organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o512-o513

Crystal structure of 4-(6-chloro-4-oxo-4H-chromen-3-yl)-2-methyl­amino-3-nitro-4H,5H-pyrano[3,2-c]chromen-5-one chloro­form monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 June 2015; accepted 20 June 2015; online 27 June 2015)

In the title compound, C23H14Cl4N2O7, the pyran ring has an envelope conformation with the methine C atom as the flap. The chromene rings are almost planar (r.m.s. deviations of 0.027 and 0.018 Å) and their mean planes are inclined to one another by 85.61 (10)°. The mean planes of the pyran ring and the chromene ring fused to it are inclined to one another by 7.41 (13)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond, generating an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(12) ring motif. The dimers are linked by pairs of C—H⋯O hydrogen bonds, enclosing R22(18) ring motifs, forming chains along [010]. Within the chains there are C—H⋯π inter­actions. The chains are linked via slipped parallel ππ inter­actions, forming a three-dimensional structure [the shortest inter-centroid distance is 3.7229 (19) Å].

1. Related literature

For the uses and biological importance of chromones, see: Miao & Yang (2000[Miao, H. & Yang, Z. (2000). Org. Lett. 2, 1765-1768.]); Lin et al. (2000[Lin, L. C., Kuo, Y. C. & Chou, C. J. (2000). J. Nat. Prod. 63, 627-630.]); Larget et al. (2000[Larget, R., Lockhart, B., Renard, P. & Largeron, M. (2000). Bioorg. Med. Chem. Lett. 10, 835-838.]); Groweiss et al. (2000[Groweiss, A., Cardellina, J. H. & Boyd, M. R. (2000). J. Nat. Prod. 63, 1537-1539.]); Deng et al. (2000[Deng, Y., Lee, J. P., Tianasoa-Ramamonjy, M., Snyder, J. K., Des Etages, S. A., Kanada, D., Snyder, M. P. & Turner, C. J. (2000). J. Nat. Prod. 63, 1082-1089.]); Pietta (2000[Pietta, P. J. (2000). J. Nat. Prod. 63, 1035-1042.]); Mori et al. (1998[Mori, K., Audran, G. & Monti, H. (1998). Synlett, 1998, 259-260.]); Montaña et al. (2007[Montaña, M. P., Pappano, N., Giordano, S., Molina, P., Debattista, N. B. & García, N. (2007). Pharmazie, 62, 72-76.]); Hsu et al. (2006[Hsu, Y., Kuo, L., Tzeng, W. & Lin, C. (2006). Food Chem. Toxicol. 44, 704-713.]); Beecher (2003[Beecher, G. R. (2003). J. Nutr. 133, 3248S3254S.]). For a related structure, see: Narayanan et al. (2013[Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931-o932.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H13ClN2O7·CHCl3

  • Mr = 572.16

  • Triclinic, [P \overline 1]

  • a = 8.3716 (2) Å

  • b = 11.6435 (3) Å

  • c = 13.1018 (4) Å

  • α = 86.455 (1)°

  • β = 88.251 (1)°

  • γ = 69.841 (1)°

  • V = 1196.51 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.897

  • 15560 measured reflections

  • 4208 independent reflections

  • 3451 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.154

  • S = 1.03

  • 4208 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6 0.86 1.00 2.604 (3) 127
N2—H2⋯O6i 0.86 2.17 2.910 (3) 144
C6—H6⋯O2ii 0.96 2.49 3.186 (4) 132
C10—H10BCg4ii 0.98 2.98 3.719 (4) 134
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Structural commentary top

\ Chromones constitute a major class of naturally occurring compounds and inter­est in their chemistry continues unabated because of their usefulness as biologically active agents (Miao & Yang, 2000). Some of the biological activities attributed to chromone derivatives include cytotoxic anti­cancer (Lim et al., 2000), neuroprotective (Larget et al., 2000), HIV-inhibitory (Groweiss et al., 2000), anti­microbial (Deng et al., 2000), anti­fungal (Mori et al., 1998) and anti­oxidant activities (Pietta, 2000). Chromone derivatives are present in large amounts in the human diet (Beecher, 2003), due to their abundance in plants and their low mammalian toxicity. They are known to exhibit anti­oxidant (Montaña et al., 2007), anti-inflammatory, anti­microbial, anti­hypertensive, anti­platelet, gastroprotective, anti­tumour (Hsu et al., 2006) and anti­allergic activities.

The molecular structure of the title compound is illustrated in Fig. 1. It exhibits structural similarities with a related chromenone derivative, 4-(4-Bromo­phenyl)-2-methyl­amino-3-nitro-5,6,7,8-tetra­hydro-4H-chromen-\ 5-one (Narayanan et al., 2013). The chromene rings (A = O4/C1—C8/C13) and (B = O1/C14—C22) are almost planar (r.m.s. deviations of 0.027 and 0.018 Å, respectively) and normal to one another with a dihedral angle of 85.61 (10) ° between their mean planes. The pyran ring (C = O5/C8/C9/C11—C13) has an envelope conformation with atom C12 as the flap. Its mean plane is inclined to the mean plane of the chromene ring A, to which it is fused, by 7.41 (13) °. The nitro group is almost coplanar to the pyran ring, as indicated by torsion angles C12—C11—N1—O7 = 1.2 (4) \% and C9—C11—N1—O6 = 2.5 (5) °. The molecular structure is stabilized by an intra­molecular N—H···O hydrogen bond, which generates an S(6) ring motif (Table 1 and Fig. 1).

In the crystal, molecules are linked by a pair of N—H···O hydrogen bonds forming inversion dimers with an R22(12) ring motif; Table 1 and Fig. 2. The dimers are linked by a pair of C—H···O hydrogen bonds, enclosing R22((18) ring motifs, and forming chains along [010]. Within the chains there are C—H···π inter­actions (Table 1). The chains are linked via slipped parallel π-π inter­actions forming a three-dimensional structure [Cg2···Cg2i = 3.9337 (16) Å, inter-planar distance = 3.5746 (12) Å, slippage 1.642 Å; Cg5···Cg5ii = 3.7229 (19) Å, inter-planar distance = 3.4023 (14) Å, slippage = 1.511 Å; symmetry codes: (i) -x-1, -y+1, -z; (ii) -x, -y+1, -z+1].

Synthesis and crystallization top

A three component coupling reaction, involving 4-hy­droxy­coumarin (0.81 g, 5 mmol), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (0.87 g, 5 mmol) and NMSM (0.74 g, 5 mmol), was carried out in EtOH at room temperature (3 h) in the presence of tri­ethyl­amine (0.1eq) as catalyst. Upon completion of the reaction, the mixture was filtered, and washed with ethanol to obtain the desired product as a white solid. Using this combination of ethanol and tri­ethyl­amine gave an excellent result with a shorter than normal reaction time and an overall yield of 83 %. The title compound was recrystallized from chloro­form giving colourless block-like crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The N and C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: N—H = 0.86 Å, C–H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for all other H atoms.

Related literature top

For the uses and biological importance of chromones, see: Miao & Yang (2000); Lin et al. (2000); Larget et al. (2000); Groweiss et al. (2000); Deng et al. (2000); Pietta (2000); Mori et al. (1998); Montaña et al. (2007); Hsu et al. (2006); Beecher (2003). For a related structure, see: Narayanan et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL-97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line (see Table 1 for details)
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details). H atoms not involved in these interactions have been omitted for clarity.
4-(6-Chloro-4-oxo-4H-chromen-3-yl)-2-methylamino-3-nitro-4H,5H-pyrano[3,2-c]chromen-5-one chloroform monosolvate top
Crystal data top
C22H13ClN2O7·CHCl3Z = 2
Mr = 572.16F(000) = 580
Triclinic, P1Dx = 1.588 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3716 (2) ÅCell parameters from 3451 reflections
b = 11.6435 (3) Åθ = 1.6–25.0°
c = 13.1018 (4) ŵ = 0.54 mm1
α = 86.455 (1)°T = 293 K
β = 88.251 (1)°Block, colourless
γ = 69.841 (1)°0.25 × 0.20 × 0.20 mm
V = 1196.51 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4208 independent reflections
Radiation source: fine-focus sealed tube3451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and ϕ scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.878, Tmax = 0.897k = 1313
15560 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0685P)2 + 1.4008P]
where P = (Fo2 + 2Fc2)/3
4208 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
C22H13ClN2O7·CHCl3γ = 69.841 (1)°
Mr = 572.16V = 1196.51 (6) Å3
Triclinic, P1Z = 2
a = 8.3716 (2) ÅMo Kα radiation
b = 11.6435 (3) ŵ = 0.54 mm1
c = 13.1018 (4) ÅT = 293 K
α = 86.455 (1)°0.25 × 0.20 × 0.20 mm
β = 88.251 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4208 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3451 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.897Rint = 0.019
15560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.73 e Å3
4208 reflectionsΔρmin = 0.89 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5208 (4)0.5466 (3)0.1998 (2)0.0413 (7)
C20.4799 (4)0.6959 (3)0.0737 (2)0.0431 (7)
C30.5346 (5)0.8171 (3)0.0384 (3)0.0557 (8)
H30.62170.87580.07180.067*
C40.4574 (5)0.8492 (3)0.0477 (3)0.0614 (10)
H40.49330.93060.07240.074*
C50.3270 (5)0.7624 (3)0.0982 (3)0.0573 (9)
H50.27650.78580.15620.069*
C60.2729 (4)0.6421 (3)0.0623 (2)0.0472 (7)
H60.18530.58390.09590.057*
C70.3495 (4)0.6070 (3)0.0248 (2)0.0382 (6)
C80.3013 (3)0.4847 (2)0.0697 (2)0.0354 (6)
C90.1360 (4)0.2793 (2)0.0413 (2)0.0366 (6)
C100.0238 (5)0.2595 (3)0.1213 (2)0.0539 (8)
H10A0.09620.19240.15870.081*
H10B0.08640.31100.10460.081*
H10C0.07230.30630.16230.081*
C110.2074 (4)0.2403 (2)0.1280 (2)0.0376 (6)
C120.3170 (3)0.3268 (2)0.2033 (2)0.0353 (6)
H120.41760.30360.21810.042*
C130.3764 (3)0.4543 (2)0.1542 (2)0.0356 (6)
C140.2271 (3)0.3199 (2)0.30355 (19)0.0339 (6)
C150.0778 (3)0.3561 (3)0.3073 (2)0.0368 (6)
C160.0029 (3)0.3416 (2)0.4100 (2)0.0353 (6)
C170.1418 (3)0.3715 (3)0.4272 (2)0.0397 (6)
H170.19590.39940.37310.048*
C180.2030 (4)0.3593 (3)0.5248 (2)0.0433 (7)
C190.1236 (4)0.3189 (3)0.6067 (2)0.0561 (8)
H190.16650.31220.67230.067*
C200.0170 (5)0.2890 (4)0.5912 (2)0.0574 (9)
H200.07040.26130.64570.069*
C210.0794 (4)0.3003 (3)0.4929 (2)0.0419 (7)
C220.2851 (4)0.2778 (3)0.3880 (2)0.0430 (7)
H220.37920.25370.38150.052*
C230.3248 (6)0.0682 (4)0.6398 (4)0.0809 (12)
H230.35920.15650.62290.097*
N10.1828 (3)0.1178 (2)0.14793 (19)0.0454 (6)
N20.0351 (3)0.2123 (2)0.02750 (18)0.0451 (6)
H20.00090.13410.01630.054*
O10.2193 (3)0.2669 (2)0.48229 (15)0.0523 (6)
O20.0185 (3)0.3960 (2)0.23230 (15)0.0562 (6)
O30.6066 (3)0.5286 (2)0.26914 (18)0.0568 (6)
O40.5634 (3)0.66546 (19)0.15818 (17)0.0503 (5)
O50.1722 (2)0.40090 (17)0.01840 (14)0.0398 (5)
O60.0894 (4)0.0396 (2)0.08874 (18)0.0655 (7)
O70.2521 (3)0.0856 (2)0.22354 (17)0.0560 (6)
Cl10.38122 (10)0.39733 (9)0.54961 (7)0.0587 (3)
Cl20.4964 (2)0.03955 (18)0.70060 (11)0.1241 (6)
Cl30.1553 (2)0.02863 (16)0.72379 (17)0.1416 (7)
Cl40.2684 (3)0.00705 (16)0.52616 (15)0.1326 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0386 (15)0.0466 (17)0.0392 (16)0.0147 (13)0.0040 (13)0.0031 (13)
C20.0481 (17)0.0430 (16)0.0404 (16)0.0180 (13)0.0097 (13)0.0012 (13)
C30.064 (2)0.0419 (17)0.060 (2)0.0148 (15)0.0122 (17)0.0039 (15)
C40.085 (3)0.0420 (18)0.061 (2)0.0267 (18)0.020 (2)0.0082 (16)
C50.079 (2)0.053 (2)0.0471 (18)0.0340 (18)0.0067 (17)0.0062 (15)
C60.0574 (19)0.0501 (18)0.0400 (16)0.0261 (15)0.0042 (14)0.0002 (13)
C70.0446 (16)0.0422 (15)0.0331 (14)0.0210 (13)0.0075 (12)0.0025 (12)
C80.0381 (14)0.0401 (15)0.0313 (14)0.0168 (12)0.0034 (11)0.0061 (11)
C90.0428 (15)0.0372 (15)0.0310 (14)0.0145 (12)0.0019 (12)0.0045 (11)
C100.062 (2)0.065 (2)0.0367 (16)0.0250 (17)0.0116 (15)0.0102 (15)
C110.0458 (16)0.0386 (15)0.0302 (14)0.0163 (12)0.0013 (12)0.0037 (11)
C120.0365 (14)0.0426 (15)0.0305 (14)0.0184 (12)0.0007 (11)0.0027 (11)
C130.0368 (14)0.0418 (15)0.0313 (14)0.0167 (12)0.0033 (11)0.0050 (11)
C140.0375 (14)0.0355 (14)0.0292 (13)0.0130 (11)0.0035 (11)0.0038 (11)
C150.0370 (14)0.0421 (15)0.0312 (14)0.0138 (12)0.0050 (11)0.0024 (11)
C160.0344 (14)0.0395 (14)0.0299 (13)0.0102 (11)0.0023 (11)0.0017 (11)
C170.0350 (14)0.0467 (16)0.0361 (15)0.0128 (12)0.0056 (12)0.0031 (12)
C180.0346 (15)0.0508 (17)0.0432 (16)0.0115 (13)0.0014 (12)0.0096 (13)
C190.060 (2)0.078 (2)0.0334 (16)0.0274 (18)0.0082 (15)0.0017 (15)
C200.065 (2)0.086 (2)0.0299 (16)0.0390 (19)0.0015 (15)0.0069 (15)
C210.0418 (16)0.0542 (17)0.0327 (15)0.0208 (14)0.0005 (12)0.0008 (12)
C220.0453 (16)0.0580 (18)0.0332 (15)0.0276 (14)0.0001 (12)0.0011 (13)
C230.076 (3)0.074 (3)0.089 (3)0.026 (2)0.010 (2)0.026 (2)
N10.0586 (16)0.0408 (14)0.0381 (13)0.0187 (12)0.0001 (12)0.0028 (11)
N20.0546 (15)0.0425 (13)0.0366 (13)0.0144 (12)0.0062 (11)0.0074 (11)
O10.0572 (13)0.0834 (16)0.0298 (10)0.0432 (12)0.0001 (9)0.0079 (10)
O20.0555 (13)0.0952 (18)0.0306 (11)0.0442 (13)0.0035 (9)0.0075 (11)
O30.0478 (13)0.0641 (14)0.0536 (14)0.0142 (11)0.0137 (11)0.0030 (11)
O40.0484 (12)0.0450 (12)0.0520 (13)0.0091 (10)0.0032 (10)0.0036 (10)
O50.0486 (11)0.0392 (10)0.0329 (10)0.0168 (9)0.0070 (9)0.0046 (8)
O60.0964 (19)0.0393 (12)0.0545 (14)0.0152 (12)0.0152 (13)0.0105 (11)
O70.0748 (16)0.0496 (13)0.0484 (13)0.0290 (12)0.0069 (11)0.0030 (10)
Cl10.0402 (4)0.0789 (6)0.0602 (5)0.0223 (4)0.0049 (4)0.0152 (4)
Cl20.1055 (10)0.1842 (16)0.0994 (10)0.0799 (11)0.0120 (8)0.0481 (10)
Cl30.1019 (11)0.1299 (13)0.1951 (18)0.0466 (10)0.0691 (12)0.0503 (12)
Cl40.1560 (15)0.1120 (11)0.1358 (14)0.0537 (11)0.0268 (12)0.0203 (10)
Geometric parameters (Å, º) top
C1—O31.194 (4)C12—C141.518 (4)
C1—O41.385 (4)C12—H120.9800
C1—C131.453 (4)C14—C221.328 (4)
C2—C31.379 (4)C14—C151.454 (4)
C2—O41.383 (4)C15—O21.225 (3)
C2—C71.391 (4)C15—C161.477 (4)
C3—C41.378 (5)C16—C211.387 (4)
C3—H30.9300C16—C171.399 (4)
C4—C51.389 (5)C17—C181.373 (4)
C4—H40.9300C17—H170.9300
C5—C61.372 (4)C18—C191.388 (4)
C5—H50.9300C18—Cl11.740 (3)
C6—C71.400 (4)C19—C201.362 (5)
C6—H60.9300C19—H190.9300
C7—C81.433 (4)C20—C211.387 (4)
C8—C131.344 (4)C20—H200.9300
C8—O51.372 (3)C21—O11.369 (3)
C9—N21.311 (4)C22—O11.350 (3)
C9—O51.358 (3)C22—H220.9300
C9—C111.392 (4)C23—Cl31.737 (5)
C10—N21.457 (4)C23—Cl41.744 (5)
C10—H10A0.9600C23—Cl21.743 (5)
C10—H10B0.9600C23—H230.9800
C10—H10C0.9600N1—O71.236 (3)
C11—N11.378 (4)N1—O61.266 (3)
C11—C121.504 (4)N2—H20.8600
C12—C131.502 (4)
O3—C1—O4117.3 (3)C1—C13—C12118.3 (2)
O3—C1—C13125.8 (3)C22—C14—C15120.2 (2)
O4—C1—C13116.9 (3)C22—C14—C12118.9 (2)
C3—C2—O4117.4 (3)C15—C14—C12120.8 (2)
C3—C2—C7121.5 (3)O2—C15—C14123.3 (2)
O4—C2—C7121.2 (3)O2—C15—C16122.4 (3)
C4—C3—C2118.5 (3)C14—C15—C16114.3 (2)
C4—C3—H3120.7C21—C16—C17118.4 (2)
C2—C3—H3120.7C21—C16—C15119.8 (2)
C3—C4—C5121.3 (3)C17—C16—C15121.8 (2)
C3—C4—H4119.4C18—C17—C16119.2 (3)
C5—C4—H4119.4C18—C17—H17120.4
C6—C5—C4119.9 (3)C16—C17—H17120.4
C6—C5—H5120.1C17—C18—C19121.4 (3)
C4—C5—H5120.1C17—C18—Cl1120.6 (2)
C5—C6—C7120.0 (3)C19—C18—Cl1118.0 (2)
C5—C6—H6120.0C20—C19—C18120.1 (3)
C7—C6—H6120.0C20—C19—H19120.0
C2—C7—C6118.9 (3)C18—C19—H19120.0
C2—C7—C8116.5 (3)C19—C20—C21119.0 (3)
C6—C7—C8124.6 (3)C19—C20—H20120.5
C13—C8—O5122.9 (2)C21—C20—H20120.5
C13—C8—C7123.1 (3)O1—C21—C20116.0 (3)
O5—C8—C7114.0 (2)O1—C21—C16122.1 (2)
N2—C9—O5111.8 (2)C20—C21—C16121.9 (3)
N2—C9—C11128.3 (3)C14—C22—O1125.6 (3)
O5—C9—C11119.9 (2)C14—C22—H22117.2
N2—C10—H10A109.5O1—C22—H22117.2
N2—C10—H10B109.5Cl3—C23—Cl4112.0 (3)
H10A—C10—H10B109.5Cl3—C23—Cl2109.4 (2)
N2—C10—H10C109.5Cl4—C23—Cl2111.7 (3)
H10A—C10—H10C109.5Cl3—C23—H23107.9
H10B—C10—H10C109.5Cl4—C23—H23107.9
N1—C11—C9120.6 (2)Cl2—C23—H23107.9
N1—C11—C12116.3 (2)O7—N1—O6120.7 (2)
C9—C11—C12123.1 (2)O7—N1—C11119.6 (2)
C13—C12—C11108.8 (2)O6—N1—C11119.7 (2)
C13—C12—C14111.9 (2)C9—N2—C10125.4 (3)
C11—C12—C14112.5 (2)C9—N2—H2117.3
C13—C12—H12107.8C10—N2—H2117.3
C11—C12—H12107.8C22—O1—C21117.9 (2)
C14—C12—H12107.8C2—O4—C1122.5 (2)
C8—C13—C1119.5 (3)C9—O5—C8119.7 (2)
C8—C13—C12122.1 (2)
O4—C2—C3—C4177.9 (3)C12—C14—C15—O21.5 (4)
C7—C2—C3—C40.2 (5)C22—C14—C15—C160.1 (4)
C2—C3—C4—C50.2 (5)C12—C14—C15—C16178.8 (2)
C3—C4—C5—C60.1 (5)O2—C15—C16—C21177.6 (3)
C4—C5—C6—C70.2 (5)C14—C15—C16—C212.1 (4)
C3—C2—C7—C60.1 (4)O2—C15—C16—C170.7 (4)
O4—C2—C7—C6178.0 (2)C14—C15—C16—C17179.6 (2)
C3—C2—C7—C8178.8 (3)C21—C16—C17—C180.1 (4)
O4—C2—C7—C83.2 (4)C15—C16—C17—C18178.2 (3)
C5—C6—C7—C20.1 (4)C16—C17—C18—C190.5 (4)
C5—C6—C7—C8178.9 (3)C16—C17—C18—Cl1179.2 (2)
C2—C7—C8—C130.4 (4)C17—C18—C19—C200.7 (5)
C6—C7—C8—C13179.2 (3)Cl1—C18—C19—C20179.5 (3)
C2—C7—C8—O5180.0 (2)C18—C19—C20—C210.4 (6)
C6—C7—C8—O51.2 (4)C19—C20—C21—O1179.0 (3)
N2—C9—C11—N13.6 (5)C19—C20—C21—C160.2 (5)
O5—C9—C11—N1174.8 (2)C17—C16—C21—O1178.7 (3)
N2—C9—C11—C12177.8 (3)C15—C16—C21—O13.0 (4)
O5—C9—C11—C123.7 (4)C17—C16—C21—C200.4 (5)
N1—C11—C12—C13161.8 (2)C15—C16—C21—C20177.9 (3)
C9—C11—C12—C1316.9 (4)C15—C14—C22—O11.6 (5)
N1—C11—C12—C1473.6 (3)C12—C14—C22—O1179.7 (3)
C9—C11—C12—C14107.8 (3)C9—C11—N1—O7177.5 (3)
O5—C8—C13—C1175.4 (2)C12—C11—N1—O71.1 (4)
C7—C8—C13—C14.2 (4)C9—C11—N1—O62.6 (4)
O5—C8—C13—C124.0 (4)C12—C11—N1—O6178.7 (3)
C7—C8—C13—C12176.5 (2)O5—C9—N2—C104.0 (4)
O3—C1—C13—C8173.3 (3)C11—C9—N2—C10174.6 (3)
O4—C1—C13—C86.0 (4)C14—C22—O1—C210.9 (5)
O3—C1—C13—C126.0 (4)C20—C21—O1—C22179.3 (3)
O4—C1—C13—C12174.6 (2)C16—C21—O1—C221.5 (4)
C11—C12—C13—C816.9 (3)C3—C2—O4—C1179.3 (3)
C14—C12—C13—C8108.1 (3)C7—C2—O4—C11.2 (4)
C11—C12—C13—C1162.5 (2)O3—C1—O4—C2176.0 (3)
C14—C12—C13—C172.6 (3)C13—C1—O4—C23.4 (4)
C13—C12—C14—C22123.2 (3)N2—C9—O5—C8167.0 (2)
C11—C12—C14—C22113.9 (3)C11—C9—O5—C811.7 (4)
C13—C12—C14—C1558.0 (3)C13—C8—O5—C911.8 (4)
C11—C12—C14—C1564.9 (3)C7—C8—O5—C9167.8 (2)
C22—C14—C15—O2179.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O60.861.002.604 (3)127
N2—H2···O6i0.862.172.910 (3)144
C6—H6···O2ii0.962.493.186 (4)132
C10—H10B···Cg4ii0.982.983.719 (4)134
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O60.861.002.604 (3)127
N2—H2···O6i0.862.172.910 (3)144
C6—H6···O2ii0.962.493.186 (4)132
C10—H10B···Cg4ii0.982.983.719 (4)134
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBeecher, G. R. (2003). J. Nutr. 133, 3248S3254S.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, Y., Lee, J. P., Tianasoa-Ramamonjy, M., Snyder, J. K., Des Etages, S. A., Kanada, D., Snyder, M. P. & Turner, C. J. (2000). J. Nat. Prod. 63, 1082–1089.  CrossRef PubMed CAS Google Scholar
First citationGroweiss, A., Cardellina, J. H. & Boyd, M. R. (2000). J. Nat. Prod. 63, 1537–1539.  CrossRef PubMed CAS Google Scholar
First citationHsu, Y., Kuo, L., Tzeng, W. & Lin, C. (2006). Food Chem. Toxicol. 44, 704–713.  CrossRef PubMed CAS Google Scholar
First citationLarget, R., Lockhart, B., Renard, P. & Largeron, M. (2000). Bioorg. Med. Chem. Lett. 10, 835–838.  CrossRef PubMed CAS Google Scholar
First citationLin, L. C., Kuo, Y. C. & Chou, C. J. (2000). J. Nat. Prod. 63, 627–630.  CrossRef PubMed CAS Google Scholar
First citationMiao, H. & Yang, Z. (2000). Org. Lett. 2, 1765–1768.  CrossRef PubMed CAS Google Scholar
First citationMontaña, M. P., Pappano, N., Giordano, S., Molina, P., Debattista, N. B. & García, N. (2007). Pharmazie, 62, 72–76.  PubMed Google Scholar
First citationMori, K., Audran, G. & Monti, H. (1998). Synlett, 1998, 259–260.  CrossRef Google Scholar
First citationNarayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931–o932.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPietta, P. J. (2000). J. Nat. Prod. 63, 1035–1042.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o512-o513
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds