research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 760-762

Crystal structure of Sc1.91In1.39Mo15Se19, containing Mo6 and Mo9 clusters

CROSSMARK_Color_square_no_text.svg

aSciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I - INSA Rennes, Avenue du Général Leclerc, 35042 Rennes CEDEX, France
*Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 May 2015; accepted 2 June 2015; online 10 June 2015)

The structure of scandium indium penta­deca­molybdenum nona­deca­selenide, Sc1.91In1.39Mo15Se19, is isotypic with In2.9Mo15Se19 [Grüttner et al. (1979[Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285-292.]). Acta Cryst. B35, 285–292]. It is characterized by two cluster units Mo6Sei8Sea6 and Mo9Sei11Sea6 (where i represents inner and a apical atoms) that are present in a 1:1 ratio. The cluster units are centered at Wyckoff positions 2b and 2c and have point-group symmetry -3 and -6, respectively. The clusters are inter­connected through additional Mo—Se bonds. Sc—Se and In—Se bonds complete the structural set-up. In the title compound, the Sc3+ cations replace the trivalent indium atoms present in In2.9Mo15Se19, and a deficiency is observed at the monovalent indium site. One Mo, one Se and the Sc atom are situated on mirror planes, whereas two other Se atoms and the In atom are situated on threefold rotation axes.

1. Chemical context

From a crystal–chemical point of view, reduced molybdenum selenides In3Mo15Se19 (Grüttner et al., 1979[Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285-292.]) constitute an inter­esting family of compounds. Indeed, their crystal structures contain an equal mixture of Mo6 and Mo9 cluster units with the In atoms occupying two crystallographically different positions depending on their formal oxidation state of +1 or +3. Inter­est in these Mo cluster compounds also lies in their physical properties because they become superconductors with high critical magnetic fields at about 4 K (Seeber et al., 1979[Seeber, B., Decroux, M., Fischer, Ø., Chevrel, R., Sergent, M. & Grüttner, A. (1979). Solid State Commun. 29, 419-423.]). Recently, we have shown that the In3+ cation can be replaced by other trivalent cations such as Ho3+ (resulting in a compound with composition Ho0.76In1.68Mo15Se19; Salloum et al., 2006[Salloum, D., Gougeon, P. & Potel, M. (2006). Acta Cryst. E62, i83-i85.]) or V3+ (V1.42In1.83Mo15Se19; Gougeon et al., 2010[Gougeon, P., Gall, P., Salloum, D. & Potel, M. (2010). Acta Cryst. E66, i73.]), and the In+ cation by K+ (In0.87K2Mo15Se19; Salloum et al., 2007[Salloum, D., Gougeon, P. & Potel, M. (2007). Acta Cryst. E63, i8-i10.]). We present here the crystal structure of Sc1.91In1.39Mo15Se19 in which scandium atoms replace the trivalent indium atoms.

2. Structural commentary

The Mo–Se framework of the title compound consists of the cluster units Mo6Sei8Sea6 and Mo9Sei11Sea6 in an 1:1 ratio (for details of the i- and a-type ligand notation, see: Schäfer & von Schnering, 1964[Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-849.]). Both cluster units are inter­connected through additional Mo—Se bonds (Table 1[link], Figs. 1[link] and 2[link]). The first unit can be described as an Mo6 octa­hedron surrounded by eight face-capping inner Sei and six apical Sea ligands. The Mo9 cluster is surrounded by 11 Sei atoms capping one or two faces of the bi­octa­hedron and six Sea ligands above the apical Mo atoms. The Mo6Sei8Sea6 and Mo9Sei11Sea6 units are centered at Wyckoff positions 2b and 2c and have point-group symmetry [\overline{3}] and [\overline{6}], respectively. The Mo—Mo distances within the Mo6 cluster are 2.6995 (6) Å for the distances of the Mo triangles formed by the Mo1 atoms related through the threefold axis, and 2.7179 (5) Å for the distances between these triangles. The Mo—Mo distances within the Mo9 clusters are 2.6460 (6) and 2.7127 (8) Å in the triangles formed by the atoms Mo2 and Mo3, respectively, and 2.7196 (4) and 2.7675 (4) Å for those between the Mo23 and Mo33 triangles. The Se atoms bridge either one (Se1, Se2, Se4 and Se5) or two (Se3) triangular faces of the Mo clusters. Moreover, atoms Se1 and Se2 are linked to an Mo atom of a neighboring cluster. The Mo—Se bond lengths range from 2.5480 (6) to 2.6531 (5) Å within the Mo6Sei8Sea6 unit, and from 2.5290 (6) to 2.6966 (4) Å within the Mo9Sei11Sea6 unit. Each Mo9Sei11Sea6 cluster is inter­connected by six Mo6Sei8Sea6 units (and vice versa) via Mo2—Se1 bonds (and Mo1—Se2 bonds, respectively), forming the three-dimensional Mo–Se framework, the connectivity formula of which is Mo9Sei5Sei−a6/2Sea−i6/2, Mo6Sei2Sei−a6/2Sea−i6/2. It results from this arrangement that the shortest inter­cluster Mo1—Mo2 distance is 3.4361 (5) Å, indicating only weak metal⋯metal inter­actions.

Table 1
Selected bond lengths (Å)

Mo1—Se4 2.5480 (6) Mo3—Se2 2.5780 (5)
Mo1—Se1i 2.5488 (5) Mo3—Se3iii 2.5884 (7)
Mo1—Se1 2.5749 (5) Mo3—Se3 2.5900 (7)
Mo1—Se1ii 2.6145 (5) Mo3—Mo3iii 2.7127 (8)
Mo1—Se2 2.6531 (5) In—Se5 3.0662 (13)
Mo1—Mo1ii 2.6995 (6) In—Se2vii 3.1273 (4)
Mo1—Mo1i 2.7179 (5) In—Se2viii 3.1273 (4)
Mo2—Se5 2.5290 (6) In—Se2i 3.1273 (4)
Mo2—Se2 2.5931 (5) In—Se1vii 3.4912 (6)
Mo2—Se2iii 2.6275 (5) In—Se1i 3.4912 (6)
Mo2—Mo2iv 2.6460 (6) In—Se1viii 3.4912 (6)
Mo2—Se1v 2.6581 (5) Sc—Se4vi 2.5691 (15)
Mo2—Se3iii 2.6965 (4) Sc—Se3ii 2.696 (2)
Mo2—Mo3iii 2.7196 (4) Sc—Se2ix 2.8056 (12)
Mo2—Mo3 2.7675 (4) Sc—Se2x 2.8056 (12)
Mo3—Se2vi 2.5780 (5) Sc—Se3ix 2.931 (2)
Symmetry codes: (i) x-y, x, -z+1; (ii) -y, x-y, z; (iii) -y+1, x-y, z; (iv) -x+y+1, -x+1, z; (v) -x+y+1, -x, z; (vi) [x, y, -z+{\script{3\over 2}}]; (vii) -x+1, -y, -z+1; (viii) y+1, -x+y+1, -z+1; (ix) -x+y, -x, z; (x) [-x+y, -x, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
View of the crystal structure of Sc1.91In1.39Mo15Se19 along [110]. Displacement ellipsoids are drawn at the 97% probability level.
[Figure 2]
Figure 2
Plot showing the atom-numbering scheme and the inter­unit linkage of the Mo9Se11Se6 and Mo6Se8Se6 cluster units. Displacement ellipsoids are drawn at the 97% probability level.

Comparison of the Mo—Mo and Mo—Se distances with those of the other substituted compounds Ho0.76In1.68Mo15Se19, In0.87K2Mo15Se19 and V1.42In1.83Mo15Se19 does not reveal great differences although the cationic charges are different in the four compounds. The In+ cations are surrounded by seven Se atoms, forming a distorted tricapped tetra­hedron as in In2.9Mo15Se19. The Se5 and Se2 atoms forming the tetra­hedron are at 3.0662 (13) and 3.1273 (4) Å from the In+ cation, and the capping Se1 atoms are at 3.4912 (6) Å. While in In2.9Mo15Se19 the monovalent In site is fully occupied, in the title compound it is only has 69.5 (3)% occupancy. This deficiency probably results from the higher temperature used during the crystal-growth process, which led to a loss of indium and selenium because of the high volatility of these elements at 1773 K. The Sc3+ cations, as the In3+ cations in the In3Mo15Se19 compounds, occupy partially at 63.8 (6)% a triangular group of distorted octa­hedral cavities, which are formed by two Mo6Sei8Sea6 and three Mo9Sei11Sea6 units, around the threefold rotation axis. The Sc—Se distances are in the 2.5691 (15)–2.931 (2) Å range.

3. Synthesis and crystallization

Single crystals of Sc1.91In1.39Mo15Se19 were obtained from a mixture of Sc2Se3, MoSe2, InSe and Mo with a nominal composition Sc2In2Mo15Se19. Before use, Mo powder was reduced under H2 flowing gas at 1273 K for ten h in order to eliminate any trace of oxygen. The binaries Sc2Se3, MoSe2, InSe were obtained by heating stoichiometric mixtures of the elements in sealed evacuated silica tubes for about two days. All handling of materials was performed in an argon-filled glove box. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K h−1 up to 1773 K, the temperature which was held for 48 h, then cooled at 100 K h−1 down to 1373 K and finally furnace cooled.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The highest and lowest remaining electron densities are located 0.66 and 0.62 Å from the In site, respectively. Refinement of the occupancy factors of the Sc and In atoms led to the final composition Sc1.914 (12)In1.390 (6)Mo15Se19.

Table 2
Experimental details

Crystal data
Chemical formula Sc1.91In1.39Mo15Se19
Mr 3185.04
Crystal system, space group Hexagonal, P63/m
Temperature (K) 293
a, c (Å) 9.7530 (2), 19.3977 (2)
V3) 1597.93 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 28.65
Crystal size (mm) 0.06 × 0.05 × 0.04
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Analytical (de Meulenaar & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.])
Tmin, Tmax 0.279, 0.424
No. of measured, independent and observed [I > 2σ(I)] reflections 31413, 2414, 1847
Rint 0.073
(sin θ/λ)max−1) 0.807
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.063, 1.08
No. of reflections 2414
No. of parameters 67
Δρmax, Δρmin (e Å−3) 2.22, −1.97
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Bergerhoff, 1996[Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.]).

Supporting information


Chemical context top

From a crystal–chemical point of view, reduced molybdenum selenides In~3Mo15Se19 (Grüttner et al., 1979) constitute an inter­esting family of compounds. Indeed, their crystal structures contain an equal mixture of Mo6 and Mo9 cluster units with the In atoms occupying two crystallographically different positions depending on their formal oxidation state of +1 or +3. Inter­est in these Mo cluster compounds also lies in their physical properties because they become superconductors with high critical magnetic fields at about 4 K (Seeber et al., 1979). Recently, we have shown that the In3+ cation can be replaced by other trivalent cations such as Ho3+ (resulting in a compound with composition Ho0.76In1.68Mo15Se19; Salloum et al., 2006) or V3+ (V1.42In1.83Mo15Se19; Gougeon et al., 2010), and the In+ cation by K+ (In0.87K2Mo15Se19; Salloum et al., 2007). We present here the crystal structure of Sc1.91In1.39Mo15Se19 in which scandium atoms replace the trivalent indium atoms.

Structural commentary top

The Mo–Se framework of the title compound consists of the cluster units Mo6Sei8Sea6 and Mo9Sei11Sea6 in an 1:1 ratio (for details of the i- and a-type ligand notation, see: Schäfer & von Schnering, 1964). Both cluster units are inter­connected through additional Mo—Se bonds (Table 1, Figs. 1 and 2). The first unit can be described as an Mo6 o­cta­hedron surrounded by eight face-capping inner Sei and six apical Sea ligands. The Mo9 cluster is surrounded by 11 Sei atoms capping one or two faces of the bio­cta­hedron and six Sea ligands above the apical Mo atoms. The Mo6Sei8Sea6 and Mo9Sei11Sea6 units are centered at Wyckoff positions 2b and 2c and have point-group symmetry 3 and 6, respectively. The Mo—Mo distances within the Mo6 cluster are 2.6995 (6) Å for the distances of the Mo triangles formed by the Mo1 atoms related through the threefold axis, and 2.7179 (5) Å for the distances between these triangles. The Mo—Mo distances within the Mo9 clusters are 2.6460 (6) and 2.7127 (8) Å in the triangles formed by the atoms Mo2 and Mo3, respectively, and 2.7196 (4) and 2.7675 (4) Å for those between the Mo23 and Mo33 triangles. The Se atoms bridge either one (Se1, Se2, Se4 and Se5) or two (Se3) triangular faces of the Mo clusters. Moreover, atoms Se1 and Se2 are linked to an Mo atom of a neighboring cluster. The Mo—Se bond lengths range from 2.5480 (6) to 2.6531 (5) Å within the Mo6Sei8Sea6 unit, and from 2.5290 (6) to 2.6966 (4) Å within the Mo9Sei11Sea6 unit. Each Mo9Sei11Sea6 cluster is inter­connected by six Mo6Sei8Sea6 units (and vice versa) via Mo2—Se1 bonds (and Mo1—Se2 bonds, respectively), forming the three-dimensional Mo–Se framework, the connectivity formula of which is Mo9Sei5Sei-a6/2Se-ai6/2, Mo6Sei2Sei-a6/2Sea-i6/2. It results from this arrangement that the shortest inter­cluster Mo1—Mo2 distance is 3.4361 (5) Å, indicating only weak metal···metal inter­actions.

Comparison of the Mo—Mo and Mo—Se distances with those of the other substituted compounds Ho0.76In1.68Mo15Se19, In0.87K2Mo15Se19 and V1.42In1.83Mo15Se19 does not reveal great differences although the cationic charges are different in the four compounds. The In+ cations are surrounded by seven Se atoms, forming a distorted tricapped tetra­hedron as in In2.9Mo15Se19. The Se5 and Se2 atoms forming the tetra­hedron are at 3.0662 (13) and 3.1273 (4) Å from the In+ cation, and the capping Se1 atoms are at 3.4912 (6) Å. While in In2.9Mo15Se19 the monovalent In site is fully occupied, in the title compound it is only has 69.5 (3)% occupancy. This deficiency probably results from the higher temperature used during the crystal-growth process, which led to a loss of indium and selenium because of the high volatility of these elements at 1773 K. The Sc3+ cations, as the In3+ cations in the In3Mo15Se19 compounds, occupy partially at 63.8 (6)% a triangular group of distorted o­cta­hedral cavities, which are formed by two Mo6Sei8Sea6 and three Mo9Sei11Sea6 units, around the threefold rotation axis. The Sc—Se distances are in the 2.5691 (15)–2.931 (2) Å range.

Synthesis and crystallization top

Single crystals of Sc1.91In1.39Mo15Se19 were prepared from a mixture of Sc2Se3, MoSe2, InSe and Mo with a nominal composition Sc2In2Mo15Se19. Before use, Mo powder was reduced under H2 flowing gas at 1273 K for ten hours in order to eliminate any trace of oxygen. The binaries Sc2Se3, MoSe2, InSe were obtained by heating stoichiometric mixtures of the elements in sealed evacuated silica tubes for about two days. All handling of materials was performed in an argon-filled glove box. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K h-1 up to 1773 K, the temperature which was held for 48 hours, then cooled at 100 K h-1 down to 1373 K and finally furnace cooled.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The highest and lowest remaining electron densities are located 0.66 and 0.62 Å from the In site, respectively. Refinement of the occupancy factors of the Sc and In atoms led to the final composition Sc1.914 (12)In1.390 (6)Mo15Se19.

Related literature top

For related literature, see: Gougeon et al. (2010); Grüttner et al. (1979); Salloum et al. (2006, 2007); Schäfer & von Schnering (1964); Seeber et al. (1979).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. View of the crystal structure of Sc1.91In1.39Mo15Se19 along [110]. Displacement ellipsoids are drawn at the 97% probability level.
[Figure 2] Fig. 2. Plot showing the atom-numbering scheme and the interunit linkage of the Mo9Se11Se6 and Mo6Se8Se6 cluster units. Displacement ellipsoids are drawn at the 97% probability level.
Scandium indium pentadecamolybdenum nonadecaselenide top
Crystal data top
Sc1.91In1.39Mo15Se19F(000) = 2769
Mr = 3185.04Dx = 6.620 Mg m3
Hexagonal, P63/mMo Kα radiation, λ = 0.71069 Å
a = 9.7530 (2) ŵ = 28.65 mm1
c = 19.3977 (2) ÅT = 293 K
V = 1597.93 (7) Å3Irregular block, black
Z = 20.06 × 0.05 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2414 independent reflections
Radiation source: fine-focus sealed tube1847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ scans (κ = 0) + additional ω scansθmax = 35.0°, θmin = 2.4°
Absorption correction: analytical
(de Meulenaar & Tompa, 1965)
h = 1315
Tmin = 0.279, Tmax = 0.424k = 1513
31413 measured reflectionsl = 3126
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0228P)2 + 7.5263P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031(Δ/σ)max = 0.002
wR(F2) = 0.063Δρmax = 2.22 e Å3
S = 1.08Δρmin = 1.96 e Å3
2414 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
67 parametersExtinction coefficient: 0.00065 (4)
Crystal data top
Sc1.91In1.39Mo15Se19Z = 2
Mr = 3185.04Mo Kα radiation
Hexagonal, P63/mµ = 28.65 mm1
a = 9.7530 (2) ÅT = 293 K
c = 19.3977 (2) Å0.06 × 0.05 × 0.04 mm
V = 1597.93 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
2414 independent reflections
Absorption correction: analytical
(de Meulenaar & Tompa, 1965)
1847 reflections with I > 2σ(I)
Tmin = 0.279, Tmax = 0.424Rint = 0.073
31413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03167 parameters
wR(F2) = 0.0630 restraints
S = 1.08Δρmax = 2.22 e Å3
2414 reflectionsΔρmin = 1.96 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.16732 (4)0.01628 (4)0.55740 (2)0.00813 (7)
Mo20.68442 (4)0.18633 (4)0.63321 (2)0.00769 (7)
Mo30.51261 (5)0.16694 (5)0.75000.00748 (8)
Se10.03573 (5)0.28735 (5)0.55124 (2)0.01007 (8)
Se20.37937 (5)0.00705 (5)0.64001 (2)0.01114 (9)
Se30.34923 (7)0.30997 (7)0.75000.01107 (11)
Se40.00000.00000.66131 (3)0.01933 (16)
Se50.66670.33330.52931 (3)0.01116 (13)
In0.66670.33330.37124 (6)0.0358 (4)0.695 (3)
Sc0.2115 (2)0.1745 (2)0.75000.0143 (5)0.638 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01005 (15)0.00828 (15)0.00598 (13)0.00453 (12)0.00026 (9)0.00006 (9)
Mo20.00846 (14)0.00829 (14)0.00626 (12)0.00415 (12)0.00015 (9)0.00030 (9)
Mo30.0087 (2)0.0085 (2)0.00563 (16)0.00458 (16)0.0000.000
Se10.01139 (18)0.00980 (18)0.00960 (15)0.00572 (15)0.00112 (12)0.00197 (12)
Se20.00992 (18)0.01101 (19)0.01187 (16)0.00477 (14)0.00272 (12)0.00153 (12)
Se30.0098 (3)0.0142 (3)0.0104 (2)0.0069 (2)0.0000.000
Se40.0264 (3)0.0264 (3)0.0053 (3)0.01318 (13)0.0000.000
Se50.0136 (2)0.0136 (2)0.0063 (2)0.00679 (10)0.0000.000
In0.0355 (5)0.0355 (5)0.0363 (6)0.0178 (2)0.0000.000
Sc0.0176 (10)0.0064 (8)0.0159 (8)0.0038 (7)0.0000.000
Geometric parameters (Å, º) top
Mo1—Se42.5480 (6)Se3—Scii2.931 (2)
Mo1—Se1i2.5488 (5)Se4—Mo1iii2.5479 (6)
Mo1—Se12.5749 (5)Se4—Mo1ii2.5479 (6)
Mo1—Se1ii2.6145 (5)Se4—Sciii2.5691 (15)
Mo1—Se22.6531 (5)Se4—Scii2.5691 (15)
Mo1—Mo1ii2.6995 (6)Se4—Sc2.5691 (15)
Mo1—Mo1iii2.6995 (6)Se5—Mo2v2.5290 (6)
Mo1—Mo1i2.7179 (5)Se5—Mo2vi2.5290 (6)
Mo1—Mo1iv2.7179 (5)In—Se53.0662 (13)
Mo2—Se52.5290 (6)In—Se2xi3.1273 (4)
Mo2—Se22.5931 (5)In—Se2xii3.1273 (4)
Mo2—Se2v2.6275 (5)In—Se2i3.1273 (4)
Mo2—Mo2vi2.6460 (6)In—Se1xi3.4912 (6)
Mo2—Mo2v2.6460 (6)In—Se1i3.4912 (6)
Mo2—Se1vii2.6581 (5)In—Se1xii3.4912 (6)
Mo2—Se3v2.6965 (4)In—Se3iv4.2657 (8)
Mo2—Mo3v2.7196 (4)In—Se3xiii4.2657 (8)
Mo2—Mo32.7675 (4)In—Se3xiv4.2657 (8)
Mo3—Se2viii2.5780 (5)In—Scxv4.5565 (18)
Mo3—Se22.5780 (5)In—Scxvi4.5565 (18)
Mo3—Se3v2.5884 (7)In—Scxvii4.5565 (18)
Mo3—Se32.5900 (7)Sc—Se4viii2.5691 (15)
Mo3—Mo3v2.7127 (8)Sc—Se3ii2.696 (2)
Mo3—Mo3vi2.7127 (8)Sc—Se2iii2.8056 (12)
Mo3—Mo2ix2.7196 (4)Sc—Se2xviii2.8056 (12)
Mo3—Mo2vi2.7196 (4)Sc—Mo3iii2.8760 (18)
Mo3—Mo2viii2.7675 (4)Sc—Se3iii2.931 (2)
Mo3—Scii2.8760 (18)Sc—Sciii3.305 (3)
Se1—Mo1iv2.5488 (5)Sc—Scii3.305 (3)
Se1—Mo1iii2.6145 (5)Sc—Mo1xviii3.7775 (4)
Se1—Mo2x2.6581 (5)Sc—Mo1iii3.7775 (4)
Se2—Mo2vi2.6275 (5)Sc—Mo2x4.0216 (15)
Se2—Scii2.8056 (12)Sc—Mo2xix4.0216 (15)
Se3—Mo3vi2.5884 (7)Sc—Se1xviii4.3993 (10)
Se3—Mo2ix2.6966 (4)Sc—Se1iii4.3993 (10)
Se3—Mo2vi2.6966 (4)Sc—Inxvi4.5564 (18)
Se3—Sciii2.696 (2)
Se4—Mo1—Se1i176.406 (19)Mo2ix—Mo3—Mo2145.97 (2)
Se4—Mo1—Se191.698 (13)Mo2vi—Mo3—Mo257.653 (13)
Se1i—Mo1—Se189.030 (13)Se2viii—Mo3—Mo2viii57.907 (12)
Se4—Mo1—Se1ii90.788 (13)Se2—Mo3—Mo2viii145.46 (2)
Se1i—Mo1—Se1ii88.161 (13)Se3v—Mo3—Mo2viii60.349 (12)
Se1—Mo1—Se1ii174.05 (2)Se3—Mo3—Mo2viii118.538 (13)
Se4—Mo1—Se290.338 (16)Mo3v—Mo3—Mo2viii59.495 (13)
Se1i—Mo1—Se293.220 (16)Mo3vi—Mo3—Mo2viii88.794 (12)
Se1—Mo1—Se286.430 (16)Mo2ix—Mo3—Mo2viii57.654 (13)
Se1ii—Mo1—Se298.964 (16)Mo2vi—Mo3—Mo2viii145.97 (2)
Se4—Mo1—Mo1ii58.012 (9)Mo2—Mo3—Mo2viii109.89 (2)
Se1i—Mo1—Mo1ii118.654 (14)Se2viii—Mo3—Scii61.629 (19)
Se1—Mo1—Mo1ii119.304 (17)Se2—Mo3—Scii61.629 (19)
Se1ii—Mo1—Mo1ii57.940 (16)Se3v—Mo3—Scii118.59 (5)
Se2—Mo1—Mo1ii137.271 (14)Se3—Mo3—Scii64.60 (4)
Se4—Mo1—Mo1iii58.012 (9)Mo3v—Mo3—Scii177.02 (5)
Se1i—Mo1—Mo1iii119.634 (13)Mo3vi—Mo3—Scii122.98 (5)
Se1—Mo1—Mo1iii59.376 (17)Mo2ix—Mo3—Scii91.85 (3)
Se1ii—Mo1—Mo1iii117.870 (16)Mo2vi—Mo3—Scii91.85 (3)
Se2—Mo1—Mo1iii129.426 (16)Mo2—Mo3—Scii119.536 (18)
Mo1ii—Mo1—Mo1iii60.0Mo2viii—Mo3—Scii119.536 (18)
Se4—Mo1—Mo1i118.212 (12)Mo1iv—Se1—Mo164.071 (16)
Se1i—Mo1—Mo1i58.430 (15)Mo1iv—Se1—Mo1iii63.509 (16)
Se1—Mo1—Mo1i117.048 (15)Mo1—Se1—Mo1iii62.685 (17)
Se1ii—Mo1—Mo1i57.068 (11)Mo1iv—Se1—Mo2x131.401 (19)
Se2—Mo1—Mo1i140.439 (16)Mo1—Se1—Mo2x128.246 (18)
Mo1ii—Mo1—Mo1i60.224 (8)Mo1iii—Se1—Mo2x81.335 (15)
Mo1iii—Mo1—Mo1i90.0Mo3—Se2—Mo264.712 (15)
Se4—Mo1—Mo1iv118.212 (12)Mo3—Se2—Mo2vi62.984 (14)
Se1i—Mo1—Mo1iv59.423 (15)Mo2—Se2—Mo2vi60.903 (17)
Se1—Mo1—Mo1iv57.499 (11)Mo3—Se2—Mo1130.17 (2)
Se1ii—Mo1—Mo1iv116.606 (15)Mo2—Se2—Mo1126.687 (18)
Se2—Mo1—Mo1iv132.232 (15)Mo2vi—Se2—Mo181.187 (15)
Mo1ii—Mo1—Mo1iv90.0Mo3—Se2—Scii64.42 (3)
Mo1iii—Mo1—Mo1iv60.224 (8)Mo2—Se2—Scii129.13 (3)
Mo1i—Mo1—Mo1iv59.550 (15)Mo2vi—Se2—Scii95.44 (4)
Se5—Mo2—Se292.412 (13)Mo1—Se2—Scii87.53 (3)
Se5—Mo2—Se2v91.604 (13)Mo3vi—Se3—Mo363.18 (2)
Se2—Mo2—Se2v174.13 (2)Mo3vi—Se3—Mo2ix63.118 (13)
Se5—Mo2—Mo2vi58.457 (9)Mo3—Se3—Mo2ix61.881 (13)
Se2—Mo2—Mo2vi60.191 (17)Mo3vi—Se3—Mo2vi63.118 (13)
Se2v—Mo2—Mo2vi118.823 (16)Mo3—Se3—Mo2vi61.881 (14)
Se5—Mo2—Mo2v58.457 (9)Mo2ix—Se3—Mo2vi114.31 (2)
Se2—Mo2—Mo2v120.106 (17)Mo3vi—Se3—Sciii162.59 (5)
Se2v—Mo2—Mo2v58.906 (16)Mo3—Se3—Sciii134.23 (5)
Mo2vi—Mo2—Mo2v60.0Mo2ix—Se3—Sciii121.404 (15)
Se5—Mo2—Se1vii90.196 (15)Mo2vi—Se3—Sciii121.404 (15)
Se2—Mo2—Se1vii85.764 (16)Mo3vi—Se3—Scii125.62 (4)
Se2v—Mo2—Se1vii98.510 (16)Mo3—Se3—Scii62.43 (4)
Mo2vi—Mo2—Se1vii129.579 (16)Mo2ix—Se3—Scii91.14 (2)
Mo2v—Mo2—Se1vii137.688 (14)Mo2vi—Se3—Scii91.14 (2)
Se5—Mo2—Se3v175.172 (19)Sciii—Se3—Scii71.79 (8)
Se2—Mo2—Se3v85.424 (18)Mo1iii—Se4—Mo1ii63.974 (19)
Se2v—Mo2—Se3v90.244 (18)Mo1iii—Se4—Mo163.975 (19)
Mo2vi—Mo2—Se3v116.797 (15)Mo1ii—Se4—Mo163.974 (19)
Mo2v—Mo2—Se3v119.114 (14)Mo1iii—Se4—Sciii148.00 (4)
Se1vii—Mo2—Se3v93.942 (17)Mo1ii—Se4—Sciii95.16 (3)
Se5—Mo2—Mo3v120.527 (17)Mo1—Se4—Sciii130.64 (4)
Se2—Mo2—Mo3v116.554 (16)Mo1iii—Se4—Scii130.64 (4)
Se2v—Mo2—Mo3v57.619 (13)Mo1ii—Se4—Scii148.00 (4)
Mo2vi—Mo2—Mo3v91.213 (12)Mo1—Se4—Scii95.16 (3)
Mo2v—Mo2—Mo3v62.083 (12)Sciii—Se4—Scii80.06 (5)
Se1vii—Mo2—Mo3v138.895 (18)Mo1iii—Se4—Sc95.16 (3)
Se3v—Mo2—Mo3v57.133 (16)Mo1ii—Se4—Sc130.64 (4)
Se5—Mo2—Mo3118.709 (16)Mo1—Se4—Sc148.00 (4)
Se2—Mo2—Mo357.381 (13)Sciii—Se4—Sc80.06 (5)
Se2v—Mo2—Mo3116.832 (16)Scii—Se4—Sc80.06 (5)
Mo2vi—Mo2—Mo360.264 (12)Mo2v—Se5—Mo263.086 (18)
Mo2v—Mo2—Mo390.162 (12)Mo2v—Se5—Mo2vi63.086 (18)
Se1vii—Mo2—Mo3131.676 (18)Mo2—Se5—Mo2vi63.086 (18)
Se3v—Mo2—Mo356.533 (15)Se4viii—Sc—Se484.08 (6)
Mo3v—Mo2—Mo359.250 (17)Se4viii—Sc—Se3ii88.06 (5)
Se2viii—Mo3—Se2111.71 (3)Se4—Sc—Se3ii88.06 (5)
Se2viii—Mo3—Se3v87.997 (16)Se4viii—Sc—Se2iii163.50 (8)
Se2—Mo3—Se3v87.997 (16)Se4—Sc—Se2iii86.578 (17)
Se2viii—Mo3—Se393.784 (17)Se3ii—Sc—Se2iii105.20 (5)
Se2—Mo3—Se393.784 (17)Se4viii—Sc—Se2xviii86.579 (17)
Se3v—Mo3—Se3176.82 (2)Se4—Sc—Se2xviii163.51 (8)
Se2viii—Mo3—Mo3v117.324 (17)Se3ii—Sc—Se2xviii105.20 (5)
Se2—Mo3—Mo3v117.324 (17)Se2iii—Sc—Se2xviii99.02 (6)
Se3v—Mo3—Mo3v58.44 (2)Se4viii—Sc—Mo3iii120.92 (5)
Se3—Mo3—Mo3v118.38 (2)Se4—Sc—Mo3iii120.92 (5)
Se2viii—Mo3—Mo3vi120.613 (15)Se3ii—Sc—Mo3iii138.83 (8)
Se2—Mo3—Mo3vi120.614 (15)Se2iii—Sc—Mo3iii53.95 (3)
Se3v—Mo3—Mo3vi118.44 (2)Se2xviii—Sc—Mo3iii53.95 (3)
Se3—Mo3—Mo3vi58.38 (2)Se4viii—Sc—Se3iii83.19 (5)
Mo3v—Mo3—Mo3vi60.0Se4—Sc—Se3iii83.19 (5)
Se2viii—Mo3—Mo2ix59.397 (12)Se3ii—Sc—Se3iii168.21 (8)
Se2—Mo3—Mo2ix150.43 (2)Se2iii—Sc—Se3iii82.23 (4)
Se3v—Mo3—Mo2ix118.002 (13)Se2xviii—Sc—Se3iii82.23 (4)
Se3—Mo3—Mo2ix60.986 (12)Mo3iii—Sc—Se3iii52.97 (3)
Mo3v—Mo3—Mo2ix89.795 (12)Se4viii—Sc—Sciii49.97 (2)
Mo3vi—Mo3—Mo2ix61.256 (13)Se4—Sc—Sciii49.97 (2)
Se2viii—Mo3—Mo2vi150.43 (2)Se3ii—Sc—Sciii57.39 (6)
Se2—Mo3—Mo2vi59.397 (12)Se2iii—Sc—Sciii129.92 (3)
Se3v—Mo3—Mo2vi118.002 (13)Se2xviii—Sc—Sciii129.92 (3)
Se3—Mo3—Mo2vi60.986 (12)Mo3iii—Sc—Sciii163.78 (9)
Mo3v—Mo3—Mo2vi89.795 (12)Se3iii—Sc—Sciii110.81 (7)
Mo3vi—Mo3—Mo2vi61.256 (13)Se4viii—Sc—Scii49.97 (2)
Mo2ix—Mo3—Mo2vi112.82 (2)Se4—Sc—Scii49.97 (2)
Se2viii—Mo3—Mo2145.46 (2)Se3ii—Sc—Scii117.39 (6)
Se2—Mo3—Mo257.907 (12)Se2iii—Sc—Scii114.00 (7)
Se3v—Mo3—Mo260.350 (12)Se2xviii—Sc—Scii114.00 (7)
Se3—Mo3—Mo2118.538 (13)Mo3iii—Sc—Scii103.78 (9)
Mo3v—Mo3—Mo259.495 (13)Se3iii—Sc—Scii50.81 (7)
Mo3vi—Mo3—Mo288.794 (12)Sciii—Sc—Scii60.0
Symmetry codes: (i) xy, x, z+1; (ii) y, xy, z; (iii) x+y, x, z; (iv) y, x+y, z+1; (v) y+1, xy, z; (vi) x+y+1, x+1, z; (vii) x+y+1, x, z; (viii) x, y, z+3/2; (ix) x+y+1, x+1, z+3/2; (x) y, xy1, z; (xi) x+1, y, z+1; (xii) y+1, x+y+1, z+1; (xiii) xy+1, x, z+1; (xiv) x+1, y+1, z+1; (xv) y+1, x+y, z+1; (xvi) x, y, z+1; (xvii) xy+1, x+1, z+1; (xviii) x+y, x, z+3/2; (xix) y, xy1, z+3/2.
Selected bond lengths (Å) top
Mo1—Se42.5480 (6)Mo3—Se22.5780 (5)
Mo1—Se1i2.5488 (5)Mo3—Se3iii2.5884 (7)
Mo1—Se12.5749 (5)Mo3—Se32.5900 (7)
Mo1—Se1ii2.6145 (5)Mo3—Mo3iii2.7127 (8)
Mo1—Se22.6531 (5)In—Se53.0662 (13)
Mo1—Mo1ii2.6995 (6)In—Se2vii3.1273 (4)
Mo1—Mo1i2.7179 (5)In—Se2viii3.1273 (4)
Mo2—Se52.5290 (6)In—Se2i3.1273 (4)
Mo2—Se22.5931 (5)In—Se1vii3.4912 (6)
Mo2—Se2iii2.6275 (5)In—Se1i3.4912 (6)
Mo2—Mo2iv2.6460 (6)In—Se1viii3.4912 (6)
Mo2—Se1v2.6581 (5)Sc—Se4vi2.5691 (15)
Mo2—Se3iii2.6965 (4)Sc—Se3ii2.696 (2)
Mo2—Mo3iii2.7196 (4)Sc—Se2ix2.8056 (12)
Mo2—Mo32.7675 (4)Sc—Se2x2.8056 (12)
Mo3—Se2vi2.5780 (5)Sc—Se3ix2.931 (2)
Symmetry codes: (i) xy, x, z+1; (ii) y, xy, z; (iii) y+1, xy, z; (iv) x+y+1, x+1, z; (v) x+y+1, x, z; (vi) x, y, z+3/2; (vii) x+1, y, z+1; (viii) y+1, x+y+1, z+1; (ix) x+y, x, z; (x) x+y, x, z+3/2.

Experimental details

Crystal data
Chemical formulaSc1.91In1.39Mo15Se19
Mr3185.04
Crystal system, space groupHexagonal, P63/m
Temperature (K)293
a, c (Å)9.7530 (2), 19.3977 (2)
V3)1597.93 (7)
Z2
Radiation typeMo Kα
µ (mm1)28.65
Crystal size (mm)0.06 × 0.05 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaar & Tompa, 1965)
Tmin, Tmax0.279, 0.424
No. of measured, independent and
observed [I > 2σ(I)] reflections
31413, 2414, 1847
Rint0.073
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.063, 1.08
No. of reflections2414
No. of parameters67
Δρmax, Δρmin (e Å3)2.22, 1.96

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL2014/6 (Sheldrick, 2015), DIAMOND (Bergerhoff, 1996).

 

Acknowledgements

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the Centre de diffractométrie de l'Université de Rennes I (URL: https://www.cdifx.univ-rennes1.fr ).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGougeon, P., Gall, P., Salloum, D. & Potel, M. (2010). Acta Cryst. E66, i73.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285–292.  CrossRef IUCr Journals Web of Science Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSalloum, D., Gougeon, P. & Potel, M. (2006). Acta Cryst. E62, i83–i85.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSalloum, D., Gougeon, P. & Potel, M. (2007). Acta Cryst. E63, i8–i10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833–849.  Google Scholar
First citationSeeber, B., Decroux, M., Fischer, Ø., Chevrel, R., Sergent, M. & Grüttner, A. (1979). Solid State Commun. 29, 419–423.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 760-762
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds