: fine-focus sealed tube2744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 0 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω and ϕ scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.920, Tmax = 0.959l = 127
11905 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.097P)2 + 0.5504P]
where P = (Fo2 + 2Fc2)/3
3836 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.62 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
C16H18N2O2SV = 1565.47 (17) Å3
Mr = 302.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.5283 (11) ŵ = 0.21 mm1
b = 9.9049 (7) ÅT = 295 K
c = 9.6831 (5) Å0.40 × 0.30 × 0.20 mm
β = 99.056 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3836 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2744 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.959Rint = 0.024
11905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.182H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
3836 reflectionsΔρmin = 0.41 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.94818 (4)0.28631 (7)0.23066 (8)0.0622 (3)
N20.81748 (10)0.05848 (16)0.16552 (16)0.0345 (4)
O20.81001 (12)0.19318 (16)0.0245 (2)0.0610 (5)
O10.66536 (11)0.2032 (3)0.37090 (16)0.0734 (7)
N10.70424 (10)0.21935 (18)0.16023 (16)0.0365 (4)
H10.68970.23650.07280.044*
C140.82300 (13)0.4243 (2)0.1121 (2)0.0406 (5)
H140.76980.45230.07840.049*
C70.64812 (12)0.2222 (2)0.2448 (2)0.0402 (5)
C10.56136 (13)0.2450 (2)0.1788 (2)0.0450 (5)
C20.5166 (4)0.3348 (8)0.2408 (8)0.087 (2)0.502 (4)
H20.54040.38540.31740.105*0.502 (4)
C60.5297 (3)0.1744 (7)0.0642 (6)0.0662 (16)0.502 (4)
H60.56260.11870.01920.079*0.502 (4)
C2A0.5393 (3)0.3477 (7)0.0839 (7)0.0745 (18)0.498 (4)
H2A0.57980.40240.05700.089*0.498 (4)
C6A0.4971 (4)0.1642 (9)0.2132 (8)0.093 (3)0.498 (4)
H6A0.50960.09440.27720.112*0.498 (4)
C150.89612 (15)0.5008 (2)0.1046 (3)0.0502 (5)
H150.89540.58520.06240.060*
C130.84490 (11)0.29981 (19)0.1788 (2)0.0342 (4)
C80.79002 (11)0.1877 (2)0.21266 (19)0.0329 (4)
H80.79550.18310.31480.039*
C160.96545 (15)0.4401 (2)0.1637 (3)0.0570 (6)
H161.01720.47810.16760.068*
C90.81880 (14)0.0498 (2)0.0153 (2)0.0432 (5)
H9A0.85090.12350.01380.052*
H9B0.76350.05690.03550.052*
C100.85569 (17)0.0830 (2)0.0167 (3)0.0549 (6)
H10A0.85720.08880.11630.066*
H10B0.91160.08810.03190.066*
C120.77106 (14)0.0547 (2)0.2094 (2)0.0463 (5)
H12A0.71430.04840.16490.056*
H12B0.77250.05160.30980.056*
C110.80761 (16)0.1865 (2)0.1691 (3)0.0557 (6)
H11A0.86280.19560.22000.067*
H11B0.77530.26120.19550.067*
C40.3980 (2)0.2798 (6)0.0732 (5)0.1096 (16)
H40.34280.29330.03880.132*
C30.4339 (4)0.3488 (11)0.1858 (11)0.114 (3)0.502 (4)
H30.40230.40840.22890.137*0.502 (4)
C50.4464 (4)0.1872 (11)0.0152 (8)0.106 (3)0.502 (4)
H50.42240.13260.05800.127*0.502 (4)
C3A0.4572 (4)0.3710 (10)0.0275 (8)0.101 (3)0.498 (4)
H3A0.44160.44070.03540.121*0.498 (4)
C5A0.4167 (4)0.1852 (13)0.1551 (11)0.114 (3)0.498 (4)
H5A0.37620.12790.17770.136*0.498 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0364 (3)0.0508 (4)0.0969 (6)0.0011 (2)0.0025 (3)0.0151 (3)
N20.0359 (8)0.0349 (8)0.0319 (8)0.0025 (6)0.0033 (6)0.0022 (6)
O20.0749 (12)0.0380 (9)0.0652 (11)0.0012 (8)0.0042 (9)0.0067 (7)
O10.0502 (10)0.142 (2)0.0284 (8)0.0135 (11)0.0070 (7)0.0040 (9)
N10.0306 (8)0.0520 (10)0.0258 (7)0.0022 (7)0.0014 (6)0.0014 (7)
C140.0478 (10)0.0426 (11)0.0307 (9)0.0071 (8)0.0041 (8)0.0024 (8)
C70.0352 (10)0.0549 (12)0.0300 (9)0.0002 (8)0.0039 (7)0.0081 (8)
C10.0327 (10)0.0642 (14)0.0385 (10)0.0004 (9)0.0069 (8)0.0069 (10)
C20.046 (3)0.120 (6)0.096 (5)0.021 (3)0.013 (3)0.035 (4)
C60.038 (2)0.097 (4)0.062 (3)0.006 (2)0.000 (2)0.020 (3)
C2A0.050 (3)0.085 (4)0.086 (4)0.016 (3)0.004 (3)0.003 (3)
C6A0.046 (3)0.141 (7)0.091 (5)0.020 (4)0.006 (3)0.019 (5)
C150.0563 (12)0.0358 (11)0.0592 (13)0.0036 (9)0.0115 (11)0.0041 (10)
C130.0313 (9)0.0365 (10)0.0339 (9)0.0006 (7)0.0029 (7)0.0036 (7)
C80.0297 (8)0.0420 (10)0.0261 (8)0.0008 (7)0.0019 (7)0.0001 (7)
C160.0446 (12)0.0454 (13)0.0821 (18)0.0088 (10)0.0136 (11)0.0029 (12)
C90.0565 (12)0.0396 (11)0.0332 (10)0.0059 (9)0.0061 (9)0.0000 (8)
C100.0717 (16)0.0452 (13)0.0471 (12)0.0089 (11)0.0072 (11)0.0057 (10)
C120.0441 (11)0.0448 (12)0.0488 (12)0.0082 (9)0.0039 (9)0.0100 (9)
C110.0565 (14)0.0397 (12)0.0677 (16)0.0052 (10)0.0004 (12)0.0114 (11)
C40.0342 (15)0.188 (5)0.102 (3)0.011 (2)0.0034 (17)0.028 (3)
C30.050 (4)0.155 (9)0.141 (8)0.040 (5)0.027 (4)0.010 (6)
C50.048 (3)0.179 (9)0.082 (5)0.027 (4)0.018 (3)0.008 (5)
C3A0.072 (4)0.129 (7)0.094 (5)0.047 (5)0.010 (4)0.002 (5)
C5A0.039 (3)0.176 (10)0.122 (7)0.020 (5)0.000 (4)0.008 (7)
Geometric parameters (Å, º) top
S1—C161.697 (2)C6A—H6A0.9300
S1—C131.7071 (19)C15—C161.340 (3)
N2—C81.455 (2)C15—H150.9300
N2—C121.459 (2)C13—C81.502 (3)
N2—C91.461 (2)C8—H80.9800
O2—C111.408 (3)C16—H160.9300
O2—C101.420 (3)C9—C101.503 (3)
O1—C71.223 (3)C9—H9A0.9700
N1—C71.331 (3)C9—H9B0.9700
N1—C81.463 (2)C10—H10A0.9700
N1—H10.8600C10—H10B0.9700
C14—C131.413 (3)C12—C111.516 (3)
C14—C151.438 (3)C12—H12A0.9700
C14—H140.9300C12—H12B0.9700
C7—C11.493 (3)C11—H11A0.9700
C1—C61.345 (6)C11—H11B0.9700
C1—C21.356 (6)C4—C5A1.235 (11)
C1—C2A1.380 (7)C4—C31.344 (11)
C1—C6A1.411 (7)C4—C51.392 (10)
C2—C31.394 (9)C4—C3A1.451 (11)
C2—H20.9300C4—H40.9300
C6—C51.391 (7)C3—H30.9300
C6—H60.9300C5—H50.9300
C2A—C3A1.400 (8)C3A—H3A0.9300
C2A—H2A0.9300C5A—H5A0.9300
C6A—C5A1.375 (10)
C16—S1—C1392.16 (11)C15—C16—H16123.8
C8—N2—C12112.35 (15)S1—C16—H16123.8
C8—N2—C9114.73 (15)N2—C9—C10109.09 (17)
C12—N2—C9109.61 (16)N2—C9—H9A109.9
C11—O2—C10110.06 (18)C10—C9—H9A109.9
C7—N1—C8121.48 (15)N2—C9—H9B109.9
C7—N1—H1119.3C10—C9—H9B109.9
C8—N1—H1119.3H9A—C9—H9B108.3
C13—C14—C15109.02 (19)O2—C10—C9111.3 (2)
C13—C14—H14125.5O2—C10—H10A109.4
C15—C14—H14125.5C9—C10—H10A109.4
O1—C7—N1122.37 (19)O2—C10—H10B109.4
O1—C7—C1120.54 (19)C9—C10—H10B109.4
N1—C7—C1117.06 (17)H10A—C10—H10B108.0
C6—C1—C2122.5 (4)N2—C12—C11109.75 (18)
C6—C1—C2A78.9 (4)N2—C12—H12A109.7
C2—C1—C2A72.9 (5)C11—C12—H12A109.7
C6—C1—C6A72.0 (4)N2—C12—H12B109.7
C2—C1—C6A77.6 (5)C11—C12—H12B109.7
C2A—C1—C6A116.5 (4)H12A—C12—H12B108.2
C6—C1—C7119.8 (3)O2—C11—C12111.78 (19)
C2—C1—C7117.6 (3)O2—C11—H11A109.3
C2A—C1—C7122.2 (3)C12—C11—H11A109.3
C6A—C1—C7121.4 (4)O2—C11—H11B109.3
C1—C2—C3117.8 (7)C12—C11—H11B109.3
C1—C2—H2121.1H11A—C11—H11B107.9
C3—C2—H2121.1C5A—C4—C380.2 (7)
C1—C6—C5118.0 (6)C5A—C4—C570.0 (7)
C1—C6—H6121.0C3—C4—C5117.0 (5)
C5—C6—H6121.0C5A—C4—C3A123.7 (5)
C1—C2A—C3A121.3 (6)C3—C4—C3A72.4 (6)
C1—C2A—H2A119.4C5—C4—C3A80.2 (5)
C3A—C2A—H2A119.4C5A—C4—H4118.1
C5A—C6A—C1122.2 (7)C3—C4—H4120.1
C5A—C6A—H6A118.9C5—C4—H4123.0
C1—C6A—H6A118.9C3A—C4—H4118.1
C16—C15—C14114.3 (2)C4—C3—C2122.8 (7)
C16—C15—H15122.8C4—C3—H3118.6
C14—C15—H15122.8C2—C3—H3118.6
C14—C13—C8128.68 (17)C6—C5—C4121.6 (6)
C14—C13—S1112.05 (15)C6—C5—H5119.2
C8—C13—S1119.20 (14)C4—C5—H5119.2
N2—C8—N1114.37 (15)C2A—C3A—C4115.9 (7)
N2—C8—C13110.65 (14)C2A—C3A—H3A122.0
N1—C8—C13110.57 (16)C4—C3A—H3A122.0
N2—C8—H8106.9C4—C5A—C6A120.4 (8)
N1—C8—H8106.9C4—C5A—H5A119.8
C13—C8—H8106.9C6A—C5A—H5A119.8
C15—C16—S1112.44 (18)
C8—N1—C7—O12.6 (3)C9—N2—C8—C1359.9 (2)
C8—N1—C7—C1175.38 (18)C7—N1—C8—N2111.0 (2)
O1—C7—C1—C6130.9 (4)C7—N1—C8—C13123.3 (2)
N1—C7—C1—C647.1 (4)C14—C13—C8—N2130.5 (2)
O1—C7—C1—C247.1 (5)S1—C13—C8—N252.7 (2)
N1—C7—C1—C2134.9 (5)C14—C13—C8—N12.7 (3)
O1—C7—C1—C2A133.5 (4)S1—C13—C8—N1179.57 (13)
N1—C7—C1—C2A48.5 (4)C14—C15—C16—S10.7 (3)
O1—C7—C1—C6A44.8 (5)C13—S1—C16—C150.3 (2)
N1—C7—C1—C6A133.1 (5)C8—N2—C9—C10174.63 (17)
C6—C1—C2—C32.8 (10)C12—N2—C9—C1057.9 (2)
C2A—C1—C2—C367.0 (8)C11—O2—C10—C959.3 (3)
C6A—C1—C2—C356.0 (8)N2—C9—C10—O259.6 (3)
C7—C1—C2—C3175.2 (6)C8—N2—C12—C11174.71 (17)
C2—C1—C6—C55.1 (9)C9—N2—C12—C1156.5 (2)
C2A—C1—C6—C566.4 (7)C10—O2—C11—C1257.7 (3)
C6A—C1—C6—C556.4 (7)N2—C12—C11—O256.9 (2)
C7—C1—C6—C5172.8 (5)C5A—C4—C3—C264.2 (10)
C6—C1—C2A—C3A64.4 (7)C5—C4—C3—C22.7 (14)
C2—C1—C2A—C3A65.0 (7)C3A—C4—C3—C266.0 (10)
C6A—C1—C2A—C3A1.1 (9)C1—C2—C3—C41.6 (14)
C7—C1—C2A—C3A177.3 (5)C1—C6—C5—C46.3 (11)
C6—C1—C6A—C5A66.7 (8)C5A—C4—C5—C672.3 (9)
C2—C1—C6A—C5A63.9 (9)C3—C4—C5—C65.1 (12)
C2A—C1—C6A—C5A0.4 (10)C3A—C4—C5—C659.2 (8)
C7—C1—C6A—C5A178.9 (7)C1—C2A—C3A—C41.0 (10)
C13—C14—C15—C161.6 (3)C5A—C4—C3A—C2A1.0 (11)
C15—C14—C13—C8178.82 (19)C3—C4—C3A—C2A63.8 (7)
C15—C14—C13—S11.8 (2)C5—C4—C3A—C2A58.7 (7)
C16—S1—C13—C141.24 (17)C3—C4—C5A—C6A58.5 (9)
C16—S1—C13—C8178.59 (17)C5—C4—C5A—C6A65.1 (9)
C12—N2—C8—N160.4 (2)C3A—C4—C5A—C6A2.6 (14)
C9—N2—C8—N165.7 (2)C1—C6A—C5A—C42.3 (14)
C12—N2—C8—C13173.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.878 (2)173
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.878 (2)173
Symmetry code: (i) x, y+1/2, z1/2.
 

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546–556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHatzelmann, A. & Schudt, C. (2001). J. Pharmacol. Exp. Ther. 297, 267–279.  Web of Science PubMed CAS Google Scholar
First citationKhan, M. R., Khan, A., Tahir, M. N., Adeel, M. & Ahmad, S. (2012). Acta Cryst. E68, o653.  CSD CrossRef IUCr Journals Google Scholar
First citationMuruganandam, L., Rajeswari, S., Tamilvendan, D., Ramkumar, V. & Prabhu, G. V. (2009). Acta Cryst. E65, o578.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimonini, M. V., Camargo, L. M., Dong, E., Maloku, E., Veldic, M., Costa, E. & Guidotti, A. (2006). Proc. Natl Acad. Sci. USA, 103, 1587–1592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, K., Nagasawa, H., Uto, Y., Sugimoto, Y., Noguchi, K., Wakida, M., Wierzba, K., Terada, T., Asao, T., Yamada, Y., Kitazato, K. & Hori, H. (2005). Bioorg. Med. Chem. 13, 4014–4021.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, Y., Xu, L., Wu, Y. & Liu, B. (1999). Chemom. Intell. Lab. Syst. 45, 95–100.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o498-o499
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds