research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 867-869

Crystal structure of catena-poly[[tetra­aqua­magnesium]-μ-(di­hydrogen hypodiphosphato)-κ2O:O′]

CROSSMARK_Color_square_no_text.svg

aInstitute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld, Germany
*Correspondence e-mail: mimoza.gjikaj@tu-clausthal.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 June 2015; accepted 23 June 2015; online 27 June 2015)

The crystal structure of the title compound, [Mg(H2P2O6)(H2O)4]n, is built up from (H2P2O6)2− anions bridging Mg2+ cations into chains extending parallel to [011]. The Mg2+ ion is located on an inversion centre and is octa­hedrally coordinated by the O atoms of two (H2P2O6)2− anions and four water mol­ecules. The centrosymmetric (H2P2O6)2− anion has a staggered conformation whereby the tetra­valent phospho­rus atom is surrounded tetra­hedrally by three O atoms and by one symmetry-related P atom. A three-dimensional O—H⋯O hydrogen-bonded network of medium strength involving the P—OH group of the anion and the water mol­ecules is present.

1. Chemical context

A considerable number of alkaline metal hypodiphosphates have been characterized in the last few years (Szafranowska et al., 2012[Szafranowska, B., Ślepokura, K. & Lis, T. (2012). Acta Cryst. C68, i71-i82.]; Wu et al., 2012[Wu, P., Wiegand, Th., Eckert, H. & Gjikaj, M. (2012). J. Solid State Chem. 194, 212-218.]; Gjikaj et al., 2012[Gjikaj, M., Wu, P. & Brockner, W. (2012). Z. Anorg. Allg. Chem. 638, 2144-2149.], 2014[Gjikaj, M., Wu, P. & Brockner, W. (2014). Z. Anorg. Allg. Chem. 640, 379-384.]). Until today, the described alkaline metal hypodiphosphates have only been of academic inter­est, with the exception of ammonium and sodium di­hydrogenhypodiphosphates (Collin & Willis, 1971[Collin, R. L. & Willis, M. (1971). Acta Cryst. B27, 291-302.]). The acidic solutions of sodium di­hydrogen­hypo­diphosphate are used for the gravimetric immobilization of uranium(IV) as U2P2O6·3H2O and UP2O7 (Bloss et al., 1967[Bloss, K. H., Henzel, N. & Beck, H. P. (1967). Z. Anal. Chem. 226, 25-28.]). Furthermore, ammonium di­hydrogenhypodiphosphate finds a use as a flame retardant (Ruflin et al., 2007[Ruflin, C., Fischbach, U., Grützmacher, H. & Levalois-Grützmacher, J. (2007). Heteroat. Chem. 18, 721-731.]), and its ferroelectricity has recently been discovered (Szklarz et al., 2011[Szklarz, P., Chański, M., Ślepokura, K. & Lis, T. (2011). Chem. Mater. 23, 1082-1084.]).

The alkaline earth metal hypodiphosphates were first described by Salzer (1878[Salzer, Th. (1878). Liebigs Ann. 194, 28-39.]). Ca2P2O6·2H2O and BaH2P2O6·2H2O were first synthesized by Palmer (1961[Palmer, W. G. (1961). J. Chem. Soc. pp. 1079-1082.]), but structural data of hypodiphosphates of the alkaline earth metals are still missing. Here, we report the synthesis and the crystal structure of [Mg(H2P2O6)(H2O)4].

2. Structural commentary

The principal building units in the crystal structure of [Mg(H2P2O6)(H2O)4] are [MgO6] octa­hedra and (H2P2O6)2− anions, forming chains extending parallel to [011] (Fig. 1[link]). In the chains, each Mg2+ cation is bridged by two anions (Fig. 2[link]). The Mg2+ ion is located on an inversion centre and is octa­hedrally coordinated by two (H2P2O6)2− anions and by four water mol­ecules with Mg—O bond lengths ranging from 2.0580 (17) to 2.0646 (18) Å. In the (H2P2O6)2− anion, which is located about an inversion centre and has a staggered conformation, the tetra­valent P atom is surrounded by three O atoms and one symmetry-related P atom with a P—P distance of 2.1843 (12) Å and P—O distances ranging from 1.5013 (16) to 1.5855 (16) Å. All bond lengths and angles of the hypodiphosphate anion are well within the expected ranges (Szafranowska et al., 2012[Szafranowska, B., Ślepokura, K. & Lis, T. (2012). Acta Cryst. C68, i71-i82.]; Gjikaj et al., 2014[Gjikaj, M., Wu, P. & Brockner, W. (2014). Z. Anorg. Allg. Chem. 640, 379-384.]) and are comparable to those found for M2P2O6·12H2O (M = Co and Ni; Hagen & Jansen, 1995[Hagen, S. & Jansen, M. (1995). Z. Anorg. Allg. Chem. 621, 149-152.]; Haag et al., 2005[Haag, J. M., LeBret, G. C., Cleary, D. A. & Twamley, B. (2005). J. Solid State Chem. 178, 1308-1311.]).

[Figure 1]
Figure 1
The crystal structure of the title compound, viewed along [100], showing the chain architecture.
[Figure 2]
Figure 2
The mol­ecular entities in the title compound with atom labels and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x, −y + 1, −z; (ii) −x, −y + 2, −z + 1; (iii) x, y + 1, z + 1.]

3. Supra­molecular features

The crystal structure of [Mg(H2P2O6)(H2O)4] exhibits a three-dimensional hydrogen-bonded network, in which the (H2P2O6)2– anions are joined into ribbons along [100] by centrosymmetric pairs of PO3—H3⋯O2 hydrogen bonds (Table 1[link] and Fig. 3[link]). The O⋯O distances between the (H2P2O6)2– anions and water mol­ecules located between the ribbons range from 2.786 (3) to 2.829 (3) Å), indicating hydrogen bonds of medium strength (Table 1[link]). These values agree very well with those reported for Rb2H2P2O6·2H2O (Wu et al., 2012[Wu, P., Wiegand, Th., Eckert, H. & Gjikaj, M. (2012). J. Solid State Chem. 194, 212-218.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.79 (4) 1.94 (4) 2.687 (2) 157 (3)
O4—H4A⋯O2ii 0.82 (3) 2.00 (3) 2.817 (2) 169 (3)
O4—H4B⋯O1iii 0.85 (4) 1.94 (4) 2.786 (2) 173 (3)
O5—H5A⋯O2iv 0.75 (4) 2.03 (4) 2.768 (3) 165 (3)
O5—H5B⋯O3v 0.77 (4) 2.08 (4) 2.829 (3) 165 (4)
Symmetry codes: (i) x-1, y, z; (ii) x, y, z+1; (iii) -x+1, -y+2, -z+1; (iv) x, y+1, z+1; (v) -x, -y+2, -z.
[Figure 3]
Figure 3
The hydrogen bonds between (H2P2O6)2– anions and water mol­ecules in the title compound. The symmetry codes are as in Table 1[link].

4. Synthesis and crystallization

Disodium di­hydrogenhypodiphosphate was prepared according to Leininger & Chulski (1953[Leininger, E. & Chulski, T. (1953). Inorg. Synth. 4, 68-71.]). An aqueous solution of hypodi­phospho­ric acid was obtained by passing a saturated solution of disodium di­hydrogenhypodiphosphate through a cation-exchange resin (Dowex 50WX2 50–100). About 40 ml of an aqueous solution of hypodi­phospho­ric acid (H4P2O6) were collected in the pH range 1.5–3.5 and subsequently added to magnesium carbonate (117 mg) at room temperature. Colourless block-shaped crystals of the title compound were obtained after several days at 278 K.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in a difference Fourier map and were refined isotropically without restraints.

Table 2
Experimental details

Crystal data
Chemical formula [Mg(H2P2O6)(H2O)4]
Mr 256.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 5.1486 (15), 6.595 (2), 7.096 (2)
α, β, γ (°) 112.31 (2), 98.55 (2), 98.28 (2)
V3) 215.09 (11)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.61
Crystal size (mm) 0.28 × 0.25 × 0.23
 
Data collection
Diffractometer Stoe IPDS-II
Absorption correction Numerical (X-SHAPE and X-RED; Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.], 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.843, 0.869
No. of measured, independent and observed [I > 2σ(I)] reflections 2193, 799, 739
Rint 0.057
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.15
No. of reflections 799
No. of parameters 81
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.60, −0.53
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

A considerable number of alkaline metal hypodiphosphates have been characterized in the last few years (Szafranowska et al., 2012; Wu et al., 2012; Gjikaj et al., 2012, 2014). Until today, the described alkaline metal hypodiphosphates have only been of academic inter­est, with the exception of ammonium and sodium di­hydrogenhypodiphosphates (Collin & Willis, 1971). The acidic solutions of sodium di­hydrogenhypodiphosphate are used for the gravimetric immobilization of uranium(IV) as U2P2O6·3H2O and UP2O7 (Bloss et al., 1967). Furthermore, ammonium di­hydrogenhypodiphosphate finds a use as a flame retardant (Ruflin et al., 2007), and its ferroelectricity has recently been discovered (Szklarz et al., 2011).

The alkaline earth metal hypodiphosphates were first described by Salzer (1878). Ca2P2O6·2H2O and BaH2P2O6·2H2O were first synthesized by Palmer (1961), but structural data of hypodiphosphates of the alkaline earth metals are still missing. Here, we report the synthesis and the single-crystal structure of [Mg(H2P2O6)(H2O)4].

Structural commentary top

The principal building units in the crystal structure of [Mg(H2P2O6)(H2O)4] are [MgO6] o­cta­hedra and (H2P2O6)2- anions, forming chains extending parallel to [011] (Fig. 1). In the chains, each Mg2+ cation is bridged by two anions (Fig. 2). The Mg2+ ion is located on an inversion centre and is o­cta­hedrally coordinated by two (H2P2O6)2- anions and by four water molecules with Mg—O bond lengths ranging from 2.0580 (17) to 2.0646 (18) Å. In the (H2P2O6)2- anion, which is located about an inversion centre and has a staggered conformation, the tetra­valent P atom is surrounded by three O atoms and one symmetry-related P atom with a P—P distance of 2.1843 (12) Å and P—O distances ranging from 1.5013 (16) to 1.5855 (16) Å. All bond lengths and angles of the hypodiphosphate anion are well within the expected ranges (Szafranowska et al., 2012; Gjikaj et al., 2014) and are comparable to those found for M2P2O6·12H2O (M = Co and Ni; Hagen & Jansen, 1995; Haag et al., 2005).

Supra­molecular features top

The crystal structure of [Mg(H2P2O6)(H2O)4] exhibits a three-dimensional hydrogen-bonded network, in which the (H2P2O6)2– anions are joined into ribbons along [100] by centrosymmetric pairs of PO3—H···O2 hydrogen bonds (Table 1 and Fig. 3). The O···O distances between the (H2P2O6)2– anions and water molecules located between the ribbons range from 2.786 (3) to 2.829 (3) Å), indicating hydrogen bonds of medium strength (Table 1). These values agree very well with those reported for Rb2H2P2O6·2H2O (Wu et al., 2012).

Synthesis and crystallization top

Disodium di­hydrogenhypodiphosphate was prepared according to Leininger & Chulski (1953). An aqueous solution of hypodi­phospho­ric acid was obtained by passing a saturated solution of disodium di­hydrogen hypodiphosphate through a cation exchange resin (Dowex 50WX2 50–100). About 40 ml of an aqueous solution of hypodi­phospho­ric acid (H4P2O6) were collected in the pH range 1.5–3.5 and subsequently added to magnesium carbonate (117 mg) at room temperature. Colourless block-shaped crystals of the title compound were obtained after several days at 278 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were located in a difference Fourier map and were refined isotropically without restraints.

Related literature top

For the synthesis of hypothiophosphates, see: Leininger & Chulski (1953). For applications of hypothiophosphates, see: Bloss & Henzel (1967); Ruflin et al. (2007); Szklarz et al. (2011). For the crystal structures of hypophosphates, see: Hagen & Jansen (1995); Haag et al. (2005) Szafranowska et al. (2012); Wu et al. (2012); Gjikaj et al.(2012); Gjikaj et al.(2014).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound, viewed along [100], showing the chain architecture.
[Figure 2] Fig. 2. The molecular entities in the title compound with atom labels and displacement ellipsoids dwawn at the 50% probability level. [Symmetry codes: (i) -x, -y + 1, -z; (ii) -x, -y + 2, -z + 1; (iii) x, y + 1, z + 1.]
[Figure 3] Fig. 3. The hydrogen bonds between (H2P2O6)2– anions and water molecules in the title compound. The symmetry codes are as in Table 1.
catena-Poly[[tetraaquamagnesium]-µ-(dihydrogen hypodiphosphato)-κ2O:O'] top
Crystal data top
[Mg(H2P2O6)(H2O)4]Z = 1
Mr = 256.33F(000) = 132
Triclinic, P1Dx = 1.979 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1486 (15) ÅCell parameters from 3841 reflections
b = 6.595 (2) Åθ = 3.2–25.7°
c = 7.096 (2) ŵ = 0.61 mm1
α = 112.31 (2)°T = 223 K
β = 98.55 (2)°Block-shaped, colourless
γ = 98.28 (2)°0.28 × 0.25 × 0.23 mm
V = 215.09 (11) Å3
Data collection top
Stoe IPDS-II
diffractometer
799 independent reflections
Radiation source: fine-focus sealed tube739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω–scansθmax = 25.7°, θmin = 3.2°
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 1999, 2001)
h = 66
Tmin = 0.843, Tmax = 0.869k = 88
2193 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094All H-atom parameters refined
S = 1.15 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.0577P]
where P = (Fo2 + 2Fc2)/3
799 reflections(Δ/σ)max < 0.001
81 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Mg(H2P2O6)(H2O)4]γ = 98.28 (2)°
Mr = 256.33V = 215.09 (11) Å3
Triclinic, P1Z = 1
a = 5.1486 (15) ÅMo Kα radiation
b = 6.595 (2) ŵ = 0.61 mm1
c = 7.096 (2) ÅT = 223 K
α = 112.31 (2)°0.28 × 0.25 × 0.23 mm
β = 98.55 (2)°
Data collection top
Stoe IPDS-II
diffractometer
799 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 1999, 2001)
739 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.869Rint = 0.057
2193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094All H-atom parameters refined
S = 1.15Δρmax = 0.60 e Å3
799 reflectionsΔρmin = 0.53 e Å3
81 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.05636 (10)0.66957 (9)0.00780 (8)0.0119 (2)
Mg0.00001.00000.50000.0118 (3)
O10.1302 (3)0.8332 (3)0.2329 (2)0.0158 (4)
O20.2710 (3)0.6732 (3)0.1158 (2)0.0167 (4)
O30.2044 (3)0.6995 (3)0.1200 (2)0.0180 (4)
O40.3263 (3)0.9689 (3)0.6850 (3)0.0233 (4)
O50.2204 (3)1.2973 (3)0.5191 (3)0.0207 (4)
H30.345 (8)0.697 (6)0.086 (6)0.041 (9)*
H4A0.326 (6)0.895 (5)0.756 (5)0.019 (7)*
H4B0.491 (7)1.027 (5)0.699 (5)0.024 (7)*
H5A0.229 (6)1.410 (6)0.605 (6)0.026 (8)*
H5B0.220 (7)1.323 (6)0.422 (6)0.041 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0114 (3)0.0134 (4)0.0117 (4)0.0031 (2)0.0061 (2)0.0046 (2)
Mg0.0107 (5)0.0141 (6)0.0101 (5)0.0033 (4)0.0042 (4)0.0035 (4)
O10.0155 (8)0.0170 (8)0.0141 (8)0.0036 (6)0.0072 (6)0.0041 (6)
O20.0152 (8)0.0201 (8)0.0171 (8)0.0049 (6)0.0096 (6)0.0075 (6)
O30.0137 (8)0.0277 (9)0.0188 (8)0.0081 (7)0.0082 (6)0.0131 (7)
O40.0128 (9)0.0347 (10)0.0299 (10)0.0040 (7)0.0037 (7)0.0219 (9)
O50.0295 (9)0.0169 (9)0.0150 (8)0.0016 (7)0.0097 (7)0.0052 (8)
Geometric parameters (Å, º) top
P—O11.5013 (16)Mg—O5ii2.0646 (18)
P—O21.5122 (15)Mg—O52.0646 (18)
P—O31.5855 (16)O3—H30.79 (4)
P—Pi2.1843 (12)O4—H4A0.82 (3)
Mg—O4ii2.0580 (17)O4—H4B0.85 (4)
Mg—O42.0580 (17)O5—H5A0.75 (4)
Mg—O12.0637 (15)O5—H5B0.77 (4)
Mg—O1ii2.0637 (15)
O1—P—O2116.02 (9)O1ii—Mg—O5ii88.52 (7)
O1—P—O3112.90 (9)O4ii—Mg—O590.25 (8)
O2—P—O3106.05 (9)O4—Mg—O589.75 (8)
O1—P—Pi108.73 (7)O1—Mg—O588.52 (7)
O2—P—Pi108.36 (7)O1ii—Mg—O591.48 (7)
O3—P—Pi104.04 (7)O5ii—Mg—O5180.0
O4ii—Mg—O4180.0P—O1—Mg147.48 (9)
O4ii—Mg—O188.56 (7)P—O3—H3123 (2)
O4—Mg—O191.44 (7)Mg—O4—H4A128 (2)
O4ii—Mg—O1ii91.44 (7)Mg—O4—H4B125.9 (19)
O4—Mg—O1ii88.56 (7)H4A—O4—H4B106 (3)
O1—Mg—O1ii180.00 (7)Mg—O5—H5A124 (3)
O4ii—Mg—O5ii89.75 (8)Mg—O5—H5B121 (3)
O4—Mg—O5ii90.25 (8)H5A—O5—H5B104 (4)
O1—Mg—O5ii91.48 (7)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2iii0.79 (4)1.94 (4)2.687 (2)157 (3)
O4—H4A···O2iv0.82 (3)2.00 (3)2.817 (2)169 (3)
O4—H4B···O1v0.85 (4)1.94 (4)2.786 (2)173 (3)
O5—H5A···O2vi0.75 (4)2.03 (4)2.768 (3)165 (3)
O5—H5B···O3vii0.77 (4)2.08 (4)2.829 (3)165 (4)
Symmetry codes: (iii) x1, y, z; (iv) x, y, z+1; (v) x+1, y+2, z+1; (vi) x, y+1, z+1; (vii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.79 (4)1.94 (4)2.687 (2)157 (3)
O4—H4A···O2ii0.82 (3)2.00 (3)2.817 (2)169 (3)
O4—H4B···O1iii0.85 (4)1.94 (4)2.786 (2)173 (3)
O5—H5A···O2iv0.75 (4)2.03 (4)2.768 (3)165 (3)
O5—H5B···O3v0.77 (4)2.08 (4)2.829 (3)165 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x, y+1, z+1; (v) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Mg(H2P2O6)(H2O)4]
Mr256.33
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)5.1486 (15), 6.595 (2), 7.096 (2)
α, β, γ (°)112.31 (2), 98.55 (2), 98.28 (2)
V3)215.09 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 1999, 2001)
Tmin, Tmax0.843, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
2193, 799, 739
Rint0.057
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.15
No. of reflections799
No. of parameters81
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.60, 0.53

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

References

First citationBloss, K. H., Henzel, N. & Beck, H. P. (1967). Z. Anal. Chem. 226, 25–28.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCollin, R. L. & Willis, M. (1971). Acta Cryst. B27, 291–302.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGjikaj, M., Wu, P. & Brockner, W. (2012). Z. Anorg. Allg. Chem. 638, 2144–2149.  Web of Science CrossRef CAS Google Scholar
First citationGjikaj, M., Wu, P. & Brockner, W. (2014). Z. Anorg. Allg. Chem. 640, 379–384.  CrossRef CAS Google Scholar
First citationHaag, J. M., LeBret, G. C., Cleary, D. A. & Twamley, B. (2005). J. Solid State Chem. 178, 1308–1311.  Web of Science CrossRef CAS Google Scholar
First citationHagen, S. & Jansen, M. (1995). Z. Anorg. Allg. Chem. 621, 149–152.  CrossRef CAS Web of Science Google Scholar
First citationLeininger, E. & Chulski, T. (1953). Inorg. Synth. 4, 68–71.  CrossRef CAS Web of Science Google Scholar
First citationPalmer, W. G. (1961). J. Chem. Soc. pp. 1079–1082.  CrossRef Google Scholar
First citationRuflin, C., Fischbach, U., Grützmacher, H. & Levalois-Grützmacher, J. (2007). Heteroat. Chem. 18, 721–731.  CSD CrossRef CAS Google Scholar
First citationSalzer, Th. (1878). Liebigs Ann. 194, 28–39.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSzafranowska, B., Ślepokura, K. & Lis, T. (2012). Acta Cryst. C68, i71–i82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzklarz, P., Chański, M., Ślepokura, K. & Lis, T. (2011). Chem. Mater. 23, 1082–1084.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, P., Wiegand, Th., Eckert, H. & Gjikaj, M. (2012). J. Solid State Chem. 194, 212–218.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 867-869
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds