organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-5-di­ethyl­amino-2-({[4-(di­methyl­amino)­phen­yl]imino}­meth­yl)phenol

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Chemistry, Chikkanna Government Arts College, Tiruppur 641 602, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 June 2015; accepted 19 June 2015; online 24 June 2015)

The title Schiff base compound, C19H25N3O, is approximately planar, with a dihedral angle of 9.03 (13)° between the planes of the aromatic rings, and has an E conformation about the N=C bond. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond, with an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming sheets parallel to the bc plane.

1. Related literature

For biological activities of Schiff base derivatives, see: Savaliya et al. (2010[Savaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267-271.]); Xu et al. (2012[Xu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S.-P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928-932.]). For the structures of similar compounds, see: Manvizhi et al. (2011[Manvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.]); Thirugnanasundar et al. (2011[Thirugnanasundar, A., Suresh, J., Ramu, A. & RajaGopal, G. (2011). Acta Cryst. E67, o2303.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H25N3O

  • Mr = 311.42

  • Monoclinic, P 21

  • a = 8.8201 (7) Å

  • b = 7.8850 (7) Å

  • c = 13.0639 (10) Å

  • β = 108.407 (3)°

  • V = 862.06 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.26 × 0.22 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 13009 measured reflections

  • 3825 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.03

  • 3825 reflections

  • 214 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C3–C8 and C10–C15, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.85 2.585 (3) 148
C11—H11⋯Cg1i 0.93 2.71 3.517 (3) 145
C17—H17BCg2ii 0.96 2.90 3.743 (5) 147
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Structural commentary top

Schiff base derivatives are known to exhibit anti­microbial (Savaliya et al., 2010) and anti­bacterial (Xu et al., 2012) activities. Herein we report on the synthesis and the crystal structure of a new Schiff base compound.

The molecular structure of the title compound is illustrated in Fg. 1. The geometric parameters are comparable to those reported for similar structures (Manvizhi et al., 2011; Thirugnanasundar et al., 2011). The dihedral angle between the benzene rings (C3—C8) and (C10—C15) is 9.03 (13)°. The molecular structure is stabilized by an intra­molecular O—H···N hydrogen bond (Table 1 and Fig. 1).

In the crystal, molecules are linked by C—H···π inter­actions forming sheets parallel to the bc plane (Table 1 and Fig. 2).

Synthesis and crystallization top

To an ethanol solution (10 ml) of 5-(di­ethyl­amino)-2-hy­droxy­benzaldehyde (96.5 mg, 0.5 mol) was added N1,N1-di­methyl­benzene-1,4-di­amine (68 mg, 0.5 mol). The mixture was stirred and 2 to 3 drops of glacial acetic acid were added. Stirring was continued for 30 mins and then the reaction mixture was refluxed for 2 h. On completion of the reaction, monitored by TLC, the mixture was allowed to cool to room temperature and the solid yellow precipitate that formed was filtered, dried, and recrystallized from DMF, giving colourless block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined using riding model: O—H = 0.82 Å, C—H = 0.93 - 0.97 Å with Uiso(H) = 1.5Ueq(O,C) for the hydroxyl and methyl H atoms and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of the atoms in bonds N3—C16, N3—C18 and N1—C2 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command, and the C16—C17 bond distance was restrained to 1.54 (1) Å.

Related literature top

For biological activities of Schiff base derivatives, see: Savaliya et al. (2010); Xu et al. (2012). For the structures of similar compounds, see: Manvizhi et al. (2011); Thirugnanasundar et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular O—H..N hydrogen bonds is shown as a dashd lines (see Table 1 for details).
[Figure 2] Fig. 2. A view along the a axis of the crystal apcking of the title compound. The O—H..N and C-H···π interactions are illustrated by dashed lines (see Table 1 for details).
(E)-5-Diethylamino-2-({[4-(dimethylamino)phenyl]imino}methyl)phenol top
Crystal data top
C19H25N3OF(000) = 336
Mr = 311.42Dx = 1.200 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4428 reflections
a = 8.8201 (7) Åθ = 2.4–27.2°
b = 7.8850 (7) ŵ = 0.08 mm1
c = 13.0639 (10) ÅT = 295 K
β = 108.407 (3)°Block, colourless
V = 862.06 (12) Å30.26 × 0.22 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3825 independent reflections
Radiation source: fine-focus sealed tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scanθmax = 27.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.981, Tmax = 0.985k = 1010
13009 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.1538P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3825 reflectionsΔρmax = 0.29 e Å3
214 parametersΔρmin = 0.16 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (4)
Crystal data top
C19H25N3OV = 862.06 (12) Å3
Mr = 311.42Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.8201 (7) ŵ = 0.08 mm1
b = 7.8850 (7) ÅT = 295 K
c = 13.0639 (10) Å0.26 × 0.22 × 0.20 mm
β = 108.407 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3825 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2438 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.027
13009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0526 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3825 reflectionsΔρmin = 0.16 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4431 (4)0.6814 (5)0.2015 (2)0.0780 (10)
H1A0.34840.62530.15730.117*
H1B0.52130.68400.16440.117*
H1C0.41710.79530.21590.117*
C20.6641 (4)0.5264 (6)0.3287 (3)0.0902 (12)
H2A0.73160.58670.39010.135*
H2B0.70390.54050.26880.135*
H2C0.66350.40810.34590.135*
C30.4220 (3)0.5850 (3)0.3736 (2)0.0502 (6)
C40.2713 (3)0.6598 (4)0.3525 (2)0.0547 (7)
H40.22750.71800.28800.066*
C50.1861 (3)0.6502 (4)0.42371 (19)0.0512 (6)
H50.08600.70080.40670.061*
C60.2487 (3)0.5648 (3)0.52175 (18)0.0444 (6)
C70.3965 (3)0.4922 (3)0.5425 (2)0.0508 (6)
H70.44050.43520.60750.061*
C80.4820 (3)0.5003 (4)0.4715 (2)0.0537 (7)
H80.58160.44830.48890.064*
C90.0435 (3)0.6249 (4)0.59847 (19)0.0481 (6)
H90.00340.69750.54110.058*
C100.0294 (3)0.6066 (3)0.68154 (19)0.0462 (6)
C110.1669 (3)0.6947 (3)0.6784 (2)0.0537 (7)
H110.21500.76260.61880.064*
C120.2347 (3)0.6864 (4)0.7586 (2)0.0596 (8)
H120.32780.74670.75240.072*
C130.1648 (3)0.5871 (4)0.8507 (2)0.0528 (6)
C140.0279 (3)0.4940 (3)0.8547 (2)0.0523 (7)
H140.01980.42550.91410.063*
C150.0370 (3)0.5025 (3)0.7722 (2)0.0472 (6)
C160.1784 (4)0.4511 (5)1.0194 (3)0.0834 (10)
H16A0.27020.41761.04030.100*
H16B0.13930.35200.99150.100*
C170.0541 (5)0.5166 (6)1.1125 (3)0.1089 (14)
H17A0.03890.54321.09250.163*
H17B0.02740.43271.16860.163*
H17C0.09170.61731.13800.163*
C180.3507 (4)0.7080 (5)0.9409 (3)0.0835 (10)
H18A0.33750.73261.01600.100*
H18B0.33720.81310.90620.100*
C190.5106 (4)0.6420 (8)0.8890 (4)0.1178 (15)
H19A0.52230.61290.81560.177*
H19B0.58810.72670.89050.177*
H19C0.52700.54280.92680.177*
N10.5063 (3)0.5915 (4)0.30117 (18)0.0693 (7)
N20.1707 (2)0.5451 (3)0.60028 (16)0.0495 (5)
N30.2261 (3)0.5836 (4)0.9344 (2)0.0826 (9)
O10.1678 (2)0.4075 (3)0.77919 (17)0.0695 (6)
H10.20100.43080.72890.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.097 (2)0.090 (3)0.0568 (17)0.0042 (19)0.0384 (16)0.0063 (17)
C20.0743 (17)0.127 (3)0.082 (2)0.0100 (19)0.0428 (18)0.012 (2)
C30.0561 (14)0.0511 (15)0.0454 (13)0.0092 (13)0.0189 (11)0.0004 (12)
C40.0608 (16)0.0587 (17)0.0431 (13)0.0034 (14)0.0143 (12)0.0113 (13)
C50.0487 (13)0.0557 (16)0.0487 (14)0.0064 (12)0.0148 (11)0.0060 (13)
C60.0510 (14)0.0410 (14)0.0418 (13)0.0028 (12)0.0154 (11)0.0013 (11)
C70.0506 (14)0.0535 (16)0.0453 (14)0.0033 (13)0.0110 (11)0.0073 (12)
C80.0494 (14)0.0554 (16)0.0544 (16)0.0018 (12)0.0137 (12)0.0038 (13)
C90.0505 (14)0.0473 (15)0.0436 (13)0.0018 (13)0.0107 (11)0.0001 (11)
C100.0455 (13)0.0444 (14)0.0467 (13)0.0009 (11)0.0116 (10)0.0012 (11)
C110.0547 (14)0.0533 (16)0.0496 (14)0.0138 (12)0.0113 (12)0.0110 (12)
C120.0529 (14)0.066 (2)0.0604 (16)0.0188 (13)0.0188 (13)0.0095 (14)
C130.0533 (14)0.0548 (16)0.0530 (14)0.0039 (13)0.0207 (11)0.0075 (13)
C140.0543 (15)0.0523 (16)0.0506 (15)0.0101 (13)0.0167 (12)0.0147 (13)
C150.0403 (12)0.0443 (14)0.0554 (15)0.0053 (11)0.0129 (11)0.0050 (12)
C160.086 (2)0.093 (3)0.081 (2)0.0042 (18)0.0414 (19)0.0168 (16)
C170.126 (3)0.098 (3)0.097 (3)0.010 (3)0.028 (3)0.008 (3)
C180.080 (2)0.107 (3)0.075 (2)0.0190 (17)0.0400 (18)0.0039 (19)
C190.094 (3)0.134 (4)0.131 (4)0.014 (3)0.043 (3)0.015 (3)
N10.0737 (14)0.083 (2)0.0611 (15)0.0044 (13)0.0357 (13)0.0146 (14)
N20.0530 (12)0.0515 (14)0.0459 (11)0.0007 (10)0.0184 (9)0.0030 (10)
N30.0769 (16)0.112 (2)0.0696 (16)0.0288 (15)0.0381 (13)0.0210 (15)
O10.0666 (12)0.0777 (14)0.0737 (14)0.0302 (11)0.0356 (10)0.0283 (11)
Geometric parameters (Å, º) top
C1—N11.432 (4)C11—C121.363 (4)
C1—H1A0.9600C11—H110.9300
C1—H1B0.9600C12—C131.404 (4)
C1—H1C0.9600C12—H120.9300
C2—N11.419 (4)C13—N31.364 (3)
C2—H2A0.9600C13—C141.400 (3)
C2—H2B0.9600C14—C151.373 (4)
C2—H2C0.9600C14—H140.9300
C3—N11.377 (3)C15—O11.354 (3)
C3—C81.390 (4)C16—C171.451 (5)
C3—C41.400 (4)C16—N31.485 (4)
C4—C51.370 (4)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C5—C61.397 (3)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C6—C71.370 (3)C17—H17C0.9600
C6—N21.413 (3)C18—C191.454 (5)
C7—C81.370 (4)C18—N31.495 (4)
C7—H70.9300C18—H18A0.9700
C8—H80.9300C18—H18B0.9700
C9—N21.280 (3)C19—H19A0.9600
C9—C101.433 (3)C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C10—C111.386 (3)O1—H10.8200
C10—C151.407 (3)
N1—C1—H1A109.5N3—C13—C14121.0 (2)
N1—C1—H1B109.5N3—C13—C12121.3 (2)
H1A—C1—H1B109.5C14—C13—C12117.7 (2)
N1—C1—H1C109.5C15—C14—C13120.9 (2)
H1A—C1—H1C109.5C15—C14—H14119.5
H1B—C1—H1C109.5C13—C14—H14119.5
N1—C2—H2A109.5O1—C15—C14118.5 (2)
N1—C2—H2B109.5O1—C15—C10119.9 (2)
H2A—C2—H2B109.5C14—C15—C10121.6 (2)
N1—C2—H2C109.5C17—C16—N3109.7 (3)
H2A—C2—H2C109.5C17—C16—H16A109.7
H2B—C2—H2C109.5N3—C16—H16A109.7
N1—C3—C8121.2 (2)C17—C16—H16B109.7
N1—C3—C4122.3 (2)N3—C16—H16B109.7
C8—C3—C4116.4 (2)H16A—C16—H16B108.2
C5—C4—C3122.2 (2)C16—C17—H17A109.5
C5—C4—H4118.9C16—C17—H17B109.5
C3—C4—H4118.9H17A—C17—H17B109.5
C4—C5—C6120.4 (2)C16—C17—H17C109.5
C4—C5—H5119.8H17A—C17—H17C109.5
C6—C5—H5119.8H17B—C17—H17C109.5
C7—C6—C5117.3 (2)C19—C18—N3111.1 (3)
C7—C6—N2117.5 (2)C19—C18—H18A109.4
C5—C6—N2125.2 (2)N3—C18—H18A109.4
C8—C7—C6122.6 (2)C19—C18—H18B109.4
C8—C7—H7118.7N3—C18—H18B109.4
C6—C7—H7118.7H18A—C18—H18B108.0
C7—C8—C3121.0 (2)C18—C19—H19A109.5
C7—C8—H8119.5C18—C19—H19B109.5
C3—C8—H8119.5H19A—C19—H19B109.5
N2—C9—C10122.5 (2)C18—C19—H19C109.5
N2—C9—H9118.8H19A—C19—H19C109.5
C10—C9—H9118.8H19B—C19—H19C109.5
C11—C10—C15116.4 (2)C3—N1—C2120.8 (2)
C11—C10—C9121.6 (2)C3—N1—C1120.2 (2)
C15—C10—C9121.9 (2)C2—N1—C1118.6 (2)
C12—C11—C10123.1 (2)C9—N2—C6123.9 (2)
C12—C11—H11118.5C13—N3—C16121.5 (3)
C10—C11—H11118.5C13—N3—C18121.1 (3)
C11—C12—C13120.3 (2)C16—N3—C18117.4 (2)
C11—C12—H12119.8C15—O1—H1109.5
C13—C12—H12119.8
N1—C3—C4—C5178.6 (3)C13—C14—C15—C101.1 (4)
C8—C3—C4—C50.3 (4)C11—C10—C15—O1177.5 (3)
C3—C4—C5—C60.5 (4)C9—C10—C15—O14.4 (4)
C4—C5—C6—C70.2 (4)C11—C10—C15—C142.3 (4)
C4—C5—C6—N2179.1 (3)C9—C10—C15—C14175.8 (3)
C5—C6—C7—C80.3 (4)C8—C3—N1—C26.4 (5)
N2—C6—C7—C8178.7 (2)C4—C3—N1—C2174.8 (3)
C6—C7—C8—C30.5 (4)C8—C3—N1—C1179.2 (3)
N1—C3—C8—C7179.0 (3)C4—C3—N1—C12.1 (4)
C4—C3—C8—C70.2 (4)C10—C9—N2—C6177.7 (2)
N2—C9—C10—C11179.7 (2)C7—C6—N2—C9170.0 (2)
N2—C9—C10—C151.7 (4)C5—C6—N2—C911.0 (4)
C15—C10—C11—C121.4 (4)C14—C13—N3—C1615.8 (5)
C9—C10—C11—C12176.7 (3)C12—C13—N3—C16165.5 (3)
C10—C11—C12—C130.8 (4)C14—C13—N3—C18167.5 (3)
C11—C12—C13—N3176.7 (3)C12—C13—N3—C1811.3 (5)
C11—C12—C13—C142.1 (4)C17—C16—N3—C1397.4 (4)
N3—C13—C14—C15177.6 (3)C17—C16—N3—C1885.7 (4)
C12—C13—C14—C151.2 (4)C19—C18—N3—C1391.4 (4)
C13—C14—C15—O1178.8 (3)C19—C18—N3—C1685.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C3-C8 and C10-C15, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.852.585 (3)148
C11—H11···Cg1i0.932.713.517 (3)145
C17—H17B···Cg2ii0.962.903.743 (5)147
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C3-C8 and C10-C15, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.852.585 (3)148
C11—H11···Cg1i0.932.713.517 (3)145
C17—H17B···Cg2ii0.962.903.743 (5)147
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267–271.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirugnanasundar, A., Suresh, J., Ramu, A. & RajaGopal, G. (2011). Acta Cryst. E67, o2303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S.-P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928–932.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds