inorganic compounds
Redetermination of the β-zinc molybdate from single-crystal X-ray diffraction data
ofaDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo-CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain, and bLaboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Route de Soukra, 3000 Sfax, Tunisia
*Correspondence e-mail: sgg@uniovi.es
The β-polymorph of ZnMoO4 was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005). Eur. J. Inorg. Chem. pp. 3080–3087; Cavalcante et al. (2013). Polyhedron, 54, 13–25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4 adopts the wolframite structure type and is composed of distorted ZnO6 and MoO6 octahedra, both with symmetry 2. The distortion of the octahedra is reflected by variation of bond lengths and angles from 2.002 (3)–2.274 (4) Å, 80.63 (11)–108.8 (2)° for equatorial and 158.4 (2)– 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)–2.171 (3) Å, 73.39 (16)–104.7 (2), 150.8 (2)–164.89 (15)° (MoO6), respectively. In the the same type of MO6 octahedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The can alternatively be described as derived from a distorted hexagonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octahedral voids.
of theKeywords: crystal structure; redetermination; β-ZnMoO4; hydrothermal synthesis; wolframite structure type.
CCDC reference: 1408028
1. Related literature
Most molybdates of divalent cations crystallize either in the scheelite-type or in the wolframite-type (Macavei & Schulz, 1993). Zinc molybdate (ZnMoO4) is an inorganic semiconductor. It adopts the wolframite-type of structure (Keeling, 1957) and is dimorphic. The two phases, referred to as α- (triclinc symmetry) and β- (monoclinic symmetry), can be selectively obtained by controlling the synthetic conditions (Abrahams et al., 1967; Zhang et al., 2010). Previous refinements of β-ZnMoO4, based on X-ray powder diffraction data, were reported by Cavalcante et al. (2013) and Katikaneani & Arunachalam (2005). For structure of ZnWO4, isotypic with the title compound, see: Trots et al. (2009).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2014); cell CrysAlis RED (Oxford Diffraction, 2014); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PARST (Nardelli, 1995).
Supporting information
CCDC reference: 1408028
10.1107/S205698901501186X/wm5159sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S205698901501186X/wm5159Isup2.hkl
Reagents were used as commercial sources with no further purification. An aqueous solution was prepared by a mixture of 0.047 g 2,2'-bipyridine, 0.015 g of molybdenum trioxide and 0.043 g of zinc acetate in 10 ml water. The reaction mixture was stirred at room temperature to
then transferred into a teflon-lined stainless steel vessel (40 ml) and heated to 453 K for 48 h under autogenous pressure and after-wards cooled slowly to room temperature. The resulting material was obtained as colorless single-crystals without side products. The solid was filtered off, washed thoroughly with distilled water, and finally air-dried at room temperature.Data collection: CrysAlis CCD (Oxford Diffraction, 2014); cell
CrysAlis RED (Oxford Diffraction, 2014); data reduction: CrysAlis RED (Oxford Diffraction, 2014); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PARST (Nardelli, 1995).Fig. 1. A view of the crystal structure of β-ZnMoO4. Anisotropic displacement parameters are drawn at the 50% probability level. |
MoO4Zn | F(000) = 208 |
Mr = 225.31 | Dx = 5.670 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 4.6980 (3) Å | Cell parameters from 570 reflections |
b = 5.7380 (4) Å | θ = 3.6–31.1° |
c = 4.8960 (4) Å | µ = 13.62 mm−1 |
β = 90.311 (7)° | T = 293 K |
V = 131.98 (2) Å3 | Prism, colourless |
Z = 2 | 0.08 × 0.06 × 0.03 mm |
Oxford Diffraction Xcalibur CCD diffractometer | 405 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 358 reflections with I > 2σ(I) |
Detector resolution: 10.2673 pixels mm-1 | Rint = 0.036 |
ω– and ϕ–scans | θmax = 31.3°, θmin = 3.6° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2014) | h = −6→6 |
Tmin = 0.905, Tmax = 1.000 | k = −8→8 |
1207 measured reflections | l = −6→6 |
Refinement on F2 | 29 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.028 | w = 1/[σ2(Fo2) + (0.0209P)2 + 0.5403P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.068 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 1.20 e Å−3 |
405 reflections | Δρmin = −1.17 e Å−3 |
MoO4Zn | V = 131.98 (2) Å3 |
Mr = 225.31 | Z = 2 |
Monoclinic, P2/c | Mo Kα radiation |
a = 4.6980 (3) Å | µ = 13.62 mm−1 |
b = 5.7380 (4) Å | T = 293 K |
c = 4.8960 (4) Å | 0.08 × 0.06 × 0.03 mm |
β = 90.311 (7)° |
Oxford Diffraction Xcalibur CCD diffractometer | 405 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2014) | 358 reflections with I > 2σ(I) |
Tmin = 0.905, Tmax = 1.000 | Rint = 0.036 |
1207 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 29 parameters |
wR(F2) = 0.068 | 0 restraints |
S = 1.10 | Δρmax = 1.20 e Å−3 |
405 reflections | Δρmin = −1.17 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 1.0000 | 0.81190 (10) | 0.2500 | 0.00507 (18) | |
Zn1 | 1.5000 | 0.69182 (15) | 0.7500 | 0.0092 (2) | |
O1 | 1.2538 (7) | 0.6236 (6) | 0.4014 (7) | 0.0080 (7) | |
O2 | 0.7835 (7) | 0.8950 (6) | 0.5603 (7) | 0.0058 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.0065 (3) | 0.0045 (3) | 0.0041 (3) | 0.000 | −0.0002 (2) | 0.000 |
Zn1 | 0.0087 (4) | 0.0116 (4) | 0.0073 (4) | 0.000 | 0.0009 (3) | 0.000 |
O1 | 0.0089 (17) | 0.0110 (16) | 0.0041 (17) | 0.0006 (14) | 0.0003 (13) | −0.0004 (14) |
O2 | 0.0088 (16) | 0.0064 (14) | 0.0021 (16) | −0.0005 (13) | 0.0016 (12) | −0.0010 (13) |
Mo1—O1i | 1.769 (3) | Zn1—O2iv | 2.002 (3) |
Mo1—O1 | 1.769 (3) | Zn1—O2v | 2.002 (3) |
Mo1—O2 | 1.894 (3) | Zn1—O1vi | 2.094 (3) |
Mo1—O2i | 1.894 (3) | Zn1—O1 | 2.094 (3) |
Mo1—O2ii | 2.171 (3) | Zn1—O1vii | 2.274 (4) |
Mo1—O2iii | 2.171 (3) | Zn1—O1viii | 2.274 (4) |
O1i—Mo1—O1 | 104.7 (2) | O2iv—Zn1—O1 | 95.54 (14) |
O1i—Mo1—O2 | 97.25 (15) | O2v—Zn1—O1 | 96.96 (14) |
O1—Mo1—O2 | 100.46 (15) | O1vi—Zn1—O1 | 158.4 (2) |
O1i—Mo1—O2i | 100.46 (15) | O2iv—Zn1—O1vii | 162.81 (14) |
O1—Mo1—O2i | 97.25 (15) | O2v—Zn1—O1vii | 88.37 (13) |
O2—Mo1—O2i | 150.8 (2) | O1vi—Zn1—O1vii | 82.25 (14) |
O1i—Mo1—O2ii | 164.89 (14) | O1—Zn1—O1vii | 80.63 (11) |
O1—Mo1—O2ii | 88.90 (14) | O2iv—Zn1—O1viii | 88.37 (13) |
O2—Mo1—O2ii | 73.39 (16) | O2v—Zn1—O1viii | 162.81 (14) |
O2i—Mo1—O2ii | 84.01 (11) | O1vi—Zn1—O1viii | 80.63 (11) |
O1i—Mo1—O2iii | 88.90 (14) | O1—Zn1—O1viii | 82.24 (14) |
O1—Mo1—O2iii | 164.89 (15) | O1vii—Zn1—O1viii | 74.53 (18) |
O2—Mo1—O2iii | 84.01 (11) | Mo1—O1—Zn1 | 126.54 (19) |
O2i—Mo1—O2iii | 73.39 (16) | Mo1—O1—Zn1viii | 133.83 (18) |
O2ii—Mo1—O2iii | 78.49 (18) | Zn1—O1—Zn1viii | 97.75 (14) |
O2iv—Zn1—O2v | 108.8 (2) | Mo1—O2—Zn1ix | 125.93 (18) |
O2iv—Zn1—O1vi | 96.96 (14) | Mo1—O2—Mo1ii | 106.61 (16) |
O2v—Zn1—O1vi | 95.54 (14) | Zn1ix—O2—Mo1ii | 124.32 (17) |
Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x+2, −y+2, −z+1; (iii) x, −y+2, z−1/2; (iv) x+1, y, z; (v) −x+2, y, −z+3/2; (vi) −x+3, y, −z+3/2; (vii) x, −y+1, z+1/2; (viii) −x+3, −y+1, −z+1; (ix) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | MoO4Zn |
Mr | 225.31 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 293 |
a, b, c (Å) | 4.6980 (3), 5.7380 (4), 4.8960 (4) |
β (°) | 90.311 (7) |
V (Å3) | 131.98 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 13.62 |
Crystal size (mm) | 0.08 × 0.06 × 0.03 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2014) |
Tmin, Tmax | 0.905, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1207, 405, 358 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.731 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.068, 1.10 |
No. of reflections | 405 |
No. of parameters | 29 |
Δρmax, Δρmin (e Å−3) | 1.20, −1.17 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2014), CrysAlis RED (Oxford Diffraction, 2014), SIR2011 (Burla et al., 2012), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PARST (Nardelli, 1995).
Acknowledgements
We acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MAT2013–40950-R), Gobierno del Principado de Asturias (GRUPIN14–060) and ERDF.
References
Abrahams, S. C. (1967). J. Chem. Phys. 46, 2052–2063. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Allemagne. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cavalcante, L. S., Moraes, E., Almeida, M. A. P., Dalmaschio, C. J., Batista, N. C., Varela, J. A., Longo, E., Siu Li, M., Andrés, J. & Beltrán, A. (2013). Polyhedron, 54, 13–25. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Katikaneani, P. & Arunachalam, R. (2005). Eur. J. Inorg. Chem. pp. 3080–3087. Google Scholar
Keeling, R. O. (1957). Acta Cryst. 10, 209–213. CrossRef CAS IUCr Journals Web of Science Google Scholar
Macavei, J. & Schulz, H. (1993). Z. Kristallogr. 207, 193–208. CrossRef CAS Web of Science Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2014). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Trots, D. M., Senyshyn, A., Vasylechko, L., Niewa, R., Vad, T., Mikhailik, V. B. & Kraus, H. (2009). J. Phys. Condens. Matter, 21, 325402. CrossRef PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, G., Yu, S., Yang, Y., Jiang, W., Zhang, S. & Huang, B. (2010). J. Cryst. Growth, 312, 1866–1874. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.