research communications
3(HPO4)2(PO4)
of alluaudite-type NaMgaLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and bLaboratoire des Matériaux Céramiques et Procédés Associés, EA2443, Université de Valenciennes et du Hainaut-Cambrésis, Boulevard Charles de Gaulle, BP 59600, Maubeuge, France
*Correspondence e-mail: a_ouldsaleck@yahoo.fr
The title compound, sodium trimagnesium bis(hydrogen phosphate) phosphate, was obtained under hydrothermal conditions. In the crystal, two types of [MgO6] octahedra, one with symmetry 2, share edges to build chains extending parallel to [10-1]. These chains are linked together by two kinds of phosphate tetrahedra, HPO4 and PO4, the latter with symmetry 2. The three-dimensional framework delimits two different types of channels extending along [001]. One channel hosts the Na+ cations (site symmetry 2) surrounded by eight O atoms, with Na—O bond lengths varying between 2.2974 (13) and 2.922 (2) Å. The OH group of the HPO4 tetrahedron points into the other type of channel and exhibits a strong hydrogen bond to an O atom of the PO4 tetrahedron on the opposite side.
Keywords: crystal structure; transition metal phosphates; alluaudite structure type; hydrothermal synthesis; hydrogen bonding.
CCDC reference: 1406819
1. Chemical context
By means of hydrothermal processes (Demazeau, 2008; Yoshimura & Byrappa, 2008), we have previously succeeded in the isolation of the mixed-valence manganese phosphates MMnII2MnIII(PO4)3 (M = Ba, Pb, Sr) adopting the α-CrPO4 structure type (Assani et al., 2013; Alhakmi et al., 2013a,b). In addition, within the pseudo-ternary systems Ag2O–MO–P2O5, hydrothermal syntheses have allowed us to obtain other α-CrPO4 isotype phosphates, viz. Ag2M3(HPO4)(PO4)2 (M = Co, Ni) while AgMg3(HPO4)2(PO4) is found to adopt the alluaudite structure type (Assani et al., 2011a,b,c). Other hydrothermally grown phosphates with the alluaudite structure include AgCo3(HPO4)2(PO4) (Guesmi & Driss, 2002), AgNi3(HPO4)2(PO4) (Ben Smail & Jouini, 2002), AMn3(HPO4)2(PO4) (A = Na, Ag) (Leroux et al., 1995a,b) and NaCo3(HPO4)2(PO4) (Lii & Shih, 1994). Phosphates belonging to either the α-CrPO4 or alluaudite structure type or derivatives thereof are still in the focus of research owing to their promising applications as battery materials (Trad et al., 2010; Essehli et al., 2015a,b; Huang et al., 2015).
The crystal structures of alluaudite-type phosphates exhibit channels in which the monovalent cations are localized. Indeed, this is strongly required for conductivity properties. The A1)(A2)(M1)(M2)2(PO4)3, (Moore & Ito, 1979). The two A sites can be occupied by either mono- or divalent medium-sized cations while the two M cationic sites correspond to an octahedral environment generally occupied by transition metal cations. On the basis of literature research, it has been shown that the hydrothermal process allows, in general, stoechiometric phases to be obtained while solid-state reactions give rather a statistical distribution of cations on either the A or M sites, leading to non-stoechiometric compounds (Bouraima et al., 2015; Khmiyas et al., 2015).
of alluaudite can be formulated by the general formula (In line with our focus of interest, we hydrothermally synthesized the compound NaMg3(PO4)(HPO4)2 and report here its crystal structure.
2. Structural commentary
The principal building units of the allaudite structure of the title compound are represented in Fig. 1. The three atoms Mg1, Na1 and P1 are located on a twofold rotation axis (Wyckoff position 4e). Selected interatomic distances are compiled in Table 1. The three-dimensional framework of this structure consists of kinked chains of edge-sharing MgO6 octahedra running parallel to [10]. The chains are held together by regular P1O4 phosphate groups, forming sheets perpendicular to [010], as shown in Fig. 2. The stacked sheets delimit two types of channels along [001]. One of the channels is occupied by Na+ cations surrounded by eight oxygen atoms (Table 1), whereas the second channel contains the hydrogen atoms of the HP2O4 tetrahedra, as shown in Fig. 3. They form strong hydrogen bonds (Table 2, Figs. 1 and 3) with one of the oxygen atoms of PO4 tetrahedra on opposite sides.
|
3. Synthesis and crystallization
Colourless parallelepiped-shaped crystals of the title compound were grown under hydrothermal conditions, starting from a mixture of Na4P2O7·10H2O, MgO and H3PO4 (85 wt%) in the molar ratio Na4P2O7·10H2O:MgO:H3PO4 = 1:3:3. The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogenous pressure at 483 K for four days.
4. Refinement
Crystal data, data collection and structure . The minimum and maximum electron densities are located 0.71 and 0.17 Å from O5 and H4, respectively. The O–bound H atom was initially located in a difference map and refined with an O—H distance restraint of 0.93 Å, and with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1406819
10.1107/S205698901501155X/wm5174sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S205698901501155X/wm5174Isup2.hkl
By means of hydrothermal processes (Demazeau, 2008; Yoshimura & Byrappa, 2008), we have previously succeeded in the isolation of the mixed-valence manganese phosphates MMnII2MnIII(PO4)3 (M = Ba, Pb, Sr) adopting the α-CrPO4 structure type (Assani et al., 2013; Alhakmi et al., 2013a,b). In addition, within the pseudo-ternary systems Ag2O–MO–P2O5, hydrothermal syntheses have allowed us to obtain other α-CrPO4 isotype phosphates, viz. Ag2M3(HPO4)(PO4)2 (M = Co, Ni) while AgMg3(PO4)(HPO4)2 is found to adopt the alluaudite structure type (Assani et al., 2011a,b,c). Other hydrothermally grown phosphates with the alluaudite structure include AgCo3(HPO4)2(PO4) (Guesmi & Driss, 2002), AgNi3(HPO4)2(PO4) (Ben Smail & Jouini, 2002), AMn3(HPO4)2(PO4) (A = Na, Ag) (Leroux et al., 1995a,b) and NaCo3(HPO4)2(PO4) (Lii & Shih, 1994). Phosphates belonging to either the α-CrPO4 or alluaudite structure type or derivatives thereof are still in the focus of research owing to their promising applications as battery materials (Trad et al., 2010; Essehli et al., 2015a,b; Huang et al., 2015).
The crystal structures of alluaudite-type phosphates exhibit channels in which the monovalent cations are localized. Indeed, this is strongly required for conductivity properties. The
of alluaudite can be formulated by the general formula (A1)(A2)(M1)(M2)2(PO4)3, (Moore & Ito, 1979). The two A sites can be occupied by either mono- or divalent medium-sized cations while the two M cationic sites correspond to an octahedral environment generally occupied by transition metal cations. On the basis of literature research, it has been shown that the hydrothermal process allows, in general, stoechiometric phases to be obtained while solid-state reactions give rather a statistical distribution of cations on either the A or M sites, leading to non-stoechiometric compounds (Bouraima et al., 2015; Khmiyas et al., 2015).In line with our focus of interest, we hydrothermally synthesized the compound NaMg3(PO4)(HPO4)2 and report here its crystal structure.
The principal building units of the allaudite structure of the title compound are represented in Fig. 1. The three atoms Mg1, Na1 and P1 are located on a twofold rotation axis (Wyckoff position 4e). Selected interatomic distances are compiled in Table 1. The three-dimensional framework of this structure consists of kinked chains of edge-sharing MgO6 octahedra running parallel to [101]. The chains are held together by regular P1O4 phosphate groups, forming sheets perpendicular to [010], as shown in Fig. 2. The stacked sheets delimit two types of channels along [001]. One of the channels is occupied by Na+ cations surrounded by eight oxygen atoms (Table 1), whereas the second channel contains the hydrogen atoms of the HPO4 tetrahedra, as shown in Fig. 3. They form strong hydrogen bonds (Table 2, Figs. 1 and 3) with one of the oxygen atoms of PO4 tetrahedra on opposite sides.
Colourless parallelepiped-shaped crystals of the title compound were grown under hydrothermal conditions, starting from a mixture of Na4P2O7·10H2O, MgO and H3PO4 (85 wt%) in the molar ratio Na4P2O7·10H2O:MgO:H3PO4 = 1:3:3. The hydrothermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogenous pressure at 483 K for four days.
Crystal data, data collection and structure
details are summarized in Table 3. The minimum and maximum electron densities are located 0.71 and 0.17 Å from O5 and H4, respectively. The O–bound H atom was initially located in a difference map and refined with an O—H distance restraint of 0.93 Å, and with Uiso(H) = 1.5Ueq(O).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines [Symmetry codes: (i) x + 1/2, y + 1/2, z; (ii) -x + 3/2, y + 1/2, -z + 1/2; (iii) -x + 3/2, -y + 3/2, -z + 1; (iv) -x + 3/2, -y + 3/2, -z; (v) -x + 1, -y + 1, -z; (vi) -x + 1, y, -z + 1/2; (vii) x, -y + 1, z + 1/2; (viii) x - 1/2, -y + 3/2, z - 1/2; (ix) -x + 2, y, -z + 3/2; (x) -x + 2, -y + 1, -z + 1; (xi) x + 1/2, -y + 1/2, z + 1/2; (xii) -x + 3/2, -y + 1/2, -z + 1; (xiii) x, -y + 1, z - 1/2.] | |
Fig. 2. A sheet resulting from the linkage of kinked chains via vertices of PO4 tetrahedra. | |
Fig. 3. Polyhedral representation of the NaMg3(HPO4)2(PO4) structure showing channels along [001]. The O—H···O hydrogen bonds are indicated by dashed lines. |
NaMg3(HPO4)2(PO4) | F(000) = 760 |
Mr = 382.85 | Dx = 3.004 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.8064 (6) Å | Cell parameters from 1291 reflections |
b = 12.0625 (7) Å | θ = 2.5–30.5° |
c = 6.4969 (4) Å | µ = 1.06 mm−1 |
β = 113.805 (2)° | T = 296 K |
V = 846.54 (8) Å3 | Block, colourless |
Z = 4 | 0.36 × 0.24 × 0.18 mm |
Bruker X8 APEX diffractometer | 1291 independent reflections |
Radiation source: fine-focus sealed tube | 1138 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ϕ and ω scans | θmax = 30.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −16→16 |
Tmin = 0.504, Tmax = 0.748 | k = −17→17 |
9797 measured reflections | l = −9→8 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0362P)2 + 1.4203P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
1291 reflections | Δρmax = 0.57 e Å−3 |
88 parameters | Δρmin = −0.54 e Å−3 |
NaMg3(HPO4)2(PO4) | V = 846.54 (8) Å3 |
Mr = 382.85 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.8064 (6) Å | µ = 1.06 mm−1 |
b = 12.0625 (7) Å | T = 296 K |
c = 6.4969 (4) Å | 0.36 × 0.24 × 0.18 mm |
β = 113.805 (2)° |
Bruker X8 APEX diffractometer | 1291 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1138 reflections with I > 2σ(I) |
Tmin = 0.504, Tmax = 0.748 | Rint = 0.038 |
9797 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.57 e Å−3 |
1291 reflections | Δρmin = −0.54 e Å−3 |
88 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mg1 | 0.0000 | 0.27947 (7) | 0.2500 | 0.00857 (18) | |
Mg2 | 0.29000 (6) | 0.66219 (5) | 0.37489 (10) | 0.00643 (14) | |
Na1 | 0.5000 | 0.52321 (14) | 0.7500 | 0.0308 (4) | |
P1 | 0.0000 | 0.68659 (5) | 0.2500 | 0.00564 (14) | |
P2 | 0.28093 (4) | 0.38887 (3) | 0.38603 (7) | 0.00494 (11) | |
O1 | 0.03662 (11) | 0.75858 (10) | 0.4624 (2) | 0.0078 (2) | |
O2 | 0.10795 (12) | 0.61003 (10) | 0.2634 (2) | 0.0084 (2) | |
O3 | 0.34567 (12) | 0.32859 (10) | 0.6116 (2) | 0.0073 (2) | |
O4 | 0.14051 (11) | 0.40754 (10) | 0.3420 (2) | 0.0085 (2) | |
H4 | 0.1241 | 0.4816 | 0.3033 | 0.013* | |
O5 | 0.28443 (11) | 0.32046 (10) | 0.1916 (2) | 0.0068 (2) | |
O6 | 0.34273 (12) | 0.50140 (10) | 0.4000 (2) | 0.0076 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0081 (4) | 0.0088 (4) | 0.0094 (4) | 0.000 | 0.0041 (3) | 0.000 |
Mg2 | 0.0073 (3) | 0.0057 (3) | 0.0067 (3) | 0.0004 (2) | 0.0031 (2) | 0.0001 (2) |
Na1 | 0.0118 (6) | 0.0691 (11) | 0.0091 (6) | 0.000 | 0.0016 (5) | 0.000 |
P1 | 0.0051 (3) | 0.0063 (3) | 0.0044 (3) | 0.000 | 0.0007 (2) | 0.000 |
P2 | 0.0060 (2) | 0.00431 (19) | 0.0043 (2) | −0.00006 (14) | 0.00177 (16) | −0.00011 (14) |
O1 | 0.0063 (6) | 0.0110 (5) | 0.0054 (5) | −0.0010 (4) | 0.0014 (5) | −0.0022 (4) |
O2 | 0.0060 (6) | 0.0073 (5) | 0.0114 (6) | 0.0010 (4) | 0.0031 (5) | −0.0007 (4) |
O3 | 0.0086 (6) | 0.0080 (5) | 0.0049 (5) | 0.0020 (4) | 0.0024 (5) | 0.0016 (4) |
O4 | 0.0073 (6) | 0.0058 (5) | 0.0131 (6) | 0.0009 (4) | 0.0048 (5) | 0.0004 (5) |
O5 | 0.0077 (6) | 0.0077 (5) | 0.0052 (5) | 0.0003 (4) | 0.0028 (5) | −0.0009 (4) |
O6 | 0.0083 (6) | 0.0051 (5) | 0.0093 (6) | −0.0014 (4) | 0.0035 (5) | −0.0002 (4) |
Mg1—O3i | 2.1224 (13) | Na1—O6x | 2.4386 (13) |
Mg1—O3ii | 2.1224 (13) | Na1—O3 | 2.8840 (19) |
Mg1—O1iii | 2.1312 (12) | Na1—O3ix | 2.8840 (19) |
Mg1—O1iv | 2.1312 (12) | Na1—O1xi | 2.922 (2) |
Mg1—O4v | 2.1669 (14) | Na1—O1viii | 2.922 (2) |
Mg1—O4 | 2.1669 (14) | P1—O1v | 1.5372 (12) |
Mg2—O6 | 2.0234 (13) | P1—O1 | 1.5372 (12) |
Mg2—O3iii | 2.0686 (13) | P1—O2v | 1.5476 (13) |
Mg2—O2 | 2.0696 (14) | P1—O2 | 1.5476 (13) |
Mg2—O5vi | 2.0729 (13) | P2—O5 | 1.5234 (12) |
Mg2—O5vii | 2.0955 (13) | P2—O6 | 1.5263 (12) |
Mg2—O1viii | 2.1153 (14) | P2—O3 | 1.5349 (13) |
Na1—O6 | 2.2974 (13) | P2—O4 | 1.5806 (13) |
Na1—O6ix | 2.2974 (13) | O4—H4 | 0.9269 |
Na1—O6vii | 2.4386 (13) | ||
O3i—Mg1—O3ii | 104.23 (8) | O6vii—Na1—O6x | 166.01 (10) |
O3i—Mg1—O1iii | 86.53 (5) | O6—Na1—O3 | 56.06 (5) |
O3ii—Mg1—O1iii | 78.23 (5) | O6ix—Na1—O3 | 111.84 (7) |
O3i—Mg1—O1iv | 78.23 (5) | O6vii—Na1—O3 | 62.51 (5) |
O3ii—Mg1—O1iv | 86.53 (5) | O6x—Na1—O3 | 105.27 (6) |
O1iii—Mg1—O1iv | 155.13 (8) | O6—Na1—O3ix | 111.84 (7) |
O3i—Mg1—O4v | 83.70 (5) | O6ix—Na1—O3ix | 56.06 (5) |
O3ii—Mg1—O4v | 170.20 (5) | O6vii—Na1—O3ix | 105.27 (6) |
O1iii—Mg1—O4v | 108.38 (5) | O6x—Na1—O3ix | 62.51 (5) |
O1iv—Mg1—O4v | 89.53 (5) | O3—Na1—O3ix | 71.02 (6) |
O3i—Mg1—O4 | 170.20 (5) | O6—Na1—O1xi | 118.48 (6) |
O3ii—Mg1—O4 | 83.70 (5) | O6ix—Na1—O1xi | 74.30 (5) |
O1iii—Mg1—O4 | 89.53 (5) | O6vii—Na1—O1xi | 84.97 (5) |
O1iv—Mg1—O4 | 108.38 (5) | O6x—Na1—O1xi | 107.88 (6) |
O4v—Mg1—O4 | 89.05 (7) | O3—Na1—O1xi | 146.62 (4) |
O6—Mg2—O3iii | 85.88 (5) | O3ix—Na1—O1xi | 129.17 (3) |
O6—Mg2—O2 | 88.80 (5) | O6—Na1—O1viii | 74.30 (5) |
O3iii—Mg2—O2 | 111.03 (6) | O6ix—Na1—O1viii | 118.48 (7) |
O6—Mg2—O5vi | 172.05 (6) | O6vii—Na1—O1viii | 107.88 (6) |
O3iii—Mg2—O5vi | 91.58 (5) | O6x—Na1—O1viii | 84.97 (5) |
O2—Mg2—O5vi | 85.07 (5) | O3—Na1—O1viii | 129.17 (3) |
O6—Mg2—O5vii | 98.45 (5) | O3ix—Na1—O1viii | 146.62 (4) |
O3iii—Mg2—O5vii | 162.38 (6) | O1xi—Na1—O1viii | 51.46 (6) |
O2—Mg2—O5vii | 86.23 (5) | O1v—P1—O1 | 111.21 (10) |
O5vi—Mg2—O5vii | 86.22 (5) | O1v—P1—O2v | 111.07 (7) |
O6—Mg2—O1viii | 100.87 (6) | O1—P1—O2v | 108.34 (7) |
O3iii—Mg2—O1viii | 79.79 (5) | O1v—P1—O2 | 108.34 (7) |
O2—Mg2—O1viii | 166.18 (6) | O1—P1—O2 | 111.07 (7) |
O5vi—Mg2—O1viii | 86.06 (5) | O2v—P1—O2 | 106.73 (10) |
O5vii—Mg2—O1viii | 82.62 (5) | O5—P2—O6 | 111.03 (7) |
O6—Na1—O6ix | 166.85 (10) | O5—P2—O3 | 111.42 (7) |
O6—Na1—O6vii | 86.56 (4) | O6—P2—O3 | 108.82 (7) |
O6ix—Na1—O6vii | 91.84 (4) | O5—P2—O4 | 107.74 (7) |
O6—Na1—O6x | 91.84 (4) | O6—P2—O4 | 108.99 (7) |
O6ix—Na1—O6x | 86.56 (4) | O3—P2—O4 | 108.78 (7) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, −y+1/2, −z+1; (iii) x, −y+1, z−1/2; (iv) −x, −y+1, −z+1; (v) −x, y, −z+1/2; (vi) −x+1/2, y+1/2, −z+1/2; (vii) x, −y+1, z+1/2; (viii) −x+1/2, −y+3/2, −z+1; (ix) −x+1, y, −z+3/2; (x) −x+1, −y+1, −z+1; (xi) x+1/2, −y+3/2, z+1/2. |
Mg1—O3i | 2.1224 (13) | Na1—O3 | 2.8840 (19) |
Mg1—O1ii | 2.1312 (12) | Na1—O1vii | 2.922 (2) |
Mg1—O4 | 2.1669 (14) | P1—O1viii | 1.5372 (12) |
Mg2—O6 | 2.0234 (13) | P1—O1 | 1.5372 (12) |
Mg2—O3ii | 2.0686 (13) | P1—O2viii | 1.5476 (13) |
Mg2—O2 | 2.0696 (14) | P1—O2 | 1.5476 (13) |
Mg2—O5iii | 2.0729 (13) | P2—O5 | 1.5234 (12) |
Mg2—O5iv | 2.0955 (13) | P2—O6 | 1.5263 (12) |
Mg2—O1v | 2.1153 (14) | P2—O3 | 1.5349 (13) |
Na1—O6 | 2.2974 (13) | P2—O4 | 1.5806 (13) |
Na1—O6vi | 2.4386 (13) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x, −y+1, z−1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, −y+1, z+1/2; (v) −x+1/2, −y+3/2, −z+1; (vi) −x+1, −y+1, −z+1; (vii) x+1/2, −y+3/2, z+1/2; (viii) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | NaMg3(HPO4)2(PO4) |
Mr | 382.85 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 11.8064 (6), 12.0625 (7), 6.4969 (4) |
β (°) | 113.805 (2) |
V (Å3) | 846.54 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.36 × 0.24 × 0.18 |
Data collection | |
Diffractometer | Bruker X8 APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.504, 0.748 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9797, 1291, 1138 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.072, 1.09 |
No. of reflections | 1291 |
No. of parameters | 88 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.54 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.
References
Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40. CrossRef IUCr Journals Google Scholar
Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56. CrossRef IUCr Journals Google Scholar
Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i41. Web of Science CrossRef IUCr Journals Google Scholar
Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40. Web of Science CrossRef IUCr Journals Google Scholar
Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60. CrossRef IUCr Journals Google Scholar
Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011c). Acta Cryst. E67, i5. Web of Science CrossRef IUCr Journals Google Scholar
Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Demazeau, G. (2008). J. Mater. Sci. 43, 2104–2114. CrossRef CAS Google Scholar
Essehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhoue, X. L. & Zhoue, Z. (2015b). Dalton Trans. 44, 4526–4532. CrossRef CAS PubMed Google Scholar
Essehli, R., Belharouak, I., Ben Yahia, H., Maher, K., Abouimrane, A., Orayech, B., Calder, S., Zhou, X. L., Zhou, Z. & Sun, Y.-K. (2015a). Dalton Trans 44, 7881–7886. CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16–i17. Web of Science CrossRef CAS IUCr Journals Google Scholar
Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851–860. Web of Science CrossRef CAS PubMed Google Scholar
Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692. CSD CrossRef IUCr Journals Google Scholar
Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995a). J. Solid State Chem. 117, 206–212. CrossRef CAS Google Scholar
Leroux, F., Mar, A., Payen, C., Guyomard, D., Verbaere, A. & Piffard, Y. (1995b). J. Solid State Chem. 115, 240–246. CrossRef CAS Google Scholar
Lii, K.-H. & Shih, P.-F. (1994). Inorg. Chem. 33, 3028–3031. CrossRef CAS Web of Science Google Scholar
Moore, P. B. & Ito, J. (1979). Mineral. Mag. 43, 227–35. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yoshimura, M. & Byrappa, K. (2008). J. Mater. Sci. 43, 2085–2103. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.