organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o516-o517

Crystal structure of 2-amino-4-phenyl-4H-benzo[h]chromene-3-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 13 June 2015; accepted 15 June 2015; online 27 June 2015)

In the title compound, C20H14N2O, the plane of the phenyl ring is almost normal to that of the naphthalene ring system, forming a dihedral angle of 83.15 (8)°. The 4H-pyran ring fused with the naphthalene ring system has a flattened boat conformation. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(12) ring motif. The dimers are connected by C—H⋯π inter­actions, forming supra­molecular chains along [010].

1. Related literature

For synthesis of chromene-containing compounds, see: Elagamey et al. (1988[Elagamey, A. G. A., Sawllim, S. Z., El-Taweel, F. M. A. & Elnagdi, M. H. (1988). Collect. Czech. Chem. Commun. 53, 1534-1538.]); El-Maghraby (2014[El-Maghraby, A. M. (2014). Org. Chem. Int. 2014, article ID 715091.]). For industrial applications of amino­chromenes, see: Ellis (1977[Ellis, G. P. (1977). Chromenes, Chromanones and Chromones, edited by A. Weissberger & E. C. Taylor, pp. 11-139. New York: John Wiley & Sons.]); Hafez et al. (1987[Hafez, E. A. A., Elnagdi, M. H., Elagamey, A. G. A. & El-Taweel, F. M. A. A. (1987). Heterocycles, 26, 903-907.]). For various biological activities of fused chromenes, see: Hiramoto et al. (1997[Hiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 395, 47-56.]); Bianchi & Tava (1987[Bianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001-2002.]); Eiden & Denk (1991[Eiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353-354.]); Smith et al. (1998[Smith, P. W., Sollis, S. L., Howes, P. D., Cherry, P. C., Starkey, I. D., Cobley, K. N., Weston, H., Scicinski, J., Merritt, A., Whittington, A. R., Wyatt, P., Taylor, N., Green, D., Bethell, R., Madar, S., Fenton, R. J., Morley, P. J., Pateman, T. & Beresford, A. (1998). J. Med. Chem. 41, 787-797.]); Taylor et al. (1998[Taylor, R. N., Cleasby, A., Singh, O., Skarzynski, T., Wonacott, A. J., Smith, P. W., Sollis, S. L., Howes, P. D., Cherry, P. C., Bethell, R., Colman, P. & Varghese, J. (1998). J. Med. Chem. 41, 798-807.]). For the crystal structure of the isomer of the title compound, 3-amino-1-phenyl-1H-benzo[f]chromene-2-carbo­nitrile, see: Akkurt et al. (2013[Akkurt, M., Kennedy, A. R., Mohamed, S. K., Younes, S. H. H. & Miller, G. J. (2013). Acta Cryst. E69, o401.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H14N2O

  • Mr = 298.33

  • Monoclinic, P 21

  • a = 9.1662 (1) Å

  • b = 5.7246 (1) Å

  • c = 13.9177 (2) Å

  • β = 90.153 (1)°

  • V = 730.30 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 100 K

  • 0.28 × 0.13 × 0.10 mm

2.2. Data collection

  • Rigaku AFC11 diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.883, Tmax = 1.000

  • 5778 measured reflections

  • 2201 independent reflections

  • 2184 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.093

  • S = 1.09

  • 2201 reflections

  • 216 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack x determined using 775 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.2 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N2i 0.91 (3) 2.09 (3) 2.970 (2) 163 (3)
C9—H9⋯Cg1ii 0.95 2.88 3.574 (2) 131
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClearSM Expert (Rigaku, 2012[Rigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClearSM Expert; data reduction: CrystalClearSM Expert; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Among synthetic heterocyclic compounds, aminochromenes represent an important class of organic compounds being the main components of many naturally occurring products (Elagamey et al., 1988; El-Maghraby, 2014). They are used for the chemical synthesis of cosmetics, pigments (Ellis, 1977), and potentially biodegradable agrochemicals (Hafez, et al., 1987). Fused chromene systems have displayed a broad spectrum of biological activities such as mutagenicity (Hiramoto, et al., 1997), sex pheromonal (Bianchi & Tava, 1987), central nervous system (CNS) activities (Eiden & Denk, 1991) and inhibitors for influenza virus sialidases (Smith et al., 1998; Taylor et al., 1998). In this context and following our strategy for the synthesis of bio-active molecules, we herein report the synthesis and crystal structure of the title compound.

As seen in Fig. 1, the C4–C13 naphthalene ring system of the title compound is essentially planar [maximum deviations = -0.020 (2) Å for C4 and -0.016 (2) Å for C8]. The C15–C20 phenyl ring makes a dihedral angle of 83.15 (8)° with the mean plane of the naphthalene ring. The 4H-pyran ring (O1/C1–C4/C13) in the title compound is puckered [the puckering parameters (Cremer & Pople, 1975) are QT = 0.177 (2) Å, θ = 98.2 (6) ° and ϕ = 342.9 (7) °. The structural geometric parameters of the title compound are normal and are consistent with those of the isomer compound 3-amino-1-phenyl-1H-benzo[f]chromene-2-carbonitrile (Akkurt et al., 2013). Both isomers crystallizes in the same monoclinic space group P21 and their unit-cell parameters are almost equal.

In the crystal, pairs of N—H···N hydrogen bonds form inversion dimers with an R22(12) ring motif (Table 1 and Fig. 2). In addition, C—H···π interactions are observed.

Related literature top

For synthesis of chromene-containing compounds, see: Elagamey et al. (1988); El-Maghraby (2014). For industrial applications of aminochromenes, see: Ellis (1977); Hafez et al. (1987). For various biological activities of fused chromenes, see: Hiramoto et al. (1997); Bianchi & Tava (1987); Eiden & Denk (1991); Smith et al. (1998); Taylor et al. (1998). For the crystal structure of the isomer of the title compound, 3-amino-1-phenyl-1H-benzo[f]chromene-2-carbonitrile, see: Akkurt et al. (2013).

Experimental top

To a solution of 1-naphthol (144 mg; 1 mmol) in 10 ml absolute ethanol, an equimolar amount of benzylidene-malononitrile (154 mg; 1 mmol) was added with constant stirring. The reaction mixture was refluxed for 3 h in the presence of a catalytic amount of piperidine. The reaction progress was monitored by TLC and after cooling, the formed precipitate was filtered off, washed with cold ethanol and dried under vacuum in a desiccator for 24 h. The solid was recrystallized from ethanol. Crystals suitable for X-ray crystallography were obtained by slow evaporation of a solution of the title compound in ethanol (yield 92%; m.p. 483 K).

Refinement top

The H atoms of the NH2 group were were refined. The H atoms attached to the C atoms were positioned geometrically, with C—H = 0.95 Å and C—H = 1.00 Å for aromatic and methine H, respectively, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClearSM Expert (Rigaku, 2012); cell refinement: CrystalClearSM Expert (Rigaku, 2012); data reduction: CrystalClearSM Expert (Rigaku, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the dimers formed by N—H···O hydrogen bonds.
2-Amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrile top
Crystal data top
C20H14N2OF(000) = 312
Mr = 298.33Dx = 1.357 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 5573 reflections
a = 9.1662 (1) Åθ = 6.3–66.6°
b = 5.7246 (1) ŵ = 0.67 mm1
c = 13.9177 (2) ÅT = 100 K
β = 90.153 (1)°Block, brown
V = 730.30 (2) Å30.28 × 0.13 × 0.10 mm
Z = 2
Data collection top
Rigaku AFC11
diffractometer
2201 independent reflections
Radiation source: Rotating Anode2184 reflections with I > 2σ(I)
Detector resolution: 22.2222 pixels mm-1Rint = 0.029
profile data from ω–scansθmax = 66.7°, θmin = 4.8°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 1010
Tmin = 0.883, Tmax = 1.000k = 66
5778 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(FO2) + (0.0642P)2 + 0.1186P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.14 e Å3
2201 reflectionsΔρmin = 0.15 e Å3
216 parametersAbsolute structure: Flack x determined using 775 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.2 (3)
Crystal data top
C20H14N2OV = 730.30 (2) Å3
Mr = 298.33Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.1662 (1) ŵ = 0.67 mm1
b = 5.7246 (1) ÅT = 100 K
c = 13.9177 (2) Å0.28 × 0.13 × 0.10 mm
β = 90.153 (1)°
Data collection top
Rigaku AFC11
diffractometer
2201 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
2184 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 1.000Rint = 0.029
5778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.14 e Å3
S = 1.09Δρmin = 0.15 e Å3
2201 reflectionsAbsolute structure: Flack x determined using 775 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
216 parametersAbsolute structure parameter: 0.2 (3)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64120 (15)0.8755 (3)0.32053 (9)0.0250 (4)
N10.5228 (2)0.9831 (4)0.18837 (13)0.0279 (6)
N20.58898 (19)0.5238 (4)0.01142 (12)0.0305 (6)
C10.6097 (2)0.8195 (4)0.22720 (13)0.0223 (5)
C20.6647 (2)0.6252 (4)0.18462 (14)0.0228 (6)
C30.7792 (2)0.4700 (4)0.23142 (13)0.0222 (6)
C40.7851 (2)0.5235 (4)0.33777 (13)0.0225 (6)
C50.8612 (2)0.3703 (4)0.40074 (14)0.0264 (6)
C60.8631 (2)0.4068 (4)0.49782 (15)0.0286 (6)
C70.7877 (2)0.5997 (4)0.53815 (14)0.0255 (6)
C80.7844 (2)0.6408 (5)0.63859 (14)0.0297 (6)
C90.7137 (2)0.8309 (5)0.67554 (14)0.0301 (6)
C100.6403 (2)0.9868 (5)0.61433 (15)0.0307 (6)
C110.6388 (2)0.9514 (4)0.51680 (14)0.0275 (6)
C120.7134 (2)0.7592 (4)0.47686 (14)0.0239 (6)
C130.7165 (2)0.7126 (4)0.37642 (13)0.0226 (6)
C140.6217 (2)0.5720 (4)0.08901 (13)0.0241 (6)
C150.9263 (2)0.4943 (4)0.18151 (13)0.0222 (6)
C160.9754 (2)0.3182 (4)0.12136 (13)0.0261 (6)
C171.1057 (2)0.3423 (5)0.07107 (14)0.0301 (6)
C181.1876 (2)0.5433 (5)0.08102 (14)0.0301 (6)
C191.1396 (2)0.7208 (5)0.14112 (14)0.0293 (6)
C201.0097 (2)0.6961 (4)0.19070 (14)0.0260 (6)
H1A0.474 (3)1.088 (5)0.2297 (18)0.034 (7)*
H1B0.501 (3)0.971 (6)0.125 (2)0.040 (7)*
H30.746600.304300.223900.0270*
H50.911800.240000.374800.0320*
H60.915200.302600.538500.0340*
H80.832000.534700.680800.0360*
H90.714200.857600.742900.0360*
H100.591301.118000.640700.0370*
H110.587401.056500.476200.0330*
H160.919400.179500.114300.0310*
H171.138300.220500.030000.0360*
H181.276500.560200.046800.0360*
H191.195800.859100.148200.0350*
H200.977100.818500.231500.0310*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0306 (8)0.0258 (8)0.0186 (6)0.0031 (7)0.0059 (5)0.0008 (6)
N10.0309 (9)0.0322 (11)0.0205 (9)0.0045 (9)0.0056 (7)0.0012 (8)
N20.0297 (9)0.0375 (12)0.0243 (9)0.0007 (9)0.0046 (7)0.0041 (8)
C10.0219 (9)0.0273 (11)0.0178 (8)0.0041 (9)0.0026 (7)0.0026 (8)
C20.0202 (9)0.0293 (12)0.0190 (9)0.0025 (9)0.0022 (7)0.0002 (8)
C30.0226 (9)0.0205 (10)0.0236 (10)0.0015 (9)0.0021 (7)0.0009 (8)
C40.0191 (9)0.0272 (12)0.0213 (9)0.0039 (8)0.0007 (7)0.0010 (8)
C50.0249 (9)0.0270 (12)0.0272 (10)0.0003 (10)0.0001 (7)0.0025 (9)
C60.0276 (10)0.0325 (13)0.0256 (10)0.0010 (10)0.0044 (8)0.0074 (9)
C70.0220 (9)0.0321 (12)0.0223 (9)0.0050 (9)0.0013 (7)0.0029 (9)
C80.0259 (10)0.0414 (14)0.0219 (9)0.0058 (10)0.0031 (8)0.0058 (9)
C90.0275 (10)0.0427 (14)0.0200 (9)0.0106 (11)0.0002 (7)0.0028 (10)
C100.0296 (10)0.0356 (13)0.0268 (10)0.0044 (11)0.0024 (8)0.0060 (9)
C110.0280 (10)0.0298 (12)0.0246 (10)0.0018 (10)0.0018 (8)0.0021 (9)
C120.0202 (9)0.0301 (12)0.0214 (9)0.0064 (9)0.0012 (7)0.0006 (8)
C130.0214 (9)0.0251 (11)0.0213 (9)0.0029 (9)0.0031 (7)0.0036 (8)
C140.0226 (9)0.0263 (11)0.0235 (10)0.0010 (9)0.0001 (7)0.0003 (9)
C150.0227 (10)0.0265 (11)0.0173 (8)0.0004 (9)0.0025 (7)0.0029 (8)
C160.0301 (10)0.0250 (12)0.0231 (9)0.0024 (10)0.0032 (7)0.0016 (8)
C170.0319 (11)0.0346 (13)0.0238 (9)0.0069 (10)0.0008 (7)0.0020 (10)
C180.0245 (10)0.0429 (14)0.0230 (9)0.0041 (10)0.0002 (7)0.0067 (9)
C190.0264 (10)0.0328 (12)0.0286 (10)0.0040 (10)0.0030 (8)0.0056 (9)
C200.0274 (10)0.0263 (12)0.0244 (10)0.0001 (10)0.0001 (8)0.0024 (9)
Geometric parameters (Å, º) top
O1—C11.368 (2)C11—C121.410 (3)
O1—C131.396 (3)C12—C131.424 (3)
N1—C11.342 (3)C15—C201.391 (3)
N2—C141.154 (3)C15—C161.386 (3)
C1—C21.358 (3)C16—C171.393 (3)
N1—H1B0.91 (3)C17—C181.381 (4)
N1—H1A0.95 (3)C18—C191.388 (3)
C2—C141.420 (3)C19—C201.385 (3)
C2—C31.520 (3)C3—H31.0000
C3—C41.512 (3)C5—H50.9500
C3—C151.525 (3)C6—H60.9500
C4—C131.363 (3)C8—H80.9500
C4—C51.422 (3)C9—H90.9500
C5—C61.367 (3)C10—H100.9500
C6—C71.419 (3)C11—H110.9500
C7—C121.422 (3)C16—H160.9500
C7—C81.418 (3)C17—H170.9500
C8—C91.368 (4)C18—H180.9500
C9—C101.404 (3)C19—H190.9500
C10—C111.373 (3)C20—H200.9500
C1—O1—C13118.39 (17)C3—C15—C20121.36 (18)
O1—C1—N1110.02 (18)C16—C15—C20118.70 (17)
O1—C1—C2121.91 (18)C15—C16—C17120.8 (2)
N1—C1—C2128.06 (18)C16—C17—C18119.9 (2)
C1—N1—H1B118 (2)C17—C18—C19119.82 (18)
H1A—N1—H1B123 (3)C18—C19—C20120.0 (2)
C1—N1—H1A118.7 (16)C15—C20—C19120.8 (2)
C1—C2—C3123.25 (17)C2—C3—H3108.00
C1—C2—C14118.83 (19)C4—C3—H3108.00
C3—C2—C14117.76 (18)C15—C3—H3108.00
C2—C3—C15111.21 (16)C4—C5—H5119.00
C4—C3—C15113.46 (15)C6—C5—H5119.00
C2—C3—C4108.89 (17)C5—C6—H6120.00
C3—C4—C13122.12 (18)C7—C6—H6120.00
C3—C4—C5119.65 (19)C7—C8—H8120.00
C5—C4—C13118.21 (17)C9—C8—H8120.00
C4—C5—C6121.3 (2)C8—C9—H9120.00
C5—C6—C7120.32 (19)C10—C9—H9120.00
C8—C7—C12118.3 (2)C9—C10—H10120.00
C6—C7—C8122.1 (2)C11—C10—H10120.00
C6—C7—C12119.69 (18)C10—C11—H11120.00
C7—C8—C9120.9 (2)C12—C11—H11120.00
C8—C9—C10120.29 (19)C15—C16—H16120.00
C9—C10—C11120.6 (2)C17—C16—H16120.00
C10—C11—C12120.1 (2)C16—C17—H17120.00
C11—C12—C13122.97 (19)C18—C17—H17120.00
C7—C12—C11119.76 (18)C17—C18—H18120.00
C7—C12—C13117.26 (19)C19—C18—H18120.00
O1—C13—C12114.26 (18)C18—C19—H19120.00
O1—C13—C4122.59 (16)C20—C19—H19120.00
C4—C13—C12123.14 (19)C15—C20—H20120.00
N2—C14—C2178.3 (2)C19—C20—H20120.00
C3—C15—C16119.85 (19)
C13—O1—C1—N1172.70 (17)C4—C5—C6—C70.3 (3)
C13—O1—C1—C28.3 (3)C5—C6—C7—C8178.6 (2)
C1—O1—C13—C413.6 (3)C5—C6—C7—C121.8 (3)
C1—O1—C13—C12165.44 (17)C6—C7—C8—C9178.5 (2)
O1—C1—C2—C37.7 (3)C12—C7—C8—C91.1 (3)
O1—C1—C2—C14176.97 (18)C6—C7—C12—C11179.80 (18)
N1—C1—C2—C3171.1 (2)C6—C7—C12—C131.3 (3)
N1—C1—C2—C144.2 (3)C8—C7—C12—C110.2 (3)
C1—C2—C3—C416.6 (3)C8—C7—C12—C13179.15 (19)
C1—C2—C3—C15109.1 (2)C7—C8—C9—C101.3 (3)
C14—C2—C3—C4168.01 (18)C8—C9—C10—C110.2 (3)
C14—C2—C3—C1566.3 (2)C9—C10—C11—C121.1 (3)
C2—C3—C4—C5167.12 (18)C10—C11—C12—C71.3 (3)
C2—C3—C4—C1311.3 (3)C10—C11—C12—C13179.9 (2)
C15—C3—C4—C568.5 (3)C7—C12—C13—O1179.84 (17)
C15—C3—C4—C13113.1 (2)C7—C12—C13—C40.8 (3)
C2—C3—C15—C16105.1 (2)C11—C12—C13—O10.9 (3)
C2—C3—C15—C2071.3 (2)C11—C12—C13—C4178.1 (2)
C4—C3—C15—C16131.7 (2)C3—C15—C16—C17176.54 (18)
C4—C3—C15—C2051.9 (3)C20—C15—C16—C170.1 (3)
C3—C4—C5—C6176.86 (18)C3—C15—C20—C19176.69 (18)
C13—C4—C5—C61.6 (3)C16—C15—C20—C190.3 (3)
C3—C4—C13—O12.7 (3)C15—C16—C17—C180.1 (3)
C3—C4—C13—C12176.26 (18)C16—C17—C18—C190.1 (3)
C5—C4—C13—O1178.81 (18)C17—C18—C19—C200.2 (3)
C5—C4—C13—C122.2 (3)C18—C19—C20—C150.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1B···N2i0.91 (3)2.09 (3)2.970 (2)163 (3)
C9—H9···Cg1ii0.952.883.574 (2)131
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N1—H1B···N2i0.91 (3)2.09 (3)2.970 (2)163 (3)
C9—H9···Cg1ii0.952.883.574 (2)131
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

The authors would like to express their thanks to the National Crystallography Service, Southampton, UK, for providing the X-ray data.

References

First citationAkkurt, M., Kennedy, A. R., Mohamed, S. K., Younes, S. H. H. & Miller, G. J. (2013). Acta Cryst. E69, o401.  CSD CrossRef IUCr Journals Google Scholar
First citationBianchi, G. & Tava, A. (1987). Agric. Biol. Chem. 51, 2001–2002.  CrossRef CAS Google Scholar
First citationEiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353–354.  CrossRef CAS Web of Science Google Scholar
First citationElagamey, A. G. A., Sawllim, S. Z., El-Taweel, F. M. A. & Elnagdi, M. H. (1988). Collect. Czech. Chem. Commun. 53, 1534–1538.  CrossRef CAS Google Scholar
First citationEllis, G. P. (1977). Chromenes, Chromanones and Chromones, edited by A. Weissberger & E. C. Taylor, pp. 11–139. New York: John Wiley & Sons.  Google Scholar
First citationEl-Maghraby, A. M. (2014). Org. Chem. Int. 2014, article ID 715091.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHafez, E. A. A., Elnagdi, M. H., Elagamey, A. G. A. & El-Taweel, F. M. A. A. (1987). Heterocycles, 26, 903–907.  CAS Google Scholar
First citationHiramoto, K., Nasuhara, A., Michikoshi, K., Kato, T. & Kikugawa, K. (1997). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 395, 47–56.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, P. W., Sollis, S. L., Howes, P. D., Cherry, P. C., Starkey, I. D., Cobley, K. N., Weston, H., Scicinski, J., Merritt, A., Whittington, A. R., Wyatt, P., Taylor, N., Green, D., Bethell, R., Madar, S., Fenton, R. J., Morley, P. J., Pateman, T. & Beresford, A. (1998). J. Med. Chem. 41, 787–797.  CrossRef CAS PubMed Google Scholar
First citationTaylor, R. N., Cleasby, A., Singh, O., Skarzynski, T., Wonacott, A. J., Smith, P. W., Sollis, S. L., Howes, P. D., Cherry, P. C., Bethell, R., Colman, P. & Varghese, J. (1998). J. Med. Chem. 41, 798–807.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o516-o517
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds