research communications
1.91In1.39Mo15Se19, containing Mo6 and Mo9 clusters
of ScaSciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I - INSA Rennes, Avenue du Général Leclerc, 35042 Rennes CEDEX, France
*Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr
The structure of scandium indium pentadecamolybdenum nonadecaselenide, Sc1.91In1.39Mo15Se19, is isotypic with In2.9Mo15Se19 [Grüttner et al. (1979). Acta Cryst. B35, 285–292]. It is characterized by two cluster units Mo6Sei8Sea6 and Mo9Sei11Sea6 (where i represents inner and a apical atoms) that are present in a 1:1 ratio. The cluster units are centered at Wyckoff positions 2b and 2c and have point-group symmetry -3 and -6, respectively. The clusters are interconnected through additional Mo—Se bonds. Sc—Se and In—Se bonds complete the structural set-up. In the title compound, the Sc3+ cations replace the trivalent indium atoms present in In2.9Mo15Se19, and a deficiency is observed at the monovalent indium site. One Mo, one Se and the Sc atom are situated on mirror planes, whereas two other Se atoms and the In atom are situated on threefold rotation axes.
CCDC reference: 1404496
1. Chemical context
From a crystal–chemical point of view, reduced molybdenum 3Mo15Se19 (Grüttner et al., 1979) constitute an interesting family of compounds. Indeed, their crystal structures contain an equal mixture of Mo6 and Mo9 cluster units with the In atoms occupying two crystallographically different positions depending on their formal of +1 or +3. Interest in these Mo cluster compounds also lies in their physical properties because they become superconductors with high critical magnetic fields at about 4 K (Seeber et al., 1979). Recently, we have shown that the In3+ cation can be replaced by other trivalent cations such as Ho3+ (resulting in a compound with composition Ho0.76In1.68Mo15Se19; Salloum et al., 2006) or V3+ (V1.42In1.83Mo15Se19; Gougeon et al., 2010), and the In+ cation by K+ (In0.87K2Mo15Se19; Salloum et al., 2007). We present here the of Sc1.91In1.39Mo15Se19 in which scandium atoms replace the trivalent indium atoms.
In2. Structural commentary
The Mo–Se framework of the title compound consists of the cluster units Mo6Sei8Sea6 and Mo9Sei11Sea6 in an 1:1 ratio (for details of the i- and a-type ligand notation, see: Schäfer & von Schnering, 1964). Both cluster units are interconnected through additional Mo—Se bonds (Table 1, Figs. 1 and 2). The first unit can be described as an Mo6 octahedron surrounded by eight face-capping inner Sei and six apical Sea ligands. The Mo9 cluster is surrounded by 11 Sei atoms capping one or two faces of the bioctahedron and six Sea ligands above the apical Mo atoms. The Mo6Sei8Sea6 and Mo9Sei11Sea6 units are centered at Wyckoff positions 2b and 2c and have point-group symmetry and , respectively. The Mo—Mo distances within the Mo6 cluster are 2.6995 (6) Å for the distances of the Mo triangles formed by the Mo1 atoms related through the threefold axis, and 2.7179 (5) Å for the distances between these triangles. The Mo—Mo distances within the Mo9 clusters are 2.6460 (6) and 2.7127 (8) Å in the triangles formed by the atoms Mo2 and Mo3, respectively, and 2.7196 (4) and 2.7675 (4) Å for those between the Mo23 and Mo33 triangles. The Se atoms bridge either one (Se1, Se2, Se4 and Se5) or two (Se3) triangular faces of the Mo clusters. Moreover, atoms Se1 and Se2 are linked to an Mo atom of a neighboring cluster. The Mo—Se bond lengths range from 2.5480 (6) to 2.6531 (5) Å within the Mo6Sei8Sea6 unit, and from 2.5290 (6) to 2.6966 (4) Å within the Mo9Sei11Sea6 unit. Each Mo9Sei11Sea6 cluster is interconnected by six Mo6Sei8Sea6 units (and vice versa) via Mo2—Se1 bonds (and Mo1—Se2 bonds, respectively), forming the three-dimensional Mo–Se framework, the connectivity formula of which is Mo9Sei5Sei−a6/2Sea−i6/2, Mo6Sei2Sei−a6/2Sea−i6/2. It results from this arrangement that the shortest intercluster Mo1—Mo2 distance is 3.4361 (5) Å, indicating only weak metal⋯metal interactions.
Comparison of the Mo—Mo and Mo—Se distances with those of the other substituted compounds Ho0.76In1.68Mo15Se19, In0.87K2Mo15Se19 and V1.42In1.83Mo15Se19 does not reveal great differences although the cationic charges are different in the four compounds. The In+ cations are surrounded by seven Se atoms, forming a distorted tricapped tetrahedron as in In2.9Mo15Se19. The Se5 and Se2 atoms forming the tetrahedron are at 3.0662 (13) and 3.1273 (4) Å from the In+ cation, and the capping Se1 atoms are at 3.4912 (6) Å. While in In2.9Mo15Se19 the monovalent In site is fully occupied, in the title compound it is only has 69.5 (3)% occupancy. This deficiency probably results from the higher temperature used during the crystal-growth process, which led to a loss of indium and selenium because of the high volatility of these elements at 1773 K. The Sc3+ cations, as the In3+ cations in the In3Mo15Se19 compounds, occupy partially at 63.8 (6)% a triangular group of distorted octahedral cavities, which are formed by two Mo6Sei8Sea6 and three Mo9Sei11Sea6 units, around the threefold rotation axis. The Sc—Se distances are in the 2.5691 (15)–2.931 (2) Å range.
3. Synthesis and crystallization
Single crystals of Sc1.91In1.39Mo15Se19 were obtained from a mixture of Sc2Se3, MoSe2, InSe and Mo with a nominal composition Sc2In2Mo15Se19. Before use, Mo powder was reduced under H2 flowing gas at 1273 K for ten h in order to eliminate any trace of oxygen. The binaries Sc2Se3, MoSe2, InSe were obtained by heating stoichiometric mixtures of the elements in sealed evacuated silica tubes for about two days. All handling of materials was performed in an argon-filled The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K h−1 up to 1773 K, the temperature which was held for 48 h, then cooled at 100 K h−1 down to 1373 K and finally furnace cooled.
4. Refinement
Crystal data, data collection and structure . The highest and lowest remaining electron densities are located 0.66 and 0.62 Å from the In site, respectively. of the occupancy factors of the Sc and In atoms led to the final composition Sc1.914 (12)In1.390 (6)Mo15Se19.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1404496
10.1107/S2056989015010634/wm5164sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015010634/wm5164Isup2.hkl
From a crystal–chemical point of view, reduced molybdenum
In~3Mo15Se19 (Grüttner et al., 1979) constitute an interesting family of compounds. Indeed, their crystal structures contain an equal mixture of Mo6 and Mo9 cluster units with the In atoms occupying two crystallographically different positions depending on their formal of +1 or +3. Interest in these Mo cluster compounds also lies in their physical properties because they become superconductors with high critical magnetic fields at about 4 K (Seeber et al., 1979). Recently, we have shown that the In3+ cation can be replaced by other trivalent cations such as Ho3+ (resulting in a compound with composition Ho0.76In1.68Mo15Se19; Salloum et al., 2006) or V3+ (V1.42In1.83Mo15Se19; Gougeon et al., 2010), and the In+ cation by K+ (In0.87K2Mo15Se19; Salloum et al., 2007). We present here the of Sc1.91In1.39Mo15Se19 in which scandium atoms replace the trivalent indium atoms.The Mo–Se framework of the title compound consists of the cluster units Mo6Sei8Sea6 and Mo9Sei11Sea6 in an 1:1 ratio (for details of the i- and a-type ligand notation, see: Schäfer & von Schnering, 1964). Both cluster units are interconnected through additional Mo—Se bonds (Table 1, Figs. 1 and 2). The first unit can be described as an Mo6 octahedron surrounded by eight face-capping inner Sei and six apical Sea ligands. The Mo9 cluster is surrounded by 11 Sei atoms capping one or two faces of the bioctahedron and six Sea ligands above the apical Mo atoms. The Mo6Sei8Sea6 and Mo9Sei11Sea6 units are centered at Wyckoff positions 2b and 2c and have point-group symmetry 3 and 6, respectively. The Mo—Mo distances within the Mo6 cluster are 2.6995 (6) Å for the distances of the Mo triangles formed by the Mo1 atoms related through the threefold axis, and 2.7179 (5) Å for the distances between these triangles. The Mo—Mo distances within the Mo9 clusters are 2.6460 (6) and 2.7127 (8) Å in the triangles formed by the atoms Mo2 and Mo3, respectively, and 2.7196 (4) and 2.7675 (4) Å for those between the Mo23 and Mo33 triangles. The Se atoms bridge either one (Se1, Se2, Se4 and Se5) or two (Se3) triangular faces of the Mo clusters. Moreover, atoms Se1 and Se2 are linked to an Mo atom of a neighboring cluster. The Mo—Se bond lengths range from 2.5480 (6) to 2.6531 (5) Å within the Mo6Sei8Sea6 unit, and from 2.5290 (6) to 2.6966 (4) Å within the Mo9Sei11Sea6 unit. Each Mo9Sei11Sea6 cluster is interconnected by six Mo6Sei8Sea6 units (and vice versa) via Mo2—Se1 bonds (and Mo1—Se2 bonds, respectively), forming the three-dimensional Mo–Se framework, the connectivity formula of which is Mo9Sei5Sei-a6/2Se-ai6/2, Mo6Sei2Sei-a6/2Sea-i6/2. It results from this arrangement that the shortest intercluster Mo1—Mo2 distance is 3.4361 (5) Å, indicating only weak metal···metal interactions.
Comparison of the Mo—Mo and Mo—Se distances with those of the other substituted compounds Ho0.76In1.68Mo15Se19, In0.87K2Mo15Se19 and V1.42In1.83Mo15Se19 does not reveal great differences although the cationic charges are different in the four compounds. The In+ cations are surrounded by seven Se atoms, forming a distorted tricapped tetrahedron as in In2.9Mo15Se19. The Se5 and Se2 atoms forming the tetrahedron are at 3.0662 (13) and 3.1273 (4) Å from the In+ cation, and the capping Se1 atoms are at 3.4912 (6) Å. While in In2.9Mo15Se19 the monovalent In site is fully occupied, in the title compound it is only has 69.5 (3)% occupancy. This deficiency probably results from the higher temperature used during the crystal-growth process, which led to a loss of indium and selenium because of the high volatility of these elements at 1773 K. The Sc3+ cations, as the In3+ cations in the In3Mo15Se19 compounds, occupy partially at 63.8 (6)% a triangular group of distorted octahedral cavities, which are formed by two Mo6Sei8Sea6 and three Mo9Sei11Sea6 units, around the threefold rotation axis. The Sc—Se distances are in the 2.5691 (15)–2.931 (2) Å range.
Single crystals of Sc1.91In1.39Mo15Se19 were prepared from a mixture of Sc2Se3, MoSe2, InSe and Mo with a nominal composition Sc2In2Mo15Se19. Before use, Mo powder was reduced under H2 flowing gas at 1273 K for ten hours in order to eliminate any trace of oxygen. The binaries Sc2Se3, MoSe2, InSe were obtained by heating stoichiometric mixtures of the elements in sealed evacuated silica tubes for about two days. All handling of materials was performed in an argon-filled
The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K h-1 up to 1773 K, the temperature which was held for 48 hours, then cooled at 100 K h-1 down to 1373 K and finally furnace cooled.Crystal data, data collection and structure
details are summarized in Table 2. The highest and lowest remaining electron densities are located 0.66 and 0.62 Å from the In site, respectively. of the occupancy factors of the Sc and In atoms led to the final composition Sc1.914 (12)In1.390 (6)Mo15Se19.Data collection: COLLECT (Nonius, 1998); cell
COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015).Fig. 1. View of the crystal structure of Sc1.91In1.39Mo15Se19 along [110]. Displacement ellipsoids are drawn at the 97% probability level. | |
Fig. 2. Plot showing the atom-numbering scheme and the interunit linkage of the Mo9Se11Se6 and Mo6Se8Se6 cluster units. Displacement ellipsoids are drawn at the 97% probability level. |
Sc1.91In1.39Mo15Se19 | F(000) = 2769 |
Mr = 3185.04 | Dx = 6.620 Mg m−3 |
Hexagonal, P63/m | Mo Kα radiation, λ = 0.71069 Å |
a = 9.7530 (2) Å | µ = 28.65 mm−1 |
c = 19.3977 (2) Å | T = 293 K |
V = 1597.93 (7) Å3 | Irregular block, black |
Z = 2 | 0.06 × 0.05 × 0.04 mm |
Nonius KappaCCD diffractometer | 2414 independent reflections |
Radiation source: fine-focus sealed tube | 1847 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.073 |
ϕ scans (κ = 0) + additional ω scans | θmax = 35.0°, θmin = 2.4° |
Absorption correction: analytical (de Meulenaar & Tompa, 1965) | h = −13→15 |
Tmin = 0.279, Tmax = 0.424 | k = −15→13 |
31413 measured reflections | l = −31→26 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0228P)2 + 7.5263P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.031 | (Δ/σ)max = 0.002 |
wR(F2) = 0.063 | Δρmax = 2.22 e Å−3 |
S = 1.08 | Δρmin = −1.96 e Å−3 |
2414 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
67 parameters | Extinction coefficient: 0.00065 (4) |
Sc1.91In1.39Mo15Se19 | Z = 2 |
Mr = 3185.04 | Mo Kα radiation |
Hexagonal, P63/m | µ = 28.65 mm−1 |
a = 9.7530 (2) Å | T = 293 K |
c = 19.3977 (2) Å | 0.06 × 0.05 × 0.04 mm |
V = 1597.93 (7) Å3 |
Nonius KappaCCD diffractometer | 2414 independent reflections |
Absorption correction: analytical (de Meulenaar & Tompa, 1965) | 1847 reflections with I > 2σ(I) |
Tmin = 0.279, Tmax = 0.424 | Rint = 0.073 |
31413 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 67 parameters |
wR(F2) = 0.063 | 0 restraints |
S = 1.08 | Δρmax = 2.22 e Å−3 |
2414 reflections | Δρmin = −1.96 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.16732 (4) | 0.01628 (4) | 0.55740 (2) | 0.00813 (7) | |
Mo2 | 0.68442 (4) | 0.18633 (4) | 0.63321 (2) | 0.00769 (7) | |
Mo3 | 0.51261 (5) | 0.16694 (5) | 0.7500 | 0.00748 (8) | |
Se1 | 0.03573 (5) | −0.28735 (5) | 0.55124 (2) | 0.01007 (8) | |
Se2 | 0.37937 (5) | 0.00705 (5) | 0.64001 (2) | 0.01114 (9) | |
Se3 | 0.34923 (7) | 0.30997 (7) | 0.7500 | 0.01107 (11) | |
Se4 | 0.0000 | 0.0000 | 0.66131 (3) | 0.01933 (16) | |
Se5 | 0.6667 | 0.3333 | 0.52931 (3) | 0.01116 (13) | |
In | 0.6667 | 0.3333 | 0.37124 (6) | 0.0358 (4) | 0.695 (3) |
Sc | −0.2115 (2) | −0.1745 (2) | 0.7500 | 0.0143 (5) | 0.638 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.01005 (15) | 0.00828 (15) | 0.00598 (13) | 0.00453 (12) | 0.00026 (9) | 0.00006 (9) |
Mo2 | 0.00846 (14) | 0.00829 (14) | 0.00626 (12) | 0.00415 (12) | −0.00015 (9) | −0.00030 (9) |
Mo3 | 0.0087 (2) | 0.0085 (2) | 0.00563 (16) | 0.00458 (16) | 0.000 | 0.000 |
Se1 | 0.01139 (18) | 0.00980 (18) | 0.00960 (15) | 0.00572 (15) | 0.00112 (12) | 0.00197 (12) |
Se2 | 0.00992 (18) | 0.01101 (19) | 0.01187 (16) | 0.00477 (14) | −0.00272 (12) | −0.00153 (12) |
Se3 | 0.0098 (3) | 0.0142 (3) | 0.0104 (2) | 0.0069 (2) | 0.000 | 0.000 |
Se4 | 0.0264 (3) | 0.0264 (3) | 0.0053 (3) | 0.01318 (13) | 0.000 | 0.000 |
Se5 | 0.0136 (2) | 0.0136 (2) | 0.0063 (2) | 0.00679 (10) | 0.000 | 0.000 |
In | 0.0355 (5) | 0.0355 (5) | 0.0363 (6) | 0.0178 (2) | 0.000 | 0.000 |
Sc | 0.0176 (10) | 0.0064 (8) | 0.0159 (8) | 0.0038 (7) | 0.000 | 0.000 |
Mo1—Se4 | 2.5480 (6) | Se3—Scii | 2.931 (2) |
Mo1—Se1i | 2.5488 (5) | Se4—Mo1iii | 2.5479 (6) |
Mo1—Se1 | 2.5749 (5) | Se4—Mo1ii | 2.5479 (6) |
Mo1—Se1ii | 2.6145 (5) | Se4—Sciii | 2.5691 (15) |
Mo1—Se2 | 2.6531 (5) | Se4—Scii | 2.5691 (15) |
Mo1—Mo1ii | 2.6995 (6) | Se4—Sc | 2.5691 (15) |
Mo1—Mo1iii | 2.6995 (6) | Se5—Mo2v | 2.5290 (6) |
Mo1—Mo1i | 2.7179 (5) | Se5—Mo2vi | 2.5290 (6) |
Mo1—Mo1iv | 2.7179 (5) | In—Se5 | 3.0662 (13) |
Mo2—Se5 | 2.5290 (6) | In—Se2xi | 3.1273 (4) |
Mo2—Se2 | 2.5931 (5) | In—Se2xii | 3.1273 (4) |
Mo2—Se2v | 2.6275 (5) | In—Se2i | 3.1273 (4) |
Mo2—Mo2vi | 2.6460 (6) | In—Se1xi | 3.4912 (6) |
Mo2—Mo2v | 2.6460 (6) | In—Se1i | 3.4912 (6) |
Mo2—Se1vii | 2.6581 (5) | In—Se1xii | 3.4912 (6) |
Mo2—Se3v | 2.6965 (4) | In—Se3iv | 4.2657 (8) |
Mo2—Mo3v | 2.7196 (4) | In—Se3xiii | 4.2657 (8) |
Mo2—Mo3 | 2.7675 (4) | In—Se3xiv | 4.2657 (8) |
Mo3—Se2viii | 2.5780 (5) | In—Scxv | 4.5565 (18) |
Mo3—Se2 | 2.5780 (5) | In—Scxvi | 4.5565 (18) |
Mo3—Se3v | 2.5884 (7) | In—Scxvii | 4.5565 (18) |
Mo3—Se3 | 2.5900 (7) | Sc—Se4viii | 2.5691 (15) |
Mo3—Mo3v | 2.7127 (8) | Sc—Se3ii | 2.696 (2) |
Mo3—Mo3vi | 2.7127 (8) | Sc—Se2iii | 2.8056 (12) |
Mo3—Mo2ix | 2.7196 (4) | Sc—Se2xviii | 2.8056 (12) |
Mo3—Mo2vi | 2.7196 (4) | Sc—Mo3iii | 2.8760 (18) |
Mo3—Mo2viii | 2.7675 (4) | Sc—Se3iii | 2.931 (2) |
Mo3—Scii | 2.8760 (18) | Sc—Sciii | 3.305 (3) |
Se1—Mo1iv | 2.5488 (5) | Sc—Scii | 3.305 (3) |
Se1—Mo1iii | 2.6145 (5) | Sc—Mo1xviii | 3.7775 (4) |
Se1—Mo2x | 2.6581 (5) | Sc—Mo1iii | 3.7775 (4) |
Se2—Mo2vi | 2.6275 (5) | Sc—Mo2x | 4.0216 (15) |
Se2—Scii | 2.8056 (12) | Sc—Mo2xix | 4.0216 (15) |
Se3—Mo3vi | 2.5884 (7) | Sc—Se1xviii | 4.3993 (10) |
Se3—Mo2ix | 2.6966 (4) | Sc—Se1iii | 4.3993 (10) |
Se3—Mo2vi | 2.6966 (4) | Sc—Inxvi | 4.5564 (18) |
Se3—Sciii | 2.696 (2) | ||
Se4—Mo1—Se1i | 176.406 (19) | Mo2ix—Mo3—Mo2 | 145.97 (2) |
Se4—Mo1—Se1 | 91.698 (13) | Mo2vi—Mo3—Mo2 | 57.653 (13) |
Se1i—Mo1—Se1 | 89.030 (13) | Se2viii—Mo3—Mo2viii | 57.907 (12) |
Se4—Mo1—Se1ii | 90.788 (13) | Se2—Mo3—Mo2viii | 145.46 (2) |
Se1i—Mo1—Se1ii | 88.161 (13) | Se3v—Mo3—Mo2viii | 60.349 (12) |
Se1—Mo1—Se1ii | 174.05 (2) | Se3—Mo3—Mo2viii | 118.538 (13) |
Se4—Mo1—Se2 | 90.338 (16) | Mo3v—Mo3—Mo2viii | 59.495 (13) |
Se1i—Mo1—Se2 | 93.220 (16) | Mo3vi—Mo3—Mo2viii | 88.794 (12) |
Se1—Mo1—Se2 | 86.430 (16) | Mo2ix—Mo3—Mo2viii | 57.654 (13) |
Se1ii—Mo1—Se2 | 98.964 (16) | Mo2vi—Mo3—Mo2viii | 145.97 (2) |
Se4—Mo1—Mo1ii | 58.012 (9) | Mo2—Mo3—Mo2viii | 109.89 (2) |
Se1i—Mo1—Mo1ii | 118.654 (14) | Se2viii—Mo3—Scii | 61.629 (19) |
Se1—Mo1—Mo1ii | 119.304 (17) | Se2—Mo3—Scii | 61.629 (19) |
Se1ii—Mo1—Mo1ii | 57.940 (16) | Se3v—Mo3—Scii | 118.59 (5) |
Se2—Mo1—Mo1ii | 137.271 (14) | Se3—Mo3—Scii | 64.60 (4) |
Se4—Mo1—Mo1iii | 58.012 (9) | Mo3v—Mo3—Scii | 177.02 (5) |
Se1i—Mo1—Mo1iii | 119.634 (13) | Mo3vi—Mo3—Scii | 122.98 (5) |
Se1—Mo1—Mo1iii | 59.376 (17) | Mo2ix—Mo3—Scii | 91.85 (3) |
Se1ii—Mo1—Mo1iii | 117.870 (16) | Mo2vi—Mo3—Scii | 91.85 (3) |
Se2—Mo1—Mo1iii | 129.426 (16) | Mo2—Mo3—Scii | 119.536 (18) |
Mo1ii—Mo1—Mo1iii | 60.0 | Mo2viii—Mo3—Scii | 119.536 (18) |
Se4—Mo1—Mo1i | 118.212 (12) | Mo1iv—Se1—Mo1 | 64.071 (16) |
Se1i—Mo1—Mo1i | 58.430 (15) | Mo1iv—Se1—Mo1iii | 63.509 (16) |
Se1—Mo1—Mo1i | 117.048 (15) | Mo1—Se1—Mo1iii | 62.685 (17) |
Se1ii—Mo1—Mo1i | 57.068 (11) | Mo1iv—Se1—Mo2x | 131.401 (19) |
Se2—Mo1—Mo1i | 140.439 (16) | Mo1—Se1—Mo2x | 128.246 (18) |
Mo1ii—Mo1—Mo1i | 60.224 (8) | Mo1iii—Se1—Mo2x | 81.335 (15) |
Mo1iii—Mo1—Mo1i | 90.0 | Mo3—Se2—Mo2 | 64.712 (15) |
Se4—Mo1—Mo1iv | 118.212 (12) | Mo3—Se2—Mo2vi | 62.984 (14) |
Se1i—Mo1—Mo1iv | 59.423 (15) | Mo2—Se2—Mo2vi | 60.903 (17) |
Se1—Mo1—Mo1iv | 57.499 (11) | Mo3—Se2—Mo1 | 130.17 (2) |
Se1ii—Mo1—Mo1iv | 116.606 (15) | Mo2—Se2—Mo1 | 126.687 (18) |
Se2—Mo1—Mo1iv | 132.232 (15) | Mo2vi—Se2—Mo1 | 81.187 (15) |
Mo1ii—Mo1—Mo1iv | 90.0 | Mo3—Se2—Scii | 64.42 (3) |
Mo1iii—Mo1—Mo1iv | 60.224 (8) | Mo2—Se2—Scii | 129.13 (3) |
Mo1i—Mo1—Mo1iv | 59.550 (15) | Mo2vi—Se2—Scii | 95.44 (4) |
Se5—Mo2—Se2 | 92.412 (13) | Mo1—Se2—Scii | 87.53 (3) |
Se5—Mo2—Se2v | 91.604 (13) | Mo3vi—Se3—Mo3 | 63.18 (2) |
Se2—Mo2—Se2v | 174.13 (2) | Mo3vi—Se3—Mo2ix | 63.118 (13) |
Se5—Mo2—Mo2vi | 58.457 (9) | Mo3—Se3—Mo2ix | 61.881 (13) |
Se2—Mo2—Mo2vi | 60.191 (17) | Mo3vi—Se3—Mo2vi | 63.118 (13) |
Se2v—Mo2—Mo2vi | 118.823 (16) | Mo3—Se3—Mo2vi | 61.881 (14) |
Se5—Mo2—Mo2v | 58.457 (9) | Mo2ix—Se3—Mo2vi | 114.31 (2) |
Se2—Mo2—Mo2v | 120.106 (17) | Mo3vi—Se3—Sciii | 162.59 (5) |
Se2v—Mo2—Mo2v | 58.906 (16) | Mo3—Se3—Sciii | 134.23 (5) |
Mo2vi—Mo2—Mo2v | 60.0 | Mo2ix—Se3—Sciii | 121.404 (15) |
Se5—Mo2—Se1vii | 90.196 (15) | Mo2vi—Se3—Sciii | 121.404 (15) |
Se2—Mo2—Se1vii | 85.764 (16) | Mo3vi—Se3—Scii | 125.62 (4) |
Se2v—Mo2—Se1vii | 98.510 (16) | Mo3—Se3—Scii | 62.43 (4) |
Mo2vi—Mo2—Se1vii | 129.579 (16) | Mo2ix—Se3—Scii | 91.14 (2) |
Mo2v—Mo2—Se1vii | 137.688 (14) | Mo2vi—Se3—Scii | 91.14 (2) |
Se5—Mo2—Se3v | 175.172 (19) | Sciii—Se3—Scii | 71.79 (8) |
Se2—Mo2—Se3v | 85.424 (18) | Mo1iii—Se4—Mo1ii | 63.974 (19) |
Se2v—Mo2—Se3v | 90.244 (18) | Mo1iii—Se4—Mo1 | 63.975 (19) |
Mo2vi—Mo2—Se3v | 116.797 (15) | Mo1ii—Se4—Mo1 | 63.974 (19) |
Mo2v—Mo2—Se3v | 119.114 (14) | Mo1iii—Se4—Sciii | 148.00 (4) |
Se1vii—Mo2—Se3v | 93.942 (17) | Mo1ii—Se4—Sciii | 95.16 (3) |
Se5—Mo2—Mo3v | 120.527 (17) | Mo1—Se4—Sciii | 130.64 (4) |
Se2—Mo2—Mo3v | 116.554 (16) | Mo1iii—Se4—Scii | 130.64 (4) |
Se2v—Mo2—Mo3v | 57.619 (13) | Mo1ii—Se4—Scii | 148.00 (4) |
Mo2vi—Mo2—Mo3v | 91.213 (12) | Mo1—Se4—Scii | 95.16 (3) |
Mo2v—Mo2—Mo3v | 62.083 (12) | Sciii—Se4—Scii | 80.06 (5) |
Se1vii—Mo2—Mo3v | 138.895 (18) | Mo1iii—Se4—Sc | 95.16 (3) |
Se3v—Mo2—Mo3v | 57.133 (16) | Mo1ii—Se4—Sc | 130.64 (4) |
Se5—Mo2—Mo3 | 118.709 (16) | Mo1—Se4—Sc | 148.00 (4) |
Se2—Mo2—Mo3 | 57.381 (13) | Sciii—Se4—Sc | 80.06 (5) |
Se2v—Mo2—Mo3 | 116.832 (16) | Scii—Se4—Sc | 80.06 (5) |
Mo2vi—Mo2—Mo3 | 60.264 (12) | Mo2v—Se5—Mo2 | 63.086 (18) |
Mo2v—Mo2—Mo3 | 90.162 (12) | Mo2v—Se5—Mo2vi | 63.086 (18) |
Se1vii—Mo2—Mo3 | 131.676 (18) | Mo2—Se5—Mo2vi | 63.086 (18) |
Se3v—Mo2—Mo3 | 56.533 (15) | Se4viii—Sc—Se4 | 84.08 (6) |
Mo3v—Mo2—Mo3 | 59.250 (17) | Se4viii—Sc—Se3ii | 88.06 (5) |
Se2viii—Mo3—Se2 | 111.71 (3) | Se4—Sc—Se3ii | 88.06 (5) |
Se2viii—Mo3—Se3v | 87.997 (16) | Se4viii—Sc—Se2iii | 163.50 (8) |
Se2—Mo3—Se3v | 87.997 (16) | Se4—Sc—Se2iii | 86.578 (17) |
Se2viii—Mo3—Se3 | 93.784 (17) | Se3ii—Sc—Se2iii | 105.20 (5) |
Se2—Mo3—Se3 | 93.784 (17) | Se4viii—Sc—Se2xviii | 86.579 (17) |
Se3v—Mo3—Se3 | 176.82 (2) | Se4—Sc—Se2xviii | 163.51 (8) |
Se2viii—Mo3—Mo3v | 117.324 (17) | Se3ii—Sc—Se2xviii | 105.20 (5) |
Se2—Mo3—Mo3v | 117.324 (17) | Se2iii—Sc—Se2xviii | 99.02 (6) |
Se3v—Mo3—Mo3v | 58.44 (2) | Se4viii—Sc—Mo3iii | 120.92 (5) |
Se3—Mo3—Mo3v | 118.38 (2) | Se4—Sc—Mo3iii | 120.92 (5) |
Se2viii—Mo3—Mo3vi | 120.613 (15) | Se3ii—Sc—Mo3iii | 138.83 (8) |
Se2—Mo3—Mo3vi | 120.614 (15) | Se2iii—Sc—Mo3iii | 53.95 (3) |
Se3v—Mo3—Mo3vi | 118.44 (2) | Se2xviii—Sc—Mo3iii | 53.95 (3) |
Se3—Mo3—Mo3vi | 58.38 (2) | Se4viii—Sc—Se3iii | 83.19 (5) |
Mo3v—Mo3—Mo3vi | 60.0 | Se4—Sc—Se3iii | 83.19 (5) |
Se2viii—Mo3—Mo2ix | 59.397 (12) | Se3ii—Sc—Se3iii | 168.21 (8) |
Se2—Mo3—Mo2ix | 150.43 (2) | Se2iii—Sc—Se3iii | 82.23 (4) |
Se3v—Mo3—Mo2ix | 118.002 (13) | Se2xviii—Sc—Se3iii | 82.23 (4) |
Se3—Mo3—Mo2ix | 60.986 (12) | Mo3iii—Sc—Se3iii | 52.97 (3) |
Mo3v—Mo3—Mo2ix | 89.795 (12) | Se4viii—Sc—Sciii | 49.97 (2) |
Mo3vi—Mo3—Mo2ix | 61.256 (13) | Se4—Sc—Sciii | 49.97 (2) |
Se2viii—Mo3—Mo2vi | 150.43 (2) | Se3ii—Sc—Sciii | 57.39 (6) |
Se2—Mo3—Mo2vi | 59.397 (12) | Se2iii—Sc—Sciii | 129.92 (3) |
Se3v—Mo3—Mo2vi | 118.002 (13) | Se2xviii—Sc—Sciii | 129.92 (3) |
Se3—Mo3—Mo2vi | 60.986 (12) | Mo3iii—Sc—Sciii | 163.78 (9) |
Mo3v—Mo3—Mo2vi | 89.795 (12) | Se3iii—Sc—Sciii | 110.81 (7) |
Mo3vi—Mo3—Mo2vi | 61.256 (13) | Se4viii—Sc—Scii | 49.97 (2) |
Mo2ix—Mo3—Mo2vi | 112.82 (2) | Se4—Sc—Scii | 49.97 (2) |
Se2viii—Mo3—Mo2 | 145.46 (2) | Se3ii—Sc—Scii | 117.39 (6) |
Se2—Mo3—Mo2 | 57.907 (12) | Se2iii—Sc—Scii | 114.00 (7) |
Se3v—Mo3—Mo2 | 60.350 (12) | Se2xviii—Sc—Scii | 114.00 (7) |
Se3—Mo3—Mo2 | 118.538 (13) | Mo3iii—Sc—Scii | 103.78 (9) |
Mo3v—Mo3—Mo2 | 59.495 (13) | Se3iii—Sc—Scii | 50.81 (7) |
Mo3vi—Mo3—Mo2 | 88.794 (12) | Sciii—Sc—Scii | 60.0 |
Symmetry codes: (i) x−y, x, −z+1; (ii) −y, x−y, z; (iii) −x+y, −x, z; (iv) y, −x+y, −z+1; (v) −y+1, x−y, z; (vi) −x+y+1, −x+1, z; (vii) −x+y+1, −x, z; (viii) x, y, −z+3/2; (ix) −x+y+1, −x+1, −z+3/2; (x) −y, x−y−1, z; (xi) −x+1, −y, −z+1; (xii) y+1, −x+y+1, −z+1; (xiii) x−y+1, x, −z+1; (xiv) −x+1, −y+1, −z+1; (xv) y+1, −x+y, −z+1; (xvi) −x, −y, −z+1; (xvii) x−y+1, x+1, −z+1; (xviii) −x+y, −x, −z+3/2; (xix) −y, x−y−1, −z+3/2. |
Mo1—Se4 | 2.5480 (6) | Mo3—Se2 | 2.5780 (5) |
Mo1—Se1i | 2.5488 (5) | Mo3—Se3iii | 2.5884 (7) |
Mo1—Se1 | 2.5749 (5) | Mo3—Se3 | 2.5900 (7) |
Mo1—Se1ii | 2.6145 (5) | Mo3—Mo3iii | 2.7127 (8) |
Mo1—Se2 | 2.6531 (5) | In—Se5 | 3.0662 (13) |
Mo1—Mo1ii | 2.6995 (6) | In—Se2vii | 3.1273 (4) |
Mo1—Mo1i | 2.7179 (5) | In—Se2viii | 3.1273 (4) |
Mo2—Se5 | 2.5290 (6) | In—Se2i | 3.1273 (4) |
Mo2—Se2 | 2.5931 (5) | In—Se1vii | 3.4912 (6) |
Mo2—Se2iii | 2.6275 (5) | In—Se1i | 3.4912 (6) |
Mo2—Mo2iv | 2.6460 (6) | In—Se1viii | 3.4912 (6) |
Mo2—Se1v | 2.6581 (5) | Sc—Se4vi | 2.5691 (15) |
Mo2—Se3iii | 2.6965 (4) | Sc—Se3ii | 2.696 (2) |
Mo2—Mo3iii | 2.7196 (4) | Sc—Se2ix | 2.8056 (12) |
Mo2—Mo3 | 2.7675 (4) | Sc—Se2x | 2.8056 (12) |
Mo3—Se2vi | 2.5780 (5) | Sc—Se3ix | 2.931 (2) |
Symmetry codes: (i) x−y, x, −z+1; (ii) −y, x−y, z; (iii) −y+1, x−y, z; (iv) −x+y+1, −x+1, z; (v) −x+y+1, −x, z; (vi) x, y, −z+3/2; (vii) −x+1, −y, −z+1; (viii) y+1, −x+y+1, −z+1; (ix) −x+y, −x, z; (x) −x+y, −x, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | Sc1.91In1.39Mo15Se19 |
Mr | 3185.04 |
Crystal system, space group | Hexagonal, P63/m |
Temperature (K) | 293 |
a, c (Å) | 9.7530 (2), 19.3977 (2) |
V (Å3) | 1597.93 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 28.65 |
Crystal size (mm) | 0.06 × 0.05 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Analytical (de Meulenaar & Tompa, 1965) |
Tmin, Tmax | 0.279, 0.424 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31413, 2414, 1847 |
Rint | 0.073 |
(sin θ/λ)max (Å−1) | 0.807 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.063, 1.08 |
No. of reflections | 2414 |
No. of parameters | 67 |
Δρmax, Δρmin (e Å−3) | 2.22, −1.96 |
Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL2014/6 (Sheldrick, 2015), DIAMOND (Bergerhoff, 1996).
Acknowledgements
Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the Centre de diffractométrie de l'Université de Rennes I (URL: https://www.cdifx.univ-rennes1.fr ).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany. Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gougeon, P., Gall, P., Salloum, D. & Potel, M. (2010). Acta Cryst. E66, i73. Web of Science CrossRef IUCr Journals Google Scholar
Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285–292. CrossRef IUCr Journals Web of Science Google Scholar
Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018. CrossRef IUCr Journals Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Salloum, D., Gougeon, P. & Potel, M. (2006). Acta Cryst. E62, i83–i85. Web of Science CrossRef CAS IUCr Journals Google Scholar
Salloum, D., Gougeon, P. & Potel, M. (2007). Acta Cryst. E63, i8–i10. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833–849. Google Scholar
Seeber, B., Decroux, M., Fischer, Ø., Chevrel, R., Sergent, M. & Grüttner, A. (1979). Solid State Commun. 29, 419–423. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.